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Ulf Jakob F. Aarsnes, Norwegian University of Science and Technology,
Florent Di Meglio, MINES ParisTech, Robert Graham, Well Advanced Solutions, and Ole 

Morten Aamo, Norwegian University of Science and Technology

Summary

This paper proposes an extension to an existing operating-enve-
lope technique used for underbalanced drilling (UBD) to enhance
control of bottomhole pressure and inflow parameters. With the
use of an implementation of the drift-flux model (DFM) with
boundary conditions typically encountered in underbalanced oper-
ations (UBO), a steady-state analysis of the system is performed.
Through this analysis, four distinct operating regimes are identi-
fied, and the behavior in each of them is investigated through
steady-state calculations and transient simulations. In particular,
the analysis reveals that a section of the operating envelope previ-
ously believed to be unstable/transient is, in fact, stable/steady
when a fixed choke opening is used as an independent variable in
place of a fixed wellhead pressure (WHP). This results in the
steady-state operating envelope being extended, and gives an
increased understanding of the well behavior encountered in UBO
toward enabling the introduction of automated control. Finally,
we investigate the mechanism behind severe slugging in UBO
and argue that the cause is different from that of the slugging
encountered in production and multiphase transport.

Introduction

Note that, in recent years, an increasing degree of automation in
managed-pressure drilling occurred (Thorogood et al. 2010). The
pay-off was increased safety, as well as enabling the drilling of pre-
viously undrillable wells, because of tighter control of downhole
pressure (Godhavn 2010, 2011). It is natural to believe that we will
see a similar development toward increased automation in UBO.

Unfortunately, in the context of automated pressure and flow
control, the dynamics of the two-phase flow encountered in UBO
is significantly more complicated than the single-phase flow of
conventional drilling: In single-phase flow, any operating point is
inherently stable, transients are short and predictable, and, barring
certain well-control incidents, operating conditions are reasonably
homogeneous. By contrast, in two-phase UBO, the distributed
gas/liquid flow and the reservoir/well interaction result in classical
nonlinear behavior [see Khalil (2002) for description of nonlinear
behavior of dynamics systems] such as multiple steady states,
limit cycles, and bifurcations, as described by Aarsnes et al.
(2014a, b) and Mykytiw et al. (2003, 2004). Hence, to enable safe
and robust algorithms for automated control to be developed for
UBO, increased understanding of these phenomena, their poten-
tial occurrence in UBO, and the behavior of the coupled well-
reservoir dynamics are required.

Contribution. The main contribution of this paper is the classifi-
cation of operating points in UBO. The associated analysis per-
formed to attain this classification also yields understanding of the
behavior of the system.

More precisely, a comprehensive steady-state analysis of a
DFM coupled with a reservoir is performed. The dynamics of this
model replicates dynamics that are encountered in UBO in gas-
dominant reservoirs. Investigating the steady states of a model
also reveals much of the transient behavior.

To this end, we present an extension to the operating-envelope
analysis technique presented by Graham and Culen (2004) and
used by Mykytiw et al. (2004), which have properties that are par-
ticularly beneficial from a pressure-control point of view com-
pared with the conventional UBO operating-envelope analysis
technique, used, for example, in Saponja (1998) and Guo and
Ghalambor (2002).

This new technique, combined with analysis tools from
dynamic-systems theory, is used to investigate when the flow in
the well is stable/steady and when it might become unstable. In
particular, it is shown that whether a well is hydrostatic or fric-
tion-dominated [in the sense used by Saponja (1998)] is not the
determining factor for flow stability in UBO. Instead, a new clas-
sification of the UBO envelope is proposed in which the part with
stable flow can be identified as either an “intuitive regime” with
short and well-behaved transient dynamics or a “nonintuitive
regime” with an inverted response in the WHP. In addition, an
“unstable regime” with no stable steady states, an operating
region with potential slugging, and finally, conventional overbal-
anced drilling round out the classification to five distinct regimes.

Outline. In the next section, some concepts from dynamic-sys-
tems theory are introduced that will be helpful in the later discus-
sion on the dynamics. Next, the DFM at steady state is described,
with the full model given in Appendix A. With a short transient
simulation case, an alternative operating-envelope analysis tech-
nique is hypothesized and then proposed. This is then used to
identify and classify five distinct operating regimes in UBO, when
including severe slugging as a distinct regime (because the poten-
tial occurrence of severe slugging is not captured directly by this
technique, it is given its own treatment). This is the main result of
the paper. We end the paper with a Conclusion section and some
thoughts on the potential of automatic control in light of the pre-
ceding analysis.

Stable and Unstable Equilibria of

Dynamical Systems

This section introduces some well-known concepts and results
from the field of dynamic-systems theory that will be useful in the
following discussion. For a more comprehensive treatment, the
interested reader is referred to Khalil (2002).

Consider the autonomous system

_x ¼ f ðxÞ; ð1Þ

where x is a vector of system states and _x denotes the time deriva-
tive of these states such that the dynamics of the system are
described by the function f(x). A state x is an equilibrium of Eq. 1
if it satisfies f ðxÞ ¼ 0. The following definition will be of
importance.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Definition 1. The equilibrium point x of Eq. 1 is

• stable if, for each e> 0, there is d ¼ dðeÞ > 0 such that

jjxð0Þ � xjj < d ) jjxðtÞ � xjj < e; 8t � 0 ð2Þ

• unstable if it is not stable
• asymptotically stable if it is stable and d can be chosen such
that

jjxð0Þ � xjj < d ) lim
t!1

xðtÞ ¼ x: ð3Þ

The implication of this definition is that a system will diverge
from an unstable equilibrium, remain close to a stable equilib-
rium, and converge to an asymptotically stable equilibrium. The
following example is illustrative.

Example. Consider the pendulum system shown in Fig. 1.
The pendulum equation can be derived using Newton’s second
law of motion and written as

_h1 ¼ x ð4Þ

_x2 ¼ � g

l
sinðhÞ � k

m
x; ð5Þ

where h, x denotes the angular position and velocity and k is the
frictional coefficient. This system has two equilibrium points
h¼ 0, x¼ 0 and h ¼ p; x ¼ 0. Starting in an equilibrium point,
the system will remain stationary, i.e. at steady state. However,
for the second equilibrium point at h ¼ p, all trajectories starting
arbitrarily close will eventually diverge and leave the ball
jjx� xjj � e. This point clearly does not satisfy the e-d require-
ment for stability and is hence an unstable equilibrium point.
Unstable points are not uninteresting, however, since they can be
rendered stable by feedback control and yield insight into the
behavior of the system. The equilibrium at h¼ 0 is asymptotically
stable as nearby trajectories will not only remain close, thus satis-
fying the e-d requirement, but will converge to the equilibrium
point as time tends to infinity because of frictional damping.

Analysis Through Linearization. A well-known technique in
analyzing nonlinear systems is to exploit the fact that, close to an
equilibrium, a systems behavior matches closely to that of its lin-
ear approximation. In fact, the stability of an equilibrium point
can, in most instances, be determined by checking the stability of
the linearized system, as per Lyapunov’s indirect method (Khalil

2002). This is usually performed by using a classic result that
states that a linear system is unstable if one or more of its poles
(i.e., zeros of the system’s characteristic equation) is in the right-
half plane (i.e., has a positive real part) (Åström and Murray
2010). The qualitative behavior of the linear system can be further
characterized according to the location of the unstable poles in the
right-half plane:

1. Pole on the real axis in the right-half plane: simple expo-
nential divergence.

2. Complex conjugate pair of poles in the right-half plane:
oscillations with exponentially increasing amplitude.

In the present case, the analysis is complicated by the fact that
the DFM is a distributed parameter system (i.e., described by a
partial-differential equation), which means it has an infinite num-
ber of modes. Thus, an equilibrium point can have multiple poles
in the right-half plane, and firm predictions become difficult to
make. We will, however, in this paper, try to draw conclusions on
the behavior on the basis of a combination of mathematical analy-
sis and simulations. In this regard, we will distinguish between
two instabilities on the basis of qualitative behavior observed
in simulations:

1. Static instability: believed to be caused by the equilibrium
dominated by a pole on the real axis in the right-half plane.
It exhibits a simple exponential divergence from the equi-
librium. It can be identified as an unstable equilibrium by
the stability heuristic presented later in the paper.

2. Dynamic instability: believed to occur when the equilibrium
is unstable because of a complex conjugate pair of poles in
the right-half plane whereas, at the same time, there is no
pole on the real axis in the right-half plane. It is character-
ized by an oscillation around the equilibrium point with an
exponentially increasing magnitude. The absence of the
pole on the real axis means that this instability is not identi-
fied by the stability heuristic. It can, however, be identified
through simulations and the Nyquist stability criterion.

By identifying all equilibriums of a system and determining
their properties through linear analysis, one can make predictions
about the full nonlinear dynamics as well. However, these predic-
tions are only valid close to the equilibrium, and the behavior
may radically change when the system significantly diverges
away from it. Thus, we combined the predictions from the analy-
sis of the linearized equilibrium points with transient simulations
to substantiate a more comprehensive understanding of the full
system dynamics.

The DFM at Steady State

To model the pressure and flow dynamics in the well, we will use
the DFM, which is a frequently used model of multiphase flow in
drilling. The DFM requires one distributed state for each phase to
model the mass balance while the momentum of the mixture is
lumped into one equation. Seminal references on two-phase flow
and the DFM are Wallis (1969) and Ishii (1977).

In the context of drilling, seminal work was performed by
Lage et al. (2000), Lage and Time (2002), and Fjelde et al. (2003)
to validate both the steady-state and transient behavior of the
DFM with full-scale experimental data. These studies show that
the basic DFM yields good qualitative predictions, and that a high
quantitative accuracy can be achieved as well when using flow-
pattern identification with separate closure relations for each flow
pattern. In this work, we avoid this final complication by using a
DFM with simple friction and slip correlations, independent of
flow patterns. This simplifies the analysis of the model while
retaining the qualitative behavior.

A description of the full DFM is given in Appendix A. What
follows is the boundary conditions and steady-state version of the
DFM equations, which are used to calculate the operating enve-
lope. Description of dependent variables is given in Table 1 and
parameters in Table 2.

Boundary Conditions. Let x 2 ½0;L� denote the space variable.
For clarity purposes, we denote the pressure at the boundaries

. . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .
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Fig. 1—Pendulum.
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as Pðx ¼ 0Þ ¼ BHCP, where BHCP is the bottomhole circulating
pressure, and Pðx ¼ LÞ ¼ WHP (Fig. 2). Boundary conditions on
the downhole boundary are given by the mass rates of gas and liq-
uid injected from the drilling rig and flowing in from the reser-
voir. Denoting the cross-sectional flow area by A, the boundary
fluxes are given as:

AmvLjx¼0 ¼ kL maxðPres � BHCP; 0Þ þWL;injðtÞ; ð6Þ

AnvGjx¼0 ¼ kG maxðPres � BHCP; 0Þ þWG;injðtÞ: ð7Þ

Here Pres denotes the reservoir pore pressure and kG, kL are the
production index of the gas and liquid, respectively. The injection

mass-rates of gas and liquid, WG,inj,WL,inj, are specified by the
driller and can, within some constraints, be considered as manipu-
lated variables. The inflow from the reservoir is dependent on the
pressure on the left boundary, usually given by a Vogel-type
inflow performance relationship (IPR) (Wiggins et al. 1996), but
within the operational range of a typical UBD operation; a linear
approximation should suffice.

We consider two different topside boundary conditions, corre-
sponding to two potential operating scenarios:

1. The WHP is set to be constant:

WHP ¼ const: ð8Þ

2. WHP is dependent on the topside liquid and gas mass-rates
through a valve equation:

mvL
ffiffiffiffiffi
qL

p þ nvG

Y
ffiffiffiffiffiffi
qG

p
�
�
�
�
x¼L

¼ Cv½ZðtÞ�
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WHP� Ps

p

; ð9Þ

where Cv is the choke opening given by the manipulated
variable Z. Y 2 ½0; 1� is a gas-expansion factor for the gas
flow, and Ps is the separator pressure (i.e., the pressure
downstream from the choke).

Steady-State Equations. The model is said to be at an equilib-
rium, or at steady state, when both the boundary conditions Eqs. 6
and 7 and Eq. 9 or Eq. 8 and the distributed Eqs. 26 through 28 with

the
@

@t
terms to zero are satisfied. That is, at steady state, we have

@mvL

@x
¼ 0; ð10Þ

@nvG

@x
¼ 0; ð11Þ

@Pþ mv2L þ nv2G
@x

¼ �ðmþ nÞgsin/ðxÞ � 2f ðmþ nÞvmjvmj
D

:

� � � � � � � � � � � � � � � � � � � ð12Þ

From Eqs. 10 and 11, we have that the mass flux is constant
with regards to the variable x. Combining this with the boundary
conditions and integrating Eq. 12, we find that the system at
steady state must satisfy

WHP ¼ BHCPþ
ðL

0

� @mv2L þ nv2G
@s

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Acceleration

�ðmþ nÞgsin/ðsÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Gravity

� 2f ðmþ nÞvmjvmj
D

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Friction

ds; � � � � � � � � � � � � � � � � ð13Þ

AmvL ¼ kL maxðPres � BHCP; 0Þ þWL;injðtÞ; ð14Þ

AnvG ¼ kG maxðPres � BHCP; 0Þ þWG;injðtÞ; ð15Þ

and the topside boundary condition Eq. 8 or 9.

. . . . .

. . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . .

G G
n α ρ= Gas mass variable L L

m α ρ= Liquid Mass Variable 

G G
W Anv= Gas mass-rate L L

W Amv= Liquid mass-rate 

G
α Void fraction L

α Liquid holdup 

Gρ Gas density Lρ Liquid density 

G
v Gas velocity L

v Liquid velocity 

vM Mixture velocity P Distributed pressure 

Table 1—List of dependent variables.

Description Symbol Value Unit

Area of flow A
36.8 10−× m

2

Gas-production index kG
75 10−× kg/s/Pa

Liquid-production index kL 0 kg/s/Pa

Slip parameter K 1.5 –

Slip parameter S 1.0 m/s

Inclination ( )xφ / 2π –

Measured depth L 2530 m

Reservoir pressure Pres 279 bar

Reference liquid density 0,Lρ 1000 kg/m
3

Table 2—List of parameters.

WHP = P(L)
Annulus

WG,inj WL,inj
Rig Pump

WcZ

Drill String

Drilling Bit

BHCP = P(0)

WG,res

WL,res

Fig. 2—UBD schematic.
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UBD Operating Envelope

In UBD well engineering, using a steady-state multiphase flow
simulator is a popular approach to develop an operating envelope,
or operating window. This allows the engineer to gauge the WHP
and injection rates required to achieve the desired BHCP as well
as satisfying holecleaning requirements. Publications referring to
the use of such a technique are also numerous; see, for example,
Saponja (1998), Guo and Ghalambor (2002), Udegbunam et al.
(2013), Nguyen et al. (2009), Suryanarayana et al. (2006), Guo
(2002), and Pickles et al. (2004).

In the following, we consider an example case to illustrate the
failure of the conventional operating envelope to predict stability
of certain equilibria caused by the assumption of constant WHP.
An alternative approach that amends this problem is then pro-
posed. For the case considered, no gas injected and no liquid pro-
duced (i.e., a constant liquid rate and pressure-dependent gas rate)
is assumed. See Table 2 for full list of parameter values used.

Conventional Operating-Envelope Analysis. The conventional
way of developing the operating envelope is to assume a fixed
WHP, thus satisfying Eq. 8, and then specify a gas mass-rate nvG
and solve Eqs. 13 and 14 to find the corresponding BHCP. This is
then repeated over a range of gas mass-rates, thus creating the
tubing performance curve (see Fig. 3). This curve gives the poten-
tial steady-state operating points of the well. To find the actual
equilibria of the system, we need to overlay the solution of Eq.
15, which is the IPR curve. The intersection points of these two
curves correspond to an equilibrium, because it indicates that the

full set of Eqs. 8, 13 through 15 are satisfied. These equilibria can
be either stable or unstable; see Definition 1.

In Fig. 3, there are two intersection points, but only one of
these is stable and a suitable operating point. By inspecting the
curves, we see that, for gas rates in which the IPR curve is above
the tubing performance curve, the well is not in a steady state but
tends to a higher gas rate and vice versa (see Fig. 4). The intersec-
tion point denoted by the red dot, then, is unstable: A slight per-
turbation from this point to an increased BHCP would cause a
reduced gas inflow, further increasing the BHCP. Vice versa, for a
slight decrease in BHCP, the increased gas-influx will displace
the liquid in the well, further decreasing BHCP and causing yet
more gas-influx. Hence, this equilibrium has a static instability
from which nearby trajectories will diverge.

For the steady state denoted by the green dot, the intersection
between the two curves is in the opposite direction, making this
an attractive (i.e., stable) equilibrium.

In the field, changing BHCP is typically achieved by control-
ling the WHP. One can see the effect of changing the WHP for
the current scenario in Fig. 5, where the well will tend to the inter-
section denoted by the green dot for the tubing performance curve
corresponding to the current WHP. Hence, according to this anal-
ysis, the highest underbalanced BHCP at a stable steady state that
can be achieved for this well by changing the WHP is 235 bar,
achieved with a WHP of 58 bar. Enforcing a WHP higher than
this will lead to well becoming overbalanced.

Alternative Technique. In this section, we present an alternative
approach to finding equilibria in UBO. The basis is similar to the
techniques used by Mykytiw et al. (2004) and Graham and Culen
(2004), but where these papers concluded that (what we call) the
nonintuitive regime is unstable, we show that this is true only when
using a constant WHP (i.e., Eq. 8) as a boundary condition. When
we control by setting a fixed choke opening instead (i.e., using Eq.
9), the stable regime is expanded, as is shown in the following.

Transient Simulation. To give an impression of the thinking
behind this approach, consider a transient simulation of the same
well studied in the previous section but with the topside boundary
condition Eq. 9 (see Fig. 6). Again, the injected liquid rate is kept
constant, the gas rate is dependent on the BHCP according to Eq.
15, and the only manipulated variable is the choke opening. Note
that the effect of changing the choke opening is to change the
WHP required to have a given mass-rate flowing out of the well,
as given by Eq. 9.

Initially, the choke opening is set to a (Table 3) and is
changed (slightly closed) to b, c and d after 3,6, and 10 hours.
When the choke opening is changed, there is a transient period
before the pressure settles to the new steady state. We note the
qualitatively different responses for each of the changes in choke
opening. For the change from a to b, both the WHP and BHCP
increases because the choke opening is decreasing as expected.
For the decrease in choke opening from b to c, however, after an
initial increase in WHP, a counterintuitive response follows, in
which the WHP decreases and settles at a lower value than the
previous equilibrium. Finally, when the choke opening is set to d
after 10 hours, the system drifts to overbalance.

Steady-State Analysis. It is clear that this transient behavior
cannot be fully understood by the conventional operating-enve-
lope analysis, and the reason for this is the failure of that method
to take the effect of the backpressure choke, Eq. 9, into account.
Specifically, the conventional operating-envelope analysis
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Fig. 3—Stable and unstable equilibrium in a UB operation.

Fig. 4—Dynamics of an unstable and a stable equilibrium.
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considers the WHP as the independent (i.e., exogenous) variable
when in practice; the choke opening is the independent variable,
which allows for including Eq. 9.

Instead, to understand this behavior, we return to the steady-
state equations of the DFM, but, following the suggestion of Gra-
ham and Culen (2004), we combine the tubing performance curve
and the IPR to plot the curve shown in Fig. 7. The blue WHP
curve in this figure is calculated by fixing the BHCP, figuring out
the inflow rates with Eqs. 14 and 15, and then finding the corre-
sponding WHP by integrating Eq. 13. Equilibria can then be
found by overlaying either Eq. 8 (which corresponds to Fig. 7) or
Eq. 9 (corresponding to Fig. 8) according to the boundary condi-
tion that is enforced.

By comparing Fig. 7 with Fig. 5, it is seen that the same equili-
bria points are identified by both approaches. However, to under-
stand the behavior from the transient simulation, the boundary
condition with the backpressure choke, that is, Eq. 9, must be
enforced. Overlaying Eq. 9 with the values in Table 3 yields Fig. 8.
Again, for certain choke openings, such as c, there are multiple
points of intersection between the curves and correspondingly mul-
tiple equilibria. These can be checked for static instabilities by a
“stability heuristic” similar to the one used for the conventional
technique: When the red line is below the blue line, there is more
mass flowing out of the well than into the well, and BHCP will
decrease and vice versa. Hence, we can identify the qualitative
behavior of the system and heuristically determine the stability or
instability of the equilibria; see Fig. 9. In this figure the behavior of
the well is also indicated by the arrows: If the well is started with a
BHCP lower than that which corresponds to the unstable equilib-
rium, the red curve is below the blue, and the system moves toward
the underbalanced stable equilibrium indicated by the green dot.
Note that this stability heuristic is named as such because it is not
rigorous; in fact, it is only able to detect static instabilities.

Now, consider the transient simulation (Fig. 6) in the context
of Fig. 8: We see that, moving from choke opening a to b, we
have an intuitive response as the system moves to the apex of the
steady-state WHP curve. Moving to choke opening c, however,
results in a decreased steady-state WHP, as indicated by Fig. 8,
which gives the nonintuitive transient response observed in Fig. 6.
Finally, at d, there are no intersections between the two curves at
underbalanced BHCPs, and since the red curve is above the blue
one, the well moves to the equilibrium in overbalanced conditions.

Classification of Operating Regimes

With the techniques presented in the previous section, four dis-
tinct regimes for the UBD well in question can be identified; see
Fig. 10. In addition, there is a fifth regime caused by a dynamic
instability that is characterized by a severe slugging limit cycle.
This is investigated in a later section.

(1) Intuitive Regime. This regime corresponds to BHCPs
below (i.e., left in Fig. 10) the apex of the WHP curve.
The well in this regime is stable and well-behaved without
exhibiting inverse responses.

(2) Nonintuitive Regime. In this regime the well exhibits
inverse response in the WHP compared with BHCP. To
explain this phenomenon, consider the following approxi-
mation of Eq. 13, obtained by neglecting the acceleration
term:

BHCP ¼ Fþ GþWHP; ð16Þ

where F denotes the integrated frictional pressure drop and G
the hydrostatic pressure. Let D denote a steady-state change in
value. We have

DWHP ¼ DBHCP� DF� DG; ð17Þ

) DWHP

DBHCP
¼ 1� DF

DBHCP
� DG

DBHCP
: ð18Þ

Inserting Eq. 15 in Eq. 18 results in

DWHP

DWG

¼ � 1

kG
� DF

DWG

� DG

DWG

: ð19Þ

Hence, we get the nonintuitive response when (unfortunately,
this criterion requires a steady-state model of the well to find
DF

DWG

;
DG

DWG

, and cannot be computed explicitly from well pa-

rameters alone)

1

kG
þ DF

DWG

þ DG

DWG

< 0; ð20Þ

and the apex of the curve in Fig. 10 corresponds to the point
when the left side of Eq. 20 equals zero. Note that this condi-
tion is different from the one typically used to identify a
hydrostatically dominated well, which is

DðBHCP�WHPÞ
DWG

< 0 ð21Þ

) DF

DWG

þ DG

DWG

< 0: ð22Þ

We emphasize that the determining factor for the behavior of
the well is the condition presented by Eq. 20 and not Eq. 22.

In this nonintuitive regime, the pressure settles at a lower
value, but since the system’s initial response is an increase
(see Fig. 6), we get an inverse response in the WHP. This phe-
nomenon is referred to as the system being nonminimum phase
in systems theory. Because of this nonminimum-phase
response, the BHCP should not be controlled on WHP in this
regime. This is why steady states in this regime appear unsta-
ble when the conventional technique shown in Fig. 5 is used.
In this regime, BHCP should be controlled on choke opening.
(3) Unstable Regime. For larger values of BHCP, there are

no stable equilibria. Closing the choke further, for

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

Time: 1–3 (hours) 3–6 (hours) 6–10 (hours) 10–12 (hours) 

Choke Opening: a = 12% b = 10% c = 8.5% d = 7% 

Table 3—Choke stepping program.
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Fig. 6—Transient simulation with decreasing choke opening.
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example, from c to d, will cause the well to enter a limit
cycle of severe slugging or drift toward the steady state in
overbalanced conditions.

We note, however, that there are nominally unstable equilibria
in this regime that can be made stable through automatic feedback
control of the choke with BHCP measurements, that is, by creat-
ing the appropriate dynamic mapping ZðtÞ ¼ CðBHCPÞ. Thus, the
UBD operating envelope can be extended, which would enable
performing UBO on wells with tight margins between fracture
and collapse pressure or with stringent limits on the amount of
gas that can be flared.

(4) Overbalanced Regime. In this regime, for the given well,
the system contains only liquid, which makes the differ-
ence BHCP�WHP constant. Hence, all steady states are
stable with short predictable transients.

Identifying Operating Regime. As was shown, the operating en-
velope can be extended with the choke opening as the independ-
ent variable in place of WHP. While keeping the well under
control in this manner, the well’s operating regime can be identi-
fied by reducing the choke opening and observing the correspond-
ing change in WHP (see Fig. 6). In the intuitive region far from
the apex of the WHP curve (see Fig. 10), the well quickly goes to
steady state after the change, without any overshoot and with an
increase in steady-state WHP. Closer to the apex of the WHP

curve (and thus closer to the limit to the nonintuitive region), the
well will need more time to reach steady state, and the WHP
response will have an overshoot. In the nonintuitive regime, the
WHP will have an inverse-response, and the well will need
increasingly more time to reach steady state as the limit to the
unstable regime or severe slugging is approached.

Validity of Stability Heuristic. In the previous sections, the sta-
bility of an equilibrium was determined by the heuristic of the
direction the steady-state curves of the operating envelope inter-
sects. This stability heuristic, however, is only able to detect static
instabilities. A more rigorous way of determining stability is to
use the well-known Nyquist stability criterion (see, for example,
Åström and Murray 2010).

To use this criterion, we need to linearize the system and
derive the loop-transfer function of a known stable loop. Assum-
ing a well with constant choke opening and constant gas and liq-
uid mass-rates entering at the bottom to be stable, we can analyze
the system by breaking the loop between the reservoir and the
well; see Fig. 11. In this block diagram, G0(s) denotes the linear-
ized system dynamics between a gas mass-rate entering at the bot-
tom of the well and the BHCP. By closing the loop with the IPR
(Eqs. 14 and 15), we obtain the full system with the boundary
conditions discussed previously. Hence, we can evaluate the sta-
bility of this system by using the Nyquist criterion on the loop-
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transfer function of G0(s) multiplied with the linearized IPR, here
denoted by kG.

The loop-transfer function is derived in Appendix A, whereas
the Nyquist criterion is restated in Appendix B. Using this crite-
rion, we can investigate the validity of the heuristic. Consider
again the equilibria shown in Fig. 9. The Nyquist contours corre-
sponding to the two underbalanced equilibria are shown in Fig. 12.
The equilibrium denoted as unstable has several encirclements of
the –1 point (i.e., the complex number –1þ 0j), indicating poles in
the right-half plane and an unstable equilibrium point, thus con-
firming the heuristic in this case.

Choke-Opening Sensitivity Analysis

When controlling the BHCP by manipulating the opening of the
backpressure valve, either through an automatic algorithm or with
a “bloke on the choke” (i.e., manually), it is desirable to understand

how the well reacts to this actuation. This is shown in Fig. 13. The
steady-state values of BHCP and WHP (i.e., the green and red dots
in Fig. 9) are plotted over a range of choke openings given on the
x-axis.

Consider a well initially in the overbalanced regime. Closing
the choke will cause the system to move along the red line until a
choke opening of 8%. This corresponds to a choke opening where
the red dotted line in Fig. 8 is below the WHP minimum occurring
at the transition to underbalanced conditions. The system will
then move to the stable steady states given by the blue curve in
Fig. 13. Reducing the choke opening when the system is in this
state will make it move along the blue curve. The end of the blue
curve, moving toward left, is the limit of the stable regime. Clos-
ing the choke past this point will either cause the system to go to
the overbalanced regime or enter a severe slugging limit cycle.

Dynamic Instability: Severe Slugging in UBO

As discussed previously, an equilibrium must be checked for
dynamic instabilities to guarantee a stable operating point. For the
considered UBO scenario, in which the liquid-rate is constant and
the gas-rate is dependent on drawdown, there have been reports
from the field by Graham and Culen (2004) and Mykytiw et al.
(2004) of instabilities associated with low gas-rates, leading to a
limit cycle of severe slugging. (Note that by severe slugging we
mean a violent, low-frequency cycling between long liquid slugs
and a high gas flow rate, and not a slug flow pattern.) In recreating
this behavior in simulations, it was found that the well would, in
some instances, exhibit an oscillation with increasing magnitude,
diverging from an equilibrium predicted to be stable by the stabil-
ity heuristic, thus suggesting a dynamic instability. The system
would then, over time, enter a limit cycle of severe slugging; see
Fig. 14.

In the literature, we find that there can be different mecha-
nisms for severe slugging, for example, terrain slugging (Taitel
1986; Jansen et al. 1996), casing heading (Eikrem et al. 2006,
2008), and density-wave (Hu 2004; Sinegre 2006). However, not
one of these mechanisms matches exactly with the boundary con-
ditions of constant liquid rate and drawdown-dependent gas rate,
which are explored in this paper. The closest match is perhaps the
dynamic instability reported by Xu and Golan (1989).

Thus, it seems that this particular mechanism for severe slug-
ging in UBD has not been extensively studied in the literature and
hence is not yet clearly understood. It is, however, known to be
associated with low gas-rates, meaning it tends to occur close to
the balance point. Furthermore, it seems to be caused by increases
in WHP caused by gas flowing out through the choke. Thus, keep-
ing WHP constant would remove the slugging but would start a
static instability instead if the well is in the nonintuitive regime.
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To recreate slugging with the DFM, the backpressure choke
Eq. 9, with a very small Y, is required. The effect of this is that
variations in gas flow through the choke cause large changes in
WHP. The operating envelope of a well that exhibits slugging is
shown in Fig. 15; here, Y¼ 0.025 was used. Fig. 15 also shows
the required WHP curves of two slightly different choke open-
ings: one that corresponds to a stable equilibrium and one that has
a dynamic instability. With such a low Y constant, the unstable re-
gime discussed in the previous section, caused by the static insta-
bility, is avoided because of the steepness of the required WHP
curves. Instead, the occurrence of severe slugging becomes possi-
ble. To evaluate the stability of these equilibria, we again find the
loop-transfer function with the method described in Appendix A
and the Nyquist theorem from Appendix B.

The loop-transfer functions and the Nyquist contours of the line-
arized systems obtained around the two equilibria are shown in
Fig. 16. The loop-transfer function shows the frequency-
domain response of the system to an impulse of increased gas
influx. In the Nyquist plot, we see that the slugging instability in
this case is caused by two unstable modes in the 2� 10�3–1� 10�2

(rad/s) frequency range. This is consistent with the transient simula-
tion shown in Fig. 16 in which the slugging has approximately a
20-minute period, which corresponds to 5� 10�3 (rad/s).

Summary and Conclusions

In this paper, an operating-envelope technique for analyzing dy-
namics encountered in UBO is presented. Using this technique,
we are able to identify five distinct operating regimes:
• Intuitive regime—with short and intuitive transient dynamics,
associated with high gas-rates.

• Nonintuitive regime—with an inverted WHP response, associ-
ated with low-to-midrange gas rates.

• Unstable regime, static instability—with no stable steady states
because of a static instability, associated with low gas rates.

• Unstable regime, severe slugging—with no stable steady states
because of the well tending to a severe slugging limit cycle,
caused by dynamic instability, associated with low gas rates.

• Overbalanced regime—with no reservoir influx and stable
steady states.
The accompanying analysis reveals that an important factor

deciding the behavior of an underbalanced gas well is not whether
the well is frictionally or hydrostatically dominated, but instead
the limit between the intuitive and nonintuitive regimes, given by
the point when

1

kG
þ DF

DWG

þ DG

DWG

¼ 0: ð23Þ

Another important determining factor for the behavior is the
limit to the two unstable regimes. It can be shown that both a
steep and flat slope of the “Required WHP” curve of the backpres-
sure choke can cause instabilities:

• A static instability in the case of a flat curve (see Figs. 9 and
12).

• A dynamic instability causing severe slugging in the case of
a steep curve (see Figs. 15 and 16).

The location of the limits to these two regimes will typically
be uncertain, but it was shown that they are both associated with
low gas rates, and some insight can be gained by deriving the
loop-transfer function and using the Nyquist stability criterion, as
described in Appendices B and C.

Potential for Automatic Control. The analysis and classification
provided in this paper could serve as a decision support tool to
identify operating conditions and anticipate the behavior of the
system. This should allow operators to avoid counterproductive
operation of the choke, as is reported in Graham and Culen (2004).

An even more promising line of future research, however, is the
potential for automatic control. There are many examples from
other industries in which feedback control was used to turn a nomi-
nally unstable equilibrium into a stable one (see, for example,
Krstic et al. 1995), hence making it a possible operating point.

. . . . . . . . . . . . . . . . . . . . .
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By stabilizing the unstable regions with feedback control,
UBO could be performed arbitrarily close to the balance point,
thus avoiding excessive flaring of produced gas and enabling
UBD of wells with low collapse margins. Conceptually, stabiliz-
ing an underbalanced well can be understood as analogous to con-
trolling a pendulum at the upper equilibrium: straightforward to
do with an actuator controlled with feedback from position meas-
urements, but possibly challenging and tiring if performed man-
ually. This topic will be investigated in future publications.
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Appendix A: The DFM

The following is a recap of the formulation described by Aarsnes
et al. (2014b) and Udegbunam et al. (2014) on the basis of the
work by Evje and Fjelde (2002).

Distributed Equations. In this version of the DFM, the mud, oil,
and water are lumped into a single liquid phase. In developing the
model, we use the following mass variables:

m ¼ aLqL; n ¼ aGqG; ðA-1Þ

where for k¼ L,G denoting liquid or gas, qk is the phase density,
and ak the volume fraction satisfying

aL þ aG ¼ 1: ðA-2Þ

Further vk denotes the velocities, and P the pressure. All these
variables are functions of time and space. We denote t � 0 the
time variable, and x 2 ½0; L� the space variable, corresponding to a
curvilinear abscissa with x¼ 0 corresponding to the bottom hole
and s¼ L to the outlet choke position (see Fig. 2). The equations
are as follows:

@m

@t
þ @mvL

@x
¼ 0; ðA-3Þ

@n

@t
þ @nvG

@x
¼ 0; ðA-4Þ

@mvL þ nvG

@t
þ @Pþ mv2L þ nv2G

@x

¼ �ðmþ nÞgsin/ðxÞ � 2f ðmþ nÞvmjvmj
D

: ðA-5Þ

In the momentum equation (Eq. A-5), the term ðmþ
nÞgsin/ðxÞ represents the gravitational source term, whereas

� 2f ðmþ nÞvmjvmj
D

accounts for frictional losses. The mixtures

velocity is given as

vm ¼ aGvG þ aLvL: ðA-6Þ

Along with these distributed equations, algebraic relations are
needed to close the system.

Closure Relations. Both the liquid and gas phases are assumed
compressible. This is required for the model to handle the transi-
tion from two-phase to single-phase flow. The densities are thus
given as functions of the pressure as follows:

qG ¼ P

c2GðTÞ
; qL ¼ qL;0 þ

P

c2L
; ðA-7Þ

where ck is the velocity of sound and qL,0 is the reference density
of the liquid phase given at vacuum. Notice that the velocity of
sound in the gas phase cG depends on the temperature, as sug-
gested by the ideal gas law. The temperature profile is assumed to
be known and is fed into the model.

Because the momentum equation (Eq. A-5) was written for the
gas/liquid mixture, a so-called slip law is needed to empirically
relate the velocities of gas and liquid. To handle the transition
between single- and two-phase flows, we need a relation with
state-dependent parameters (Shi et al. 2005; Evje 2011). More
precisely, we use the following slip law:

vG ¼ ½K � ðK � 1ÞaG�vm þ aLS; ðA-8Þ

where K � 1 and S � 0 are constant parameters.

Appendix B: Loop-Transfer Function Derivation

The goal here is to develop the systems-transfer functions of vari-
ous input/output configurations of interest. To achieve this, fol-
lowing the lines of Aarsnes et al. (2013, 2014c), we linearize the
system around a steady-state profile and take the Laplace trans-
form of the system with regard to time. We then obtain a third-
order linear, but space-variant, ordinary-differential equation
(ODE) in space. This ODE must be solved for its boundary condi-
tions. There are two boundary conditions on the left (downhole)
boundary and one on the right (topside). Hence, we must obtain
the transition matrix to transport the basis of the solution from the
right side to the left (or vice versa) to obtain the specific solution.

Linearization. The system of Eqs. A-3 through A-5 with bound-
ary conditions given by Eqs. 6 through 9 can be written in the
quasilinear form

@qðx; tÞ
@t

þ A½qðx; tÞ� @qðx; tÞ
@x

¼ S½qðx; tÞ�; ðB-1Þ

with boundary conditions

h1½qð0; tÞ;UðtÞ� ¼ h2½qð0; tÞ;UðtÞ� ¼ h3½qðL; tÞ;VðtÞ� ¼ 0;

� � � � � � � � � � � � � � � � � � � ðB-2Þ

where q ¼ ½m n I � is the state vector and the actuation acts
through the exogenous variables UðtÞ ¼ ½WL;inj WG;inj �T and
V(t)¼ Z.

Let ~qðx; tÞ ¼ qðx; tÞ � qðxÞ denote the distance from some
equilibrium profile q. Close to this equilibrium profile, the dynam-
ics of the system can be approximated by the linear system (Di
Meglio 2011):

@~qðx; tÞ
@t

þ AðqðxÞÞ @~qðx; tÞ
@x

¼
�

� @A

@q
� q0ðxÞ þ @S

@q

�

q¼q

~qðx; tÞ;

� � � � � � � � � � � � � � � � � � � ðB-3Þ

where we have used the fact that the equilibrium satisfies

AðqÞq0ðxÞ ¼ SðqÞ: ðB-4Þ
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Also, note the notation:

@A

@q
� q0ðxÞjq¼q ¼

�
@A

@m
m 0ðxÞ þ @A

@n
n0ðxÞ þ @A

@I
I
0ðxÞ

�

q¼q

:

� � � � � � � � � � � � � � � � � � � ðB-5Þ

Taking the Laplace transform of Eq. B-3 in time, denoting the
Laplace variable by s, we get the following ODE in space:

@~qðx; sÞ
@x

¼ Aðx; sÞ~qðx; sÞ; ðB-6Þ

Aðx; sÞ � A�1ðqÞ
�

� @A

@q
� q0ðxÞ þ @S

@q
� sI3�3

�

q¼q

: ðB-7Þ

Numerical Solutions. Because Eq. B-6 is a linear ODE, we can
superimpose solutions to construct the transition matrix. This is
performed by solving Eq. B-6 from x0 to x1 three times with the
initial conditions:

~q1ðx0; sÞ ¼
1

0

0

2

6
4

3

7
5; ~q2ðx0; sÞ ¼

0

1

0

2

6
4

3

7
5; ~q3ðx0; sÞ ¼

0

0

1

2

6
4

3

7
5:

� � � � � � � � � � � � � � � � � � � ðB-8Þ

The solutions, denoted as ~q1ðx1; sÞ; ~q2ðx1; sÞ; ~q3ðx1; sÞ, make
up the transition matrix:

Uðx1; x0Þ ¼ ½ ~q1 ðx1Þ~q2ðx1Þ~q3ðx1Þ�; ðB-9Þ

which has the property

~qðx1; sÞ ¼ Uðx1; x0Þ~qðx0; sÞ: ðB-10Þ

Boundary Conditions. Consider the following linearization of
the boundary conditions:

@h1

@q
~qð0; sÞ ¼ � @h1

@U
~UðsÞ; ðB-11Þ

@h2

@q
~qð0; sÞ ¼ � @h2

@U
~UðsÞ; ðB-12Þ

@h3

@q
~qð1; sÞ ¼ � @h3

@V
~VðsÞ; ðB-13Þ

where the partial derivatives are evaluated at q ¼ q;U ¼ U ;
V ¼ V . Using the derived transition matrix, we can write these in
matrix form

~qð0; sÞ ¼

@h1

@q

@h2

@q

@h3

@q
Uð1; 0Þ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

�1

� @h1

@U
~UðsÞ

� @h2

@U
~UðsÞ

� @h3

@V
~VðsÞ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

U ¼ U

V ¼ V

q ¼ q

:

� � � � � � � � � � � � � � � � � � � ðB-14Þ

The states at other positions can be obtained with Eq. B-10.

Transfer Functions. Finally, we can obtain the desired transfer
functions. Considering the output g(q) with perturbations denoted
~g½qð0; sÞ� ¼ g½qð0; sÞ� � g½qð0Þ�, the transfer function from, for
example, the choke input Z(s)¼V (s) is given as

~g

~Z
ðsÞ ¼ @g

@q

@h1

@q

@h2

@q

@h3

@q
Uð1; 0Þ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

�1

0

0

� @h3

@V

2

6
6
4

3

7
7
5

U ¼ U

V ¼ V

q ¼ q

: � � � � ðB-15Þ

Appendix C: The Nyquist Stability Criterion

Assuming that for constant influx rates of gas and liquid the
DFM is stable, the cause for the potential instability must be the
interaction between the dynamics in the well and the IPR; see
Fig. 11.

Stability of an equilibrium point can be determined by check-
ing the stability of the linearized system, as per Lyapunov’s indi-
rect method (Khalil 2002). Hence, we can determine the stability
of equilibria encountered in UBD by using the Nyquist criterion
on the loop-transfer function developed in Appendix A. A
restatement of the Nyquist criterion is as follows (Åström and
Murray 2010):

Theorem 1. Let G0(s)kG be the loop transfer function for a nega-
tive feedback system (as shown in Fig. 11) and assume that
G0(s)kG has no poles in the closed right half-plane (Re s � 0)
except for single poles on the imaginary axis. Then the closed
loop system is stable if and only if the closed contour given by
X ¼ fG0ð jxÞkG : 1 < x < 1g 	 C has no net encirclements
of the critical point s¼�1.
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