
HAL Id: hal-01540047
https://minesparis-psl.hal.science/hal-01540047v1

Submitted on 15 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronous programming in audio processing
Karim Barkati, Pierre Jouvelot

To cite this version:
Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing
Surveys, 2013, 46 (2), pp.24. �10.1145/2543581.2543591�. �hal-01540047�

https://minesparis-psl.hal.science/hal-01540047v1
https://hal.archives-ouvertes.fr

A

Synchronous Programming in Audio Processing:
A Lookup Table Oscillator Case Study

KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech,
France

The adequacy of a programming language to a given software project or application domain is often con-
sidered a key factor of success in software development and engineering, even though little theoretical or
practical information is readily available to help make an informed decision. In this paper, we address a
particular version of this issue by comparing the adequacy of general-purpose synchronous programming
languages to more domain-specific languages (DSL) in the field of computer music. More precisely, we
implemented and tested the same lookup table oscillator example program, one of the most classical al-
gorithms for sound synthesis, using a selection of significant synchronous programming languages, half of
which designed as specific music languages – Csound, Pure Data, SuperCollider, ChucK, Faust – and the
other half being general synchronous formalisms – Signal, Lustre, Esterel, Lucid Synchrone and C with the
OpenMP Stream Extension (Matlab/Octave is used for the initial specification). The advantages of these
two approaches are discussed, providing insights to language designers and possibly software developers of
both communities regarding programming languages design for the audio domain.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.3 [Special-
purpose and Application-based Systems]: Real-time and Embedded Systems; Signal Processing Sys-
tems; D.1.3 [Programming Techniques]: Concurrent Programming—Parallel programming; D.1.m [Pro-
gramming Techniques]: Miscellaneous; D.2.11 [Software Engineering]: Software Architectures; D.3.2
[Language Classifications]: Concurrent, Distributed, and Parallel Languages; Data-flow Languages; Spe-
cialized Application Languages; Very High-Level Languages; D.3.3 [Programming Languages]: Language
Constructs and Features; E.1 [Data Structures]: Arrays; H.5.5 [Information Interfaces and Presenta-
tion]: Sound and Music Computing—Signal analysis, synthesis, and processing; Systems; J.5 [Arts and Hu-
manities]: Performing Arts; J.7 [Computers in Other Systems]: Real Time; K.2 [Computing Milieux]:
History of Computing

General Terms: Design, Languages

Additional Key Words and Phrases: Synchronous programming languages, Music programming languages,
Computer music, Signal processing, Timing

ACM Reference Format:
Karim Barkati and Pierre Jouvelot, 2012. Synchronous programming in audio processing: a lookup table
oscillator case study. ACM Comput. Surv. V, N, Article A (YYYY), 35 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
The understanding of the existence of a close relationship between music and math-
ematics has been mentioned since the ancient Greeks. This is therefore not surpris-
ing that programming language designers have considered the musical domain as a
venue of choice for their investigations from the early days of the field of computing

This work was supported by the French National Research Agency, under grant ANR 2008 CORD 003 01.
Authors’ addresses: Karim Barkati, IRCAM, France; Pierre Jouvelot, CRI – MINES ParisTech, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0360-0300/YYYY/-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:2 K. Barkati and P. Jouvelot

[Van Roy 2009]: programming is indeed a constructive approach to mathematical rea-
soning. There are of course multiple ways to use programming languages in music
applications, from low-level audio processing to more abstract music notation manip-
ulation processes to the higher sphere of music composition frameworks.

Current digital audio applications are often based on the algorithmic real-time pro-
cessing of streams of sound samples; these signals are subject to strong timing re-
quirements since latencies and delays in music signals are easily detectable even by
untrained human ears. Such constraints call for programming languages that are able
to manage somewhat significant data throughputs while enforcing timing properties.
Even though traditional programming languages offer means of addressing timing is-
sues within programs, e.g., via the sleep system call in C or clock in C++, they do
not consider the notions of time and data streams as the foundation for their design
paradigm, syntax and semantics. The goal of synchronous and music languages is in
fact to hide low-level implementation details to the programmer as much as possible,
narrowing the semantic gap between specification and implementation. For instance,
in all music languages, one only needs to specify what processing actions are requested
for each audio sample. All the management of low-level issues such as system calls,
buffers, callbacks or audio frames is performed via the compiler and run-time system.

Moreover, most audio processing applications happen to be modeled as large sets
of concurrent interacting dataflow processes. The specification of the behaviors and
synchronization patterns of such computations would be unwieldy at best using tra-
ditional all-purpose languages, in which difficult-to-track “temporal bugs” [Simon and
Girault 2001], such as race conditions or deadlocks, often occur. Traditional languages
seldom provide strong formal guarantees regarding timing constraints for concur-
rent processes operating over sampled input and output streams, as opposed to syn-
chronous and music languages: correctness, ease of programming and other benefits
are what such specific languages provide. Finally, the growing importance of the prac-
tice of “livecoding” [Nilson 2007], where computer musicians perform on stage by pro-
gramming and running code snippets on the fly, calls also for lightweight and dedicated
programming formalisms.

A family of programming languages happens to have been developed to specifically
deal with timing issues, in particular for embedded and time-critical systems: syn-
chronous languages [Benveniste and Berry 1991b; Benveniste et al. 2003]. This par-
ticular programming paradigm is based on the key idea of synchronizing concurrent
computing processes on clocks, while ensuring the mathematical correctness of the
resulting programs, obviously needed given the target domains. The use of clocks cor-
responds to a discretization of the time domain, and thus of the number of states a
programmer or an automatic correctness prover might have to consider when trying
to ensure the correctness of source code. Traditional programming models adopt what
amounts to a continuous time domain vision, more prone to the introduction of subtle
run-time errors.

Independently, the computer music community has been working on music-specific
languages, initially centered on designing sound generators, seen as virtual instru-
ments; the issues of time and processes were also addressed there, but in less formal
ways and more as an afterthought in the language design process. The relationship
of synchronous languages with the temporal structure of music and real-time audio
computing appears thus to be manifest and justifies the current interest of the music
community for the synchronous paradigm.

The purpose of this paper is to provide a comparative survey of the existing portfolio
of major synchronous programming languages that can be used in the specific field
of audio processing. We believe such an analysis is particularly pertinent today, since
this domain has seen a recent significant growth both in the industrial and research

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:3

worlds, with the widespread use of gadgets such as MP3 players or the introduction
of new programming languages such as Faust [Orlarey et al. 2009] or ChucK [Wang
et al. 2003]. This survey adopts a two-pronged approach: we look both at key music
programming languages, i.e., audio-specific languages designed in the computer music
community, and general signal-processing programming languages to see how they
relate to each other while adopting, with some variations, the synchronous trait.

Our comparison work focuses on design issues. Both synchronous and computer mu-
sic programming languages strive to help lower the semantic gap between informal
specifications and their formal program development. Even though other facets of pro-
gramming languages such as their performance, implementation details, portability
or availability might justify other comparison studies, we believe that design choices
are in fine the key drivers in the acceptability, success and ultimately sustainability
of programming languages; they deserve an in-depth analysis of their own. We adopt
a pragmatic approach when looking at these design issues: we use the same running
example throughout the article, namely the implementation of a lookup table oscilla-
tor. For each implementation, we stick as much as possible to the programming style
of the corresponding language in order to highlight its idiosyncratic design aspects.

We believe our work can be of help to language designers interested in the handling
of time and/or audio in programming languages, since, in particular for DSL1 appli-
cations, cross-fertilization between languages via the borrowing of existing language
features is a common way to improve language designs. Moreover, software develop-
ers and project managers who need to decide which language is best adapted to a
given digital audio project may also find our survey of interest, in particular the audio
language part. Indeed, the adequacy of a programming language to a project is often
considered a key factor of success in software development, even though little theoret-
ical or practical information is readily available to help make an informed decision.
Even though all the programs in this paper have been tested and run, we do not ex-
pect our readers, whom we assume have already some working knowledge of current
programming languages, to understand all the gory details of these implementations.
We hope though that they will get from our work (1) a feel for the design principles
of each language, (2) a new perspective on how wide the spectrum of design choices
is when trying to deal with timing issues, and possibly (3) a keen interest in delving
further into one or the other of these key representative languages.

The structure of the paper is the following. Section 2 provides a brief general
overview of the most prominent music and synchronous programming languages. Sec-
tion 3 contains a description of our running example, which we consider a typical use
case for most current audio applications; we provide both an informal and a formal,
in Matlab/Octave, specification of our target program, osc, a standard wave synthesis
algorithm. The two following sections, namely Section 4 for music-specific languages
and Section 5 for synchronous languages, present our attempts at implementing osc
in a few selected languages. For each one of these languages, we use the same pre-
sentation format: (1) a brief overview introduces the language – using the own words
of its author(s) –, (2) the osc example we coded in this particular formalism and (3) a
set of notes, when we felt that some explanations were needed for what we assumed
would be the most difficult programming details to understand. Section 6 puts our
different implementations in perspective, highlighting the specificities of the various
approaches and the opportunities for mutual interactions between synchronous and
computer music language designs. We conclude and suggest future work in Section 7.

1Domain-Specific Language.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:4 K. Barkati and P. Jouvelot

2. THE SYNCHRONOUS PARADIGM AND COMPUTER MUSIC
From theoretical time-complexity issues to user interaction management, the concept
of time has a structuring effect on the way computer technology impacts the program-
ming world. In languages specifically dedicated to music programing, music events
are expressed along strict timing constraints. Synchronous general-purpose languages
also consider (logical) time, along which control and computation are scheduled, as a
key design ingredient; they adhere to the “synchronous hypothesis”, which emphasizes
time constraints and determinism. Even though developed within a totally different
research community, music-specific languages also follow this synchronous hypothe-
sis. We survey below these two approaches, and end this section with the list of key
representative languages we use in the remaining of this paper.

2.1. Computer Music Languages
Even though digital music sequencing tools such as, nowadays, Steinberg Cubase or
Apple Logic provide friendly ways to edit and synchronize music sequences on a fixed
timeline, more refined timing constraints and higher-level abstraction mechanisms
have been asked for by artists over the years, calling for programming mechanisms
that go way beyond those offered in sequencers. These issues, among others, are ad-
dressed by the vibrant and dynamic research field of computer music, one of the old-
est application domains of computers. Started in the late 1950s on mainframes, com-
puter music has two main branches [Loy and Abbott 1985]: computer-aided composi-
tion (CAC) and digital audio processing. For this study, we are interested in the latter.

The CAC branch, which usually aims at producing scores, deals mostly with the
note paradigm, using a symbolic approach where the characteristics of notes (e.g.,
their pitch and time location) and not their actual sound are encoded. This program-
ming path started in 1956 with the MUSICOMP2 language of Lejaren Hiller and Robert
Baker (both chemists at that time) at the University of Illinois using an Illiac I [Baker
and Hiller 1963; Hiller and Baker 1964]. Main CAC languages include PatchWork
[Laurson and Duthen 1989], Common Music [Taube 1991], Haskore [Hudak et al.
1996], Elody [Orlarey et al. 1997], OpenMusic [Assayag et al. 1999] and PWGL [Laur-
son et al. 2009].

The digital audio processing branch is mostly focused on the sound paradigm, using
signal processing and physical modeling approaches; the overall goal here is to synthe-
size and process files or streams of audio samples, while moving in the mid-1980s to a
more “real-time” mode better fitted to live performances. This branch started around
1957 with the MUSIC I language of Max Mathews [Mathews et al. 1969], then an en-
gineer at the Bell Telephone Laboratories (Murray Hill, New Jersey), on an IBM 704;
at the time, hours of computation were necessary to get a few seconds of sound. The
concept of unit generator, implemented in Mathews’ Music-N languages, will prove it-
self a pervasive concept in audio signal processing, both in computer music languages
and hardware synthesizers.

We classify below several significant audio synthesis languages and systems, hence
providing a global picture of the domain – note though that some boundaries may be
somehow artificial as some languages belong to several categories:

Textual Languages. Music-N family languages (I, II, III, IV, V) [Mathews et al.
1969], Csound [Vercoe 1992; Boulanger et al. 2000], SAOL [Scheirer and Vercoe
1999], Faust [Orlarey et al. 2009], Nyquist [Dannenberg 1997], SuperCollider [Mc-
Cartney 1996], ChucK [Wang et al. 2003], Impromptu [Sorensen 2005];

2MUsic Simulator-Interpreter for COMpositional Procedures.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:5

Visual Programming Environments. Max/MSP [Puckette 1991; Zicarelli 1998],
Pure Data [Puckette 1996], jMax [Déchelle et al. 1999], Open Sound World [Chaud-
hary et al. 2000];
Physical Modeling Systems. Modalys [Eckel et al. 1995], Chant [Rodet et al. 1984],
Genesis/Cordis-Anima [Castagné and Cadoz 2002; Cadoz et al. 1993];
Miscellaneous. Kyma [Scaletti 1987] (graphical sound design environment), STK
[Cook and Scavone 1999] (C++ toolkit), CLAM [Amatriain et al. 2006], SndObj [Laz-
zarini 2000].

2.2. Synchronous Languages
Synchronous programming languages appeared in the early 1980s in France, with Es-
terel (École des mines de Paris and INRIA, Sophia Antipolis), Lustre (Verimag/CNRS,
Grenoble) and Signal (INRIA, Rennes), as an academic research field mixing control
theory and computer science [Benveniste and Berry 1991a; Halbwachs 1993; 2005],
before becoming of high industrial interest for critical systems [Benveniste et al. 2003]
such as those present in avionics, trains and nuclear power plants. The idea of syn-
chrony was arising also through Milner’s work on communicating systems [Milner
1980], AFCET3’s Grafcet [Baker et al. 1987] and Harel’s Statecharts formalism [Harel
1987].

Synchronous languages are high-level, engineer-friendly, robust, specification for-
malisms, rooted in the concepts of discrete time and deterministic concurrency. Time
is usually not explicitly mentioned in the definition of traditional programming lan-
guages. Such a notion is however of paramount importance in the design and imple-
mentation of data-flow and control software for reactive systems [Harel and Pnueli
1985; Halbwachs 1993]; indeed interactions with external environment processes are
there subject to time constraints, memory constraints, security constraints and deter-
minism requirements. Synchronous languages, which strive to reach such demanding
objectives, are often equipped with timing and concurrency mathematical models that
are structured around automata theory and a typical core hypothesis of bounded cal-
culus and communication between logical instants; this paradigm is called the “syn-
chronous hypothesis” and is typically checked by calculating the worst case execution
time. Since the semantics of synchronous languages assumes that computation and
communication are performed within logical instants, these languages provide, con-
trarily to traditional ones, programmers and the running environment explicit access
to time, via clocks. Computations are specified with respect to these explicit clocks, en-
suring that timing constraints can be stated by programmers and verified by compilers
later on.

More specifically, in synchronous languages, time is seen as a succession of shared
logical instants generated by regular (hence synchronous) support clocks, which make
programs actually move forward. Synchronous programming uses specific program-
ming languages designed to offer a programming paradigm centered on clocks, and
clocks only. The overall goal here is not to provide a general-purpose programming set
of features, as can be found in traditional languages such as C/C++, that can be used
to address any programming issue, but to help with the sole implementation of critical
real-time systems that need to satisfy stringent, “hard real-time” timing constraints.
The specification and execution of a synchronous program amount, at least in princi-
ple, to the sequencing of an infinite loop of tightly time-constrained sets of atomic re-
actions. All computations and communications must always be performed within one
base clock period. This property is the crux of synchronous programming languages

3Association française pour la cybernétique économique et technique.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:6 K. Barkati and P. Jouvelot

design: it ensures that both concurrency, inherent to reactive systems, and determin-
ism, highly desirable for critical systems, are preserved. Traditional, general-purpose
programming languages are usually unable to guarantee such a correctness feature,
at neither the logical nor the temporal level, while the very model of synchronous
languages implementation makes it easier to check both run-time timing load and
memory footprint. Moreover, limiting the generality of the programming paradigm en-
sures that implementations will be closer to specifications, thus increasing readibility,
debugging and maintainability.

To illustrate the richness and diversity of the synchronous programming research
field, we provide below a list of forty synchronous languages of interest. This list is
neither intended to be exhaustive nor limited to a particular paradigm; it is rather
a large-spectrum overview, mixing together very different languages toward a tax-
onomy of a significant set of synchronous and synchronous-oriented languages. We
loosely categorized them using the criteria of syntax (textual, graphic), language defi-
nition approach (full-fledged or language extension) and application domain specifici-
ties (generic, hardware, models):

Textual Languages. Esterel [Berry and Cosserat 1985], Lustre [Caspi et al. 1987],
Signal [Gautier et al. 1987; Gamatié 2009], ConcurrentML [Reppy 1999], Larissa
[Altisen et al. 2006], Lucid Synchrone [Caspi and Pouzet 1996], Prelude [Pagetti
et al. 2011], Quartz [Schneider 2000], ReactiveML [Mandel and Pouzet 2005],
RMPL [Ingham et al. 2001], SL [Boussinot and De Simone 1996], SOL [Bharad-
waj 2002], StreamIt [Thies et al. 2002], 8 1/2 [Giavitto 1991];
Visual Languages and Environments. Argos [Maraninchi 1991], Statecharts [Harel
1987], SyncCharts [André 1996], Argonaute [Maraninchi 1990], Polis [Balarin
1997], Polychrony [Le Guernic et al. 2003], Scade [Dormoy 2008], Simulink/Mat-
lab [Caspi et al. 2003];
Language Extensions. ECL (C)4 [Lavagno and Sentovich 1999], Jester (Java)
[Antonotti et al. 2000], Reactive-C (C) [Boussinot 1991], Real-time Concurrent C
(C) [Gehani and Ramamritham 1991], RTC++ (C++) [Ishikawa et al. 1992], Scoop
(Eiffel) [Compton 2000], SugarCubes (Java) [Boussinot and Susini 1998];
Hardware Description Languages. Lava [Bjesse et al. 1998], SystemC [Initiative
2006], Verilog [Thomas and Moorby 2002], VHDL [IEEE standard 1988];
Models and Intermediate Formats. Averest [Schneider and Schuele 2005], DC+
[Pnueli et al. 1998], OC [Girault 2005], SC [Girault 2005], DC [Girault 2005], CP
[Girault 2005], SDL [Ellsberger et al. 1997], ULM [Boudol 2004], UML Marte [Mal-
let and André 2009].

2.3. Key Language Representatives
The family of significant synchronous languages dedicated to music is clearly more
limited than the one of general purpose languages, although music seems an obvious
application field for the synchronous programming paradigm and its associated lan-
guages. Indeed, many concurrent processes (associated to instruments or artists) are
intimately linked to the audio sampling frequency that drives the production of sound
samples. One of our goals with this research work is to illustrate that a bridge can be
made between the synchronous and music programming paradigms we just surveyed.

Even though the brief presentation, above, of existing music and synchronous lan-
guages is by no means exhaustive, it makes it obvious that these families of languages
offer a very wide variety of possible candidates for our comparison survey. To make
our use case analysis project realistic, we need to make a selection to end up with a

4The original language is put in parenthesis.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:7

manageable small subset of these languages. We based our selection criteria on the
availability of each language and its associated tools, the import of its design princi-
ples on the history of the synchronous and computer music paradigms and a rough
assessment of the size of its user base. We thus end this section with the selection of
the representative languages that are the basis for our use case study, listed in Table I
with the name of the main institution where they were created and their authors.

Table I. Selection of music and general-purpose synchronous languages

Csound MIT B. Vercoe, J. Fitch et al.
SuperCollider Univ. Texas J. McCartney et al.
Pure Data UCSD M. Puckette
ChucK Princeton Univ. G. Wang, P. Cook
Faust GRAME Y. Orlarey et al.
Signal IRISA/INRIA A. Benveniste, P. Le Guernic
Lustre CNRS/Verimag P. Caspi, N. Halbwachs
Lucid Synchrone Verimag & Paris 11 P. Caspi, G. Hamon, M. Pouzet
Esterel MINES/INRIA G. Berry et al.
OpenMP Stream MINES ParisTech Antoniu Pop

3. THE OSCILLATOR USE CASE
Our survey of significant technological tools for the synchronous programming of audio
applications is grounded on practical terms. We decided to perform for such an analysis
a use case study and picked osc, an implementation of a sound oscillator, as our test
case. We selected this application since it is particularly simple and can be coded in
a few lines, making it a program of choice for a comparison survey tackling multiple
languages. This choice is also perfectly adequate on a more functional level, since this
simple truncated lookup table oscillator algorithm is particularly significant for the
audio domain, being one of the most classical algorithms of the sound synthesis field.
Notably, it is also involved in other important computer music algorithms, such as
wavetable synthesis, additive synthesis or FM synthesis (frequency modulation).

Of course, typical audio processing applications such as delays or reverbs are more
complex than our simple osc use case, in particular since many of them can be seen as
filters, taking input sample streams and producing modified ones. Dealing with such
more involved applications might possibly provide some additional insights into the
nature of the relationships linking DSLs and synchronous languages; yet, we believe
that the ubiquitous nature of osc in audio processing makes it illuminating enough to
expose the gist of each programming language addressed in our survey.

Although it would theoretically be possible to program the algorithm for osc at the
same abstraction level for all languages, we felt that such an a priori fair approach
would not lead to a convincing comparison. Indeed, by essence, the very concept of
DSL has been introduced to provide idioms intending to ease programming. One of
the goals of this survey is to compare programming paradigms, and possibly provide
a case for the introduction of more domain-specific constructs in languages, including
synchronous ones. Using languages, be they domain-specific or synchronous, at their
top potential is thus a key ingredient to reaching that goal.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:8 K. Barkati and P. Jouvelot

3.1. Presentation
The purpose of osc is to output, in a programming language-specific manner, the suc-
cessive samples of a sinusoidal waveform stored in a vector5; the wave frequency is a
parameter of this process, and can be changed at start-up time. The basic idea is to
always loop over the same single sinusoidal vector for all frequencies, but to decide
which sound samples to output according to what the requested frequency freq is; for
instance, picking every other sample will provide a signal with a frequency twice that
of the original if the sinusoidal vector is always looped over at the same rate. In more
details (see also Figure 1):

— during the initialization stage, one period of the sin function is sampled and
tablesize samples are stored in the vector sinwaveform;

— the main function osc(freq) loops over this vector indefinitely while outputting
the successive sound samples of frequency-dependent phase, i.e., vector index
int(phase(freq)), for each time tick;

— each phase(freq) is the product of tablesize and one of the steps i(n) defined as
i(n) = {i(n−1) + freq/samplingfreq} and i(0) = 0, where {x} denotes the fractional
part of any number x and samplingfreq is the audio output sampling frequency —
this kind of recursive equation is a typical tenet of both synchronous languages and
digital signal processing (DSP) applications;

— the audio sample corresponding to each particular phase is provided by the rdtable
function, returning sinwaveform[int(phase(freq))]; the integer typecast int com-
putes the integer part of its argument by truncation of the fractional part6, thus
ensuring that table indexes are of integer type;

— each sampled data point is finally output, in a more or less platform-specific manner.

sinwavetable[tablesize]

int(phase(freq)) int(phase(freq))

Fig. 1. Truncated lookup table oscillator

3.2. Interface
At the highest level, nine general constants and functions have to be provided to ensure
the existence of a working implementation of osc; the corresponding signature is listed
in Table II. Of course, depending on the particular programming language and its
abstraction level, some of these functions will be indeed visible in the osc program
text; for others, they will only be implicitly present in our implementation.

5Note that adapting this technique to generate a different waveform, and thus yield a different sound,
amounts to simply changing the values stored in the vector of samples. This approach is, by the way, at the
core of most current commercial wavetable-driven music synthesizers.
6int corresponds to the floor function if its argument is positive, which is the case for phase, and otherwise
to ceiling.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:9

Table II. Oscillator signature: general constants and functions

const tablesize = 65536 // number of sound samples
const sinwaveform[tablesize] // sampled sinusoid (one period)
const samplingfreq = 44100 // audio sampling rate (Hz)
const freq = 440 // ‘A’ diapason frequency (Hz)
const twopi = 6.28318530717958623
void osc(freq) // main function
float rdtable(table, index) // dynamic table read access
float phase(freq) // phase for each tick
float fracpart(x) // fractional part of float x in [0,1)

Environment. In order for osc to be implemented in a particular language, the fol-
lowing features need to be available in the programming environment:

— the two mathematical functions sin and floor (used to compute the fractional part
of a number {x} = x− bxc);

— the ability to perform dynamic reads of tables (vectors of samples);
— a looping construct for table initialization and osc.

Usage. The osc process is launched by calling the main function osc with the cho-
sen frequency as argument, e.g., osc(440). In this study, we use a constant frequency
value, but ideally the freq argument should be an input signal, i.e, a stream of frequen-
cies, for example [523.25, 587.33, 659.26, ...] – this particular succession of frequencies
would in practice yield a sequence of notes, here [C, D, E, ...]. Such an extension would
not have a significant impact on the structure of our osc algorithm, and thus our ex-
ample, kept short due to space limitations, is enough to present the key ingredients of
each programming language.

In theory, the osc algorithm never terminates, as it is a synchronous program that,
given an input frequency, generates sinusoidal sample values in an output stream. In
practice, depending on the language at hand, the user will either have to interrupt the
execution after enough samples have been output, in many cases by typing ’ctrl-c’,
or get a finite vector of outputsize samples. However, even though the output behav-
iors of our implementations vary according to the language at hand, this is a rather
peripheral issue linked to the actual input/output environment used to run our code;
this does not significantly alter the synchronous specification of the osc process, which
is the focus of interest here.

For the validation of our tests, we computed a reference vector of 200 sound sam-
ples; it begins with the following rounded values, corresponding to the 440 Hz diapa-
son at the 44,100 Hz sampling rate: [0.0000, 0.0626, 0.1250, 0.1869, 0.2481, 0.3083,
0.3673, 0.4249, 0.4807, 0.5347, 0.5866, 0.6362, 0.6833, 0.7277, ...]. The output of each
implementation has been compared to this reference vector, any mismatch being an
indication of something wrong with the corresponding implementation.

3.3. Specification
We provide here an implementation of osc using indifferently Octave7 or Matlab8, a
well-known “high-level technical computing language and interactive environment for
algorithm development, data visualization, data analysis and numeric computation”.
This straightforward imperative implementation should be easily understood by most
readers, and serves here as a more formal specification of our use case. Here, the osc
output is the array waveform.

7Octave is an open-source variant of Matlab: http://www.gnu.org/software/octave/.
8http://www.mathworks.com.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:10 K. Barkati and P. Jouvelot� �
function [waveform] = osc (f r eq)
t a b l e s i z e = b i t s h i f t (1 , 16) ;
sampl ingf req = 44100;
ou tpu ts i ze = 200;
twopi = 2 ∗ p i ;

indexes (1) = 0 ;
waveform (1) = 0 ;

for i = 1 : t a b l e s i z e
sinwaveform (i) = s in ((i ∗ twopi) / t a b l e s i z e) ;

end

for i = 2 : ou tpu ts i ze
indexes (i) = f r a c p a r t ((f r eq / sampl ingf req) + indexes (i −1)) ;
phase = t a b l e s i z e ∗ indexes (i) ;
waveform (i) = sinwaveform (u in t16 (phase)) ;

end
end

function [y] = f r a c p a r t (x)
y = x − f l o o r (x) ;
end� �

Design Notes

— The bitshift expression shifts here a 1 sixteen times on the left, yielding 216 as
required.

— The keyword function introduces the definition of a function. Here the fracpart
function yields in the return value named y the fractional part of its argument x, and
is used to perform a round-robin in the [0, 1) interval (closed at 0 and open at 1).

— The intrinsic function uint16 returns an unsigned 16-bit integer that approxi-
mates its floating point argument, here phase. This truncation of the floating point
phase values provides the integer indexes needed to access the wave table in read
mode.

4. MUSIC LANGUAGES
In some loose sense, all music-specific programming languages use, in one way or an-
other, synchronous idioms, since they have to deal with temporal streams of audio
samples. We decided to adopt here a somewhat historical order to present key music
programming languages:

— Csound is, in a way, the father of modern audio synthesis languages [Vercoe 1992;
Boulanger et al. 2000];

— SuperCollider adopts an object-oriented programming approach, inspired by the
SmallTalk language [McCartney 1996];

— Pure Data is, like Max/MSP [Puckette 2002], a typical representative of the visual
programming paradigm often adopted by the computer music community, thanks to
its appeal to the contemporary music composers [Bresson et al. 2009];

— ChucK exemplifies the importance of on-the-fly programming that now can occur
even during music performance through “live coding” practices [Wang et al. 2003];

— finally, Faust promotes the functional paradigm onto a block-diagram algebra, striv-
ing to balance expressivity and run-time performance [Orlarey et al. 2002; 2009].

4.1. Csound

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:11

Presentation. The following position statement is extracted from the Csound official
site, http://www.csounds.com.

Csound is a sound design, music synthesis and signal processing system,
providing facilities for composition and performance over a wide range of
platforms. It is not restricted to any style of music, having been used for
many years in the creation of classical, pop, techno, ambient, experimental,
and (of course) computer music, as well as music for film and television.

Oscillator. The Csound implementation osc.csd of the oscillator can be found below.
We tested Csound version 5.11 (float samples) Sep 24 2009, with the graphical inter-
face QuteCsound version 0.4.4. The osc execution result is an infinite sample stream,
output on the default Csound audio port.� �
<CsoundSynthesizer>
<CsInstruments>
sr = 44100
kr = 441
ksmps = 100
nchnls = 1

i ns t r 1
aosc o s c i l p4 , p5 , 1

out aosc
endin

< / CsInstruments>
<CsScore>
; use GEN10 to compute a s ine wave
f1 0 65536 10 1
; i ns s t r t dur amp f req
i 1 0 2 20000 440
e
< / CsScore>
< / CsoundSynthesizer>� �

Design Notes

— Csound is the oldest musical language of this study: it is a C-based audio DSL fol-
lowing Music11, also developed by Barry Vercoe at MIT in the 1970s, and the MUSIC-
N languages initiated by Max Mathews at the Bell Labs in the 1960s. Several aspects
present in the Csound language (possibly inherited from previous languages) still per-
sist in later musical languages, so we detail here several aspects of Csound that will
be of use for the understanding of most of the sections dedicated here to musical lan-
guages.

— In the header, the two assignments “sr = 44100” and “kr = 441” stand for sample
rate and control rate, which are two fundamental concepts in computer music. The first
one specifies the discrete audio sampling rate, set according to the Nyquist frequency,
which is twice the 20,000 Hz upper human listening bound needed at sampling time to
avoid aliasing. The second one specifies the “control” rate; to save computing resources,
it is usually set to a value smaller than the audio rate, since it is mostly used to manage
music control information, which do not require the very high temporal resolution
requested by sound signals.

— The Csound code of osc.csd presented here gathers into one file both the so-
called orchestra and score parts, using XML-like sections, although Csound code had
originally been stored in two distinct ’.orc’ and ’.sco’ files. “An orchestra is really a
computer program that can produce sound, while a score is a body of data which that

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:12 K. Barkati and P. Jouvelot

program can react to.” [Vercoe 1992]. Beside the score, other means of launching the
instruments exist, such as via MIDI9 or real-time events (see Section 6.5).

— The Csound syntax makes intensive use of one-letter prefixes:
— in an instrument definition, “a” and “k” specify signal rates (so that “aosc” is an

audio-rate oscillator signal);
— in an instrument definition, “p” followed by a number specifies a reference to the

corresponding parameter field in the score part (here p4 corresponds to 20000 and
p5 to 440 when used in i1, see below);

— in the score part, “f” followed by a list of numbers declares a function table (here,
the table f1 will be computed at 0 second, on 65536 points, using the unit generator
10, with a relative energy of 1 for the fundamental frequency; see next notes);

— in the score part, “i” followed by a list declares a Csound note that references an
instrument to be played (here i1 requests the computation of instr 1, from time 0,
during 2 seconds, with an amplitude of 20000, at a frequency of 440 Hz);

— finally, e asks for the execution of the score.
— The oscillator is synthesized by instr 1 in the orchestra part, using the oscil

generator, which is a simple direct synthesis oscillator without interpolation. This gen-
erator has three arguments: its amplitude p4, its frequency p5 and its function table
number 1, which refers to f1 in the score part; this latter function table relies on the
tenth unit generator called “GEN10”, specified as the fourth argument of f1.

— As GEN10 is also used in several musical languages in the next sections, we cite
here its extensive description from the Canonical Csound Reference Manual [Vercoe
et al. 2007]:

GEN10 – Generate composite waveforms made up of weighted sums of simple
sinusoids.
Description: These subroutines generate composite waveforms made up of
weighted sums of simple sinusoids. The specification of each contributing par-
tial requires 1 pfield using GEN10.
Syntax: f# time size 10 str1 str2 str3 str4 ...
Initialization: size – number of points in the table. Must be a power of 2 or
power-of-2 plus 1. str1, str2, str3, etc. – relative strengths of the fixed harmonic
partial numbers 1, 2, 3, etc., beginning in p5. Partials not required should be
given a strength of zero.
Note: These subroutines generate stored functions as sums of sinusoids of
different frequencies. The two major restrictions on GEN10, namely that the
partials have to be harmonic and in phase, do not apply to GEN09 or GEN19.
In each case the composite wave, once drawn, is then rescaled to unity if p4
was positive. A negative p4 will cause rescaling to be skipped.

4.2. SuperCollider
Presentation. The following position statement is extracted from the SourceForge

http://supercollider.sourceforge.net site, since the SuperCollider official site, http://www.
audiosynth.com, seems to be less well maintained.

SuperCollider is an environment and programming language for real-time
audio synthesis and algorithmic composition. It provides an interpreted
object-oriented language which functions as a network client to a state of
the art, real-time sound synthesis server.

9Musical Instrument Digital Interface, an industrial protocol defined in 1983.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:13

SuperCollider was written by James McCartney over a period of many
years, and is now an open source (GPL) project maintained and developed
by various people. It is used by musicians, scientists, and artists working
with sound.

Oscillator. The SuperCollider implementation osc.scd of the oscillator can be found
below. We tested SuperCollider version 3.4, rev 10205. The osc execution result is an
infinite sample stream, output on the default SuperCollider audio port.� �
(

var t a b l e s i z e = 1 << 16;
b = Buffer . a l l o c (s , t ab les i ze , 1) ; / / a l l o c a t e a Bu f fe r
b . sine1 (1 . 0 , true , false , true) ; / / f i l l the Bu f fe r
{OscN . ar (b , 440 , 0 , 1) } . p lay / / N: Non−i n t e r p o l a t i n g

)
b . f r ee ;� �

Design Notes

— In SuperCollider [McCartney 1996], which has over 250 unit generators (cf. [Valle
et al. 2007]), such an oscillator could have been achieved in at least four different ways:
(1) the one presented here, using a Buffer filled by a sine1 pattern and played by a

non-interpolating OscN wavetable oscillator;
(2) replacing OscN by an interpolating Osc wavetable oscillator;
(3) using BufRd, BufWr and SinOsc (since BufRd is to be filled by a unit generator);
(4) using directly SinOsc.

— Since Version 3, SuperCollider is build upon a client/server architecture (com-
municating via OSC10), with a synthesis application on the server side and a remote
language application on the client side. So here the free method allows the client to
tell the server to free the memory of the buffer previously used.

— The first level of parenthesis surrounding the main block of code is a syntactic
trick that is used to ensure that the enclosed lines of code will be launched at the
same time by the SuperCollider interpreter; this occurs, in practice, when one simply
double-clicks inside one of the parentheses (cf. [Valle et al. 2007]).

4.3. Pure Data
Presentation. The following statement is extracted from the Pd-FlossManual, avail-

able at http://en.flossmanuals.net/PureData. The Pure Data official site is http://puredata.
info.

Pure Data (or Pd) is a real-time graphical programming environment for
audio, video, and graphical processing. Pure Data is commonly used for live
music performance, VeeJaying, sound effects, composition, audio analysis,
interfacing with sensors, using cameras, controlling robots or even interact-
ing with websites. Because all of these various media are handled as digital
data within the program, many fascinating opportunities for cross-synthesis
between them exist. Sound can be used to manipulate video, which could
then be streamed over the internet to another computer which might ana-
lyze that video and use it to control a motor-driven installation.
Programming with Pure Data is a unique interaction that is much closer

to the experience of manipulating things in the physical world. The most

10Open Sound Control, a content format for digital device communication defined at UC Berkeley CNMAT
[Wright 2005].

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:14 K. Barkati and P. Jouvelot

basic unit of functionality is a box, and the program is formed by connect-
ing these boxes together into diagrams that both represent the flow of data
while actually performing the operations mapped out in the diagram. The
program itself is always running, there is no separation between writing the
program and running the program, and each action takes effect the moment
it is completed.

Oscillator. The Pd implementation osc.pd of the oscillator can be found in Figure 2.
We tested Pure Data version 0.42.5-extended-20091222. The osc execution result is an
infinite sample stream, output on the default Pure Data audio port.

Fig. 2. The osc.pd implementation in Pure Data.

Design Notes

— Pure Data is a graphical programming environment [Puckette 1996], where a
graphical window containing Pure Data code (i.e. boxes and connections) is called a
patch. The implementation shown on Figure 2 is a screenshot of the patch osc.pd.

— This patch is graphically separated into two main parts labelled PLAYER and
INITIALIZATION; the graphical separation is materialized by an idiosyncratic line made
up of a connection between two dummy bang objects. A bang object (a circle in a box) is
used to trigger the most primitive of all event messages, in which only the information
that a constant bang value has to be sent is encoded.

— Two trigger objects are used in order to enforce a sequential order of message
emission (right-to-left order in Pure Data), which is crucial for such an event-driven
language. The syntax of the trigger object includes a list of types, where the number
of elements determines the number of outputs and where the type names (or one-
letter type aliases) determine the type for the corresponding output, allowing type
conversion. Here, the letters f and b stand respectively for types float and bang.

— For instance, the [trigger f f] object receives as input the value of 1 << 16, i.e.,
216. Proceeding right to left, it first initializes the local array myarray with the values
of the first harmonic (specified by 1) of the sinesum function, predefined in Pure Data
and having a semantics similar to GEN10’s; the number of samples for one period is
the value of the first argument $1, here 216. Then, in a second step that exhausts its list

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:15

of types, the trigger launches the command [send tablesize], which will be received
by the PLAYER process11.

— Object names ending with a “∼” (tilde) character denote signal objects, running at
audio rate, and bold connections denote signal connections. “[Tilde objects] use contin-
uous audio streams to intercommunicate, and also communicate with other (‘control’)
Pd objects using messages.” [Puckette 2007]

— To read our array myarray of sine samples, we use a phasor∼ object, which out-
puts a sawtooth signal between 0. and 1., here multiplied by the table size for table
lookup to yield the successive indices. The dummy argument 0 allows phasor∼ to re-
ceive a non-signal message for the frequency (at control rate).

— The dac∼ object, for digital-to-analog converter, transfers the real-time audio out-
puts of Pure Data patches to the audio driver of the underlying operating system.

4.4. ChucK
Presentation. The following position statement is a mix of texts from the official site

http://chuck.cs.princeton.edu and the ChucK manual.

ChucK is a new (and developing) audio programming language for real-time
synthesis, composition, performance, and now, analysis. ChucK presents a
new time-based, concurrent programming model that’s highly precise and
expressive (we call this strongly-timed), as well as dynamic control rates,
and the ability to add and modify code on-the-fly. In addition, ChucK sup-
ports MIDI, OSC, HID, and multi-channel audio. It’s fun and easy to learn,
and offers composers, researchers, and performers a powerful programming
tool for building and experimenting with complex audio synthesis/analysis
programs, and real-time interactive control.

Oscillator. The ChucK implementation osc.ck of the oscillator can be found below.
We tested ChucK version 1.2.1.3 (dracula). The osc execution result is an infinite sam-
ple stream, output on the default ChucK audio port.� �
Phasor d r i ve => Gen10 g10 => dac ; / / gen10 s i n u s o i d a l lookup tab le

[1 .] => g10 . coefs ; / / load up the p a r t i a l s ampl i tude coe f f s
440 => d r i ve . f r eq ; / / se t f requency f o r reading through tab le

while (true) / / i n f i n i t e t ime loop
{

500 : :ms => now ; / / advance t ime
}� �

Design Notes

— The ChucK language is specifically designed to allow on-the-fly audio program-
ming [Wang et al. 2003].

— The heart of ChucK’s syntax is based around the massively overloaded ChucK
operator, written as ‘=>’. “[This operator] originates from the slang term ‘chuck’, mean-
ing to throw an entity into or at another entity. The language uses this notion to help
express sequential operations and data flow” [Wang et al. 2003]. The ChucK operator’s
behavior relies on the strong typing system of this imperative language, depending on
the type of both its left and right arguments.

11send commands are, in fact, spurious, since they could replaced by graphical connections; they have been
introduced in Pure Data to help programmers better visually structure their programs.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:16 K. Barkati and P. Jouvelot

— Several elements of ChucK, such as Gen10 (cf. Csound section), Phasor or dac (cf.
Pure Data section), are inspired by features existing in previous musical languages.

— Here, the drive phasor is declared and piped to the g10 generator, itself connected
to the digital-to-audio converter.

— Like in Csound, Gen10 has to be fed with a list of relative coefficients specifying
the harmonics of the spectra; here a single-element array [1.] yields a single sinusoid.

— The infinite time loop allows the computing and playing processes declared above
it to run; the loop body merely advances time by the arbitrary duration of 500::ms.
Note that the timing model mandates the attachment of a time unit to each duration,
such as milliseconds in “500::ms”.

— Modifying the special variable now has the effect of advancing time, suspending
the current process until the desired time is reached, and providing the other processes
and audio synthesis engine with the computing resources needed to run in parallel.

— The value of now, which holds the current time, only changes when it is explicitly
modified [Wang and Cook 2007]. “The amount of time advancement is the control rate
in ChucK.” [Wang et al. 2003]

4.5. Faust
Presentation. The following position statement is extracted from the Faust official

site, http://faust.grame.fr.

FAUST is a compiled language for real-time audio signal processing. The
name FAUST stands for Functional AUdio STream. Its programming model
combines two approaches: functional programming and block diagram com-
position. You can think of FAUST as a structured block diagram language
with a textual syntax.
FAUST is intended for developers who need to develop efficient C/C++

audio plugins for existing systems or full standalone audio applications.
Thanks to some specific compilation techniques and powerful optimizations,
the C++ code generated by the Faust compiler is usually very fast. It can
generally compete with (and sometimes outperform) hand-written C code.
Programming with FAUST is somehow like working with electronic cir-

cuits and signals. A FAUST program is a list of definitions that defines a
signal processor block-diagram: a piece of code that produces output signals
according to its input signals (and maybe some user interface parameters).

Oscillator. The Faust implementation osc.dsp of the oscillator can be found below.
We tested Faust version 0.9.13. The osc execution result is an infinite sample stream,
output as the process output signal, linked to the standard audio port via Jack12.� �
impor t (" math . l i b ") ; / / f o r SR and PI

t a b l e s i z e = 1 << 16;
sampl ingf req = SR;
twopi = 2.0 ∗ PI ;

t ime = (+ (1) ~ _) , 1 : −; / / 0 , 1 , 2 , 3 , . . .
sinwaveform = twopi∗ f l o a t (t ime) / f l o a t (t a b l e s i z e) : sin ;

f r a c p a r t (x) = x − f loor (x) ;
phase (f req) = f req / f l o a t (sampl ingf req) :

(+ : f r a c p a r t) ~ _ : ∗ (f l o a t (t a b l e s i z e)) ;
osc (f r eq) = rdtable (t ab les i ze , sinwaveform , i n t (phase (f r eq))) ;

12http://jackaudio.org

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:17

process = osc (440) ;� �
Design Notes

— The Faust language combines a block-diagram algebra [Orlarey et al. 2002] with
a functional paradigm [Orlarey et al. 2004].

— The keyword process is analogous to main in C and has to be defined [Orlarey
et al. 2004].

— The sample rate constant SR is defined in the imported library file math.lib as
a foreign constant, which is linked to the actual sampling rate of the host application
through the architecture compilation mechanism of Faust and determined at initializa-
tion time [Smith III 2010]. This typical DSL feature protects against incompatibilities.

— Faust uses five block-diagram composition operators [Orlarey et al. 2004]: se-
quential composition A:B, parallel composition A,B, recursive composition A∼B, split
composition A<:B and merge composition A:>B (the last two are not used here).

— The time processor definition “time = (+(1) ~ _) , 1 : -;” uses the three es-
sential block-diagram composition operators plus two more key elements. From right
to left, there are:
— the sequential composition operator “:”, to connect the two inputs of the “-” proces-

sor with the output signals of the preceding processors to compute differences;
— the parallel composition operator “,”, to combine the two parallel processors that

feed the “-” processor (note that order matters for the subtraction);
— the recursive composition operator “∼”, to specify a one-sample feedback increment

that generates a series of natural numbers, starting at 1 (Figure 3 shows the block-
diagram schema of the time processor, where the small square on the output denotes
the implicit sample delaying operation);

— the identity block “_”, used here in the one-sample recursive loop to directly connect
the output to the input of the increment processor, with no other processor than the
identity one;

— the partial application “+(1)”, using the curried form of the processor “+” to fix one
of its arguments with the “1” value.

1 +

1

-

time

Fig. 3. Block-diagram schema of the time processor

— Integer operations are defined modulo the (implementation-dependent) machine
integer size, so the increment operation above never overflows, but simply performs a
round-robin on its domain.

— Infix notation is allowed in Faust as syntactic sugar, as in the fracpart definition
where “x - floor(x)” is equivalent to “x, floor(x) : -”.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:18 K. Barkati and P. Jouvelot

— The read-only table rdtable stores values from a stream at initialization time.
The data will then be accessed during execution. Its three parameters are the size of
the table, the initialization stream, and the read-index signal [Gaudrain and Orlarey
2003].

— Faust default output is the audio system within which a Faust process is run.

5. SYNCHRONOUS LANGUAGES
There are various ways to introduce synchronicity in general-purpose programming
languages. We focus, in this section, on our oscillator use case example to survey the
usual approaches described in the literature:

— the direct approach, taken by Signal, Lustre and Esterel, is to make the notion of
synchronous computation at the core of the language design per se;

— a more indirect route is to add the notion of streams to an existing language, and
among the multiple existing proposals we decided to present two such integrations
as illustration: Lucid Synchrone, for the functional paradigm, over OCaml, and
OpenMP Stream Extension, for the imperative one, over C and OpenMP.

5.1. Signal
Presentation. The following position statement is extracted from the Signal official

site, http://www.irisa.fr/espresso/Polychrony.

Signal is based on synchronized data-flow (flows + synchronization): a pro-
cess is a set of equations on elementary flows describing both data and con-
trol.
The Signal formal model provides the capability to describe systems with

several clocks (polychronous systems) as relational specifications. Relations
are useful as partial specifications and as specifications of non-deterministic
devices (for instance a non-deterministic bus) or external processes (for in-
stance an unsafe car driver).
Using Signal allows to specify an application, to design an architecture, to

refine detailed components down to RTOS13 or hardware description. The
Signal model supports a design methodology which goes from specification
to implementation, from abstraction to concretization, from synchrony to
asynchrony.

Oscillator. The Signal implementation OSC.SIG of the oscillator can be found below.
We tested Signal version V4.16. The osc execution result is an infinite sample stream,
output on the output signal; additional helper files, in particular clock files specifying
explicit time ticks (not shown here), are needed to generate a user-specified output file
of 200 samples.� �
process osc =

(? event i npu tC lock ;
! drea l output ;

)
(| ou tput ^= inputC lock

| output := r d t a b l e (i n t e g e r (phase (f r eq)))
|)

where
constant d rea l f r eq = 440.0 ;
constant i n t e g e r sampl ingf req = 44100;
constant i n t e g e r t a b l e s i z e = 2∗∗16;

13Real-Time Operating System.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:19

constant d rea l twopi = 6.28318530717958623;
process r d t a b l e =

(? i n t e g e r t ab le index ;
! drea l sample ;

)
(| sample := sinwaveform [tab le index]

|)
where
constant [t a b l e s i z e] drea l sinwaveform =

[{ i to (t ab les i ze −1) } : s in ((drea l (i) ∗ twopi) / drea l (t a b l e s i z e))] ;
end ;

process phase =
(? drea l f r eq ;

! drea l phi ;
)

(| index := f r a c p a r t ((f r eq / drea l (sampl ingf req)) +index$)
| ph i := drea l (t a b l e s i z e) ∗ index
|)

where
drea l index i n i t 0 . 0 ;
end ;

function f r a c p a r t =
(? drea l f r a c p a r t I n ;

! drea l f r acpa r tOu t ;
)

(| f r acpa r tOu t := f r a c p a r t I n−f loor (f r a c p a r t I n) |) ;
end ;� �

Design Notes

— Signal processes manipulate signals, i.e., named streams of typed data, either as
input “?” or output “!”, here of floating point numbers in double precision dreal. Local
subprocesses are defined similarly.

— Process behavior is defined via sets of functional equations on signals between
the (| and |) enclosing symbols; these equations constrain either the values in a given
signal, via the := connector, or clocks, via the ^= connector, used here to impose that
signals output and inputClock share the same timing information.

— Arrays, such as sinwaveform of tablesize elements, are defined by intension, at
initialisation time, using implicit quantification over indices such as i here.

— Data equations are functional, and the $ postfix is used to reference the previous
item in a stream, while init is used to specify the initial value.

— The execution of osc relies upon the local rdtable process, parametrized with
the appropriate frequency, to define its output signal. The rdtable process, in turn,
outputs, for each integer in its tableindex input signal, the corresponding value of the
sinwaveform table, initialized once and for all with a sampled sine function.

— Signal allows the use of simple processes called functions, such as the straight-
forward fracpart definition here, to help modularize Signal specifications.

5.2. Lustre
Presentation. The site http://www-verimag.imag.fr/The-Lustre-Toolbox.html is Lustre

official repository and the following position statement is extracted from Wikipedia14.

Lustre is a formally defined, declarative, and synchronous dataflow pro-
gramming language, for programming reactive systems. It began as a re-
search project in the early 1980s. In 1993, it progressed to practical, indus-

14http://en.wikipedia.org/wiki/Lustre_\%28programming_language\%29.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:20 K. Barkati and P. Jouvelot

trial use, in a commercial product, as the core language of the industrial
environment SCADE, developed by Esterel Technologies. It is now used for
critical control software in aircraft, helicopters, and nuclear power plants.

Oscillator. The Lustre implementation osc.lus of the oscillator can be found below.
We tested Lustre version V4. The osc expected result is an infinite sample stream,
output on the Y signal of the osc node.� �
−− WARNING : Does ∗not∗ work , because of ∗dynamic∗ ar ray accesses !

include " math . l us "

const sampl ingf req = 44100;
const t a b l e s i z e = 65536;
const timeTab = t ime (tab les i ze , 0) ;
const sinwaveform = s i n t a b l e (timeTab) ;
const twopi = 6.28318530717958623;

node t ime (const n : i n t ; s t a r t : i n t) returns (t : i n t ^n) ;
l e t

t [0] = s t a r t ;
t [1 . . n−1] = t [0 . . n−2] + 1^(n−1) ;

t e l

node s i n t a b l e (X : i n t) returns (Y : r e a l) ;
l e t

Y = s in (((r e a l X) ∗ twopi) / (r e a l t a b l e s i z e)) ;
t e l

node f r a c p a r t (X : r e a l) returns (Y : r e a l) ;
l e t

Y = X − f loor (X) ;
t e l

node phase (f req : r e a l) returns (Y : r e a l) ;
var index : r e a l ;
l e t

index = 0.0 −> f r a c p a r t ((f r eq / (r e a l sampl ingf req)) + pre (index)) ;
Y = (r e a l t a b l e s i z e) ∗ index ;

t e l

node r d t a b l e (tab le index : i n t) returns (Y : r e a l) ;
l e t

Y = sinwaveform [tab le index] ; −− Dynamic ar ray access .
t e l

node osc (f r eq : r e a l) returns (Y : r e a l) ;
l e t

Y = r d t a b l e (i n t phase (f req)) ;
t e l� �

Design Notes

— Lustre sees computation as the processing of data exchanged between nodes.
Within each node, functional definitions of data streams are expressed as possibly
recursive equations.

— In a stream definition, pre is used to denote the previous value in the argument
stream, while the arrow -> operator (“followed-by”) is used to distinguish the initial
value from the recursive expression when defining a stream by induction.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:21

— Streams are typed, and ^ is used to introduce aggregate vector types (its second
argument is the vector size).

— The definition of the array t in time is by induction over array slices: t[0] is 0,
while, for all i in [1..n-1], t[i] is t[i−1]+1, since 1^(n-1) is an array of n-1 elements,
all initialized to 1.

— Array timeTab is initialized via time, when the whole program is loaded; its ele-
ments are integers from 0 to tablesize - 1, numbering all samples in one sine period.

— The execution of osc, with a frequency argument as input, yields a stream based
on the node rdtable. The phase node returns, for the same frequency, the recursively
defined stream index, which is the succession of indices used to access, via rdtable,
the sinwaveform array, also defined at load time.

— The const keyword flags identifiers denoting constant values. This is used here
to compute the sinwaveform array.

— The Lustre version we used is in fact unable to manage dynamic access to ar-
rays but only handles constant indexes, yielding a naming convenience for numbered
constants like a[1], a[2] and so on, while this dynamic access feature with variable in-
dex reading support is clearly required to implement variable frequencies in osc (see
Sec. 6.4). Newer, non open-source versions of Lustre, such as Lustre V6, do provide
dynamic arrays.

5.3. Esterel
Presentation. The following position statement is taken from the original Esterel

site, http://www-sop.inria.fr/meije/esterel/esterel-eng.html.

Esterel is both a programming language, dedicated to programming reactive
systems, and a compiler which translates Esterel programs into finite-state
machines. It is one of a family of synchronous languages, like SyncCharts,
Lustre, Argos or Signal, which are particularly well-suited to programming
reactive systems, including real-time systems and control automata.
The Esterel v5 compiler can be used to generate a software or hardware

implementation of a reactive program. It can generate C-code to be embed-
ded as a reactive kernel in a larger program that handles the interface and
data manipulations. It can also generate hardware in the form of netlists of
gates, which can then be embedded in a larger system. Extensive optimiza-
tion is available. We provide a graphical symbolic debugger for Esterel. We
also provide support for explicit or BDD-based verification tools that per-
form either bisimulation reduction or safety property checking.
Esterel is now experimentally used by several companies and taught in

several universities.

Oscillator. The Esterel implementation Osc.strl of the oscillator can be found below
(see Design Notes also). We tested version v5 (and GCC 4.2.1 for the C files handling
array accesses). The osc execution result is an infinite sample stream, output on the
default Esterel output port.� �
module Osc :

f u n c t i o n f l o o r _ i n t (double) : i n t e g e r ;
constant t ab leS ize_c te = 65536 : i n t e g e r ;
i npu t I : double ;
output O : double ;

signal index : i n teger , phase : double , sample : double in
every I do

run Phase [signal I / f req , phase / ph i] ;
| |

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:22 K. Barkati and P. Jouvelot

loop
emit index (f l o o r _ i n t (? phase)) ;
run RdTable [signal index / tab le index] ;
emit O(? sample) ;

each t ick
end every

end signal
end module

module RdTable :
f u n c t i o n sinwaveform (i n t e g e r) : double ;
i npu t t ab le index : i n t e g e r ;
output sample : double ;
emit sample (sinwaveform (? tab le index)) ;

end module

module Phase :
f u n c t i o n f l oo r_db (double) : double ;
constant sampl ing f req_cte = 44100.0 : double ;
constant tab leSize_cte_db = 65536.0 : double ;
i npu t f r eq : double ;
output ph i : double ;

signal step : double in
emit step (? f req / sampl ing f req_cte) ;
var index := 0.0 : double , pre index := 0.0 : double in

every immediate t i ck do
emit phi (tab leSize_cte_db∗preindex) ;
index := ?step+preindex ;
pre index := index − f l oo r_db (index) ;

end every
end var

end signal
end module� �

Design Notes

— The Esterel implementation of the oscillator relies on the Esterel Osc.strl mod-
ule file provided above and C helper functions, not presented here, that handle arrays,
a data structuring mechanism not provided by the public-domain version of Esterel
we used. We wrote the following functions, declared as external C functions in Esterel
modules via the function keyword:
— void init_sinwaveform(), that initializes a local C array with the double-formatted

65536 samples of a one-period sine function;
— double sinwaveform(int i), that returns the i-th value in this local sampled sine

C array;
— double floor_db(double d) and int floor_int(double b), that return the floor

value of d in either double or int format;
— and, finally, int main(), that calls init_sinwaveform(), provides the initial fre-

quency value of 440 Hz to the Esterel input I in the Osc module via a call to
Osc_I_I(440.0) and then calls Osc() to initiate Esterel processing. These last two
functions are generated by the Esterel compiler.
— Esterel modules specify signals and signal computations that operate on the oc-

currence of events, including ticks issued by a logical clock.
— Esterel supports both internal or external signals. For instance, Osc defines in-

ternal signals index, phase (via Module Phase) and sample (via Module RdTable). As
for external signals, frequency values appear on I while audio samples are output on
O.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:23

— Esterel signal computations emit values of interest on outputs from values read
on inputs, using the ?I notation. All computations are assumed to be performed at
each tick in zero time.

— The keyword every is syntactic sugar for an event-controlled looping statement.
For instance, each time a new frequency value appears on I in Osc, Module Phase is
run in a separate thread, with appropriate bindings for input freq and output phi, to
get the proper sequences of array indices in the phase signal while an infinite loop
thread emits on O the samples obtained via the RdTable module, using the index and
phase signals.

— Phase illustrates another aspect of Esterel, namely the concept of variables stor-
ing values. Here, the index variable takes, at each time tick, the successive values of
the sample indices, while preindex keeps track of the previous value15. The succes-
sive indices of the samples in the sine wavetable appropriate for yielding a sine of the
given frequency freq are emitted on the phi signal. The internal step signal is used to
broadcast the sample index increment.

— The immediate keyword indicates that the corresponding code is evaluated im-
mediately, even when the tick is already present, as is the case when the program
starts.

5.4. Lucid Synchrone
Presentation . The following position statement is taken from the official Lucid Syn-

chrone site, http://www.di.ens.fr/~pouzet/lucid-synchrone.

Lucid Synchrone is an experimental language for the implementation of re-
active systems. It is based on the synchronous model of time as provided by
Lustre combined with some features from ML languages. The main charac-
teristics of the language are the following:
— It is a strongly typed, higher-order functional language managing infi-

nite sequences or streams as primitive values. These streams are used for
representing input and output signals of reactive systems and are combined
through the use of synchronous data-flow primitives à la Lustre.
— The language is founded on several type systems (e.g., type and clock

inference, causality and initialization analysis) which statically guarantee
safety properties on the generated code...
— The language is built above Objective Caml used as the host language.

Combinatorial values are imported from Objective Caml and programs are
compiled into Objective Caml code. A simple module system is provided for
importing values from the host language or from other synchronous mod-
ules.
— It allows to combine data-flow equations with complex state machines

(Mealy and Moore machines with various forms of transitions). This allows
to describe mixed systems or Mode-automata as originally introduced by
Maraninchi & Rémond.
— Data-types (product types, record types and sum types) can be defined

and accessed through pattern matching constructions.

Oscillator. The Lucid Synchrone implementation osc.ls of the oscillator can be
found below. We tested Version 3.0b. The osc execution result is an infinite sample
stream, output on the default Lucid Synchrone output port.� �
l e t s t a t i c t a b l e s i z e = 65536

15The pre operator on Esterel signals could have been used here too.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:24 K. Barkati and P. Jouvelot

l e t s t a t i c sampl ingf req = 44100
l e t s t a t i c twopi = 6.28318530717958623
l e t f t a b l e s i z e = f l o a t _ o f _ i n t t a b l e s i z e

l e t s t a t i c sinwaveform = Array . make t a b l e s i z e 0.0
l e t s t a t i c gen_sin () =

l e t rec feed i =
match i with

| 0 −> ()
| i −>

(Array . se t sinwaveform (i −1)
(s in ((f l o a t _ o f _ i n t (i −1)) ∗ . twopi / . f t a b l e s i z e)) ;

feed (i −1))
end

in feed t a b l e s i z e
l e t s t a t i c s ide feed ing = gen_sin ()

l e t f r a c p a r t x = x −. f l o o r (x)

l e t node phase f req =
l e t rec index = 0.0 −>

f r a c p a r t ((f r eq / . (f l o a t _ o f _ i n t sampl ingf req)) +. pre (index)) in
i n t _ o f _ f l o a t (f t a b l e s i z e ∗ . index)

l e t r d t a b l e tab le index = Array . get sinwaveform tab le index

l e t node osc f req = r d t a b l e (phase (f req))� �
Design Notes

— Lucid Synchrone imports most of its value and typing constructs from Objective
Caml (OCaml), a mostly-functional object-oriented language in which (possibly recur-
sive) functions are first-class values [Leroy et al. 2010]. It is also inspired by Lustre
signal processing concepts.

— Following Lustre, Lucid Synchrone adds to OCaml the notion of a node, defined
via let node declarations. These nodes are used to manipulate streams, which are
infinite sequences of values linked to a particular clock.

— In a stream definition i -> s, i denotes the default, first value of the stream while
s is the inductive definition of a stream element. A reference to the previous stream
value is allowed using the pre operator.

— Array is an OCaml module, used here within Lucid Synchrone, that provides
standard operations to define (make) or manipulate (set and get) array elements.

— In OCaml, integer operators use the traditional syntax (such as * for multiplica-
tion), while floating-point constructs use a different notation, via the addition of a dot
(".") suffix to the integer notation.

— The execution of the osc node, given a frequency freq argument, yields a stream
based on the implicit mapping of the rdtable function to the stream phase(freq). As in
Lustre, the phase node defines the local stream index, later used to iteratively access
the sinwaveform array.

— Lucid Synchrone allows the definition of constants via the let static binding; it
is used here to populate, in a simple recursive manner via gen_sin, the constant array
sinwaveform.

5.5. OpenMP Stream Extension
Presentation. The OpenMP Stream Extension comes as a GCC CVS branch, at http:

//gcc.gnu.org/viewcvs/branches/omp-stream. Below follows its position statement.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:25

The stream-computing extension to OpenMP enables the expression of flow
dependences between OpenMP tasks. This allows to statically specify the
program’s dynamic task graph, where tasks are connected through streams
that transparently privatize the data. The programming model is conducive
to making relevant data-flow explicit and to structuring programs in ways
that allow simultaneously exploiting pipeline, data and task parallelism.
Stream computations help reduce the severity of the memory wall in two
complementary ways: (1) decoupled producer/consumer pipelines naturally
hide memory latency; and (2) they favor local, on-chip communications, by-
passing global memory.
This extension provides dataflow semantics close to Kahn process networks

and guarantees functional determinism, a major asset in the productivity
race. In contrast with common streaming frameworks, the communication
patterns can be dynamic, while preserving the determinism of arbitrarily
merging and splitting data streams. The GCC prototype implementation
of the OpenMP extension for stream-computing has been shown to be effi-
cient to exploit mixed pipeline- and data-parallelism, even in dynamic task
graphs [Pop and Cohen 2011]. It relies on compiler and runtime optimiza-
tions to improve cache locality and relies on a highly efficient lock-free and
atomic operation-free synchronization algorithm for streams.

We need to emphasize here that the OpenMP Stream Extension is particularly inter-
esting for our survey since, built on top of an imperative language (C) extended with
asynchronous parallel constructs (OpenMP), this language extension is not strictly
synchronous. Yet it offers to programmers the ability to perform parallel signal pro-
cessing operations that loosely adhere to the synchronous hypothesis. Indeed, all
stream operations are specified to be deterministic and to not require explicit syn-
chronization actions. This illustrates how synchronous-like operations could be added
to other existing traditional languages.

Oscillator. The OpenMP Stream Extension [Pop 2011] implementation osc.c of the
oscillator can be found below. We tested a prototype directly with its author, Antoniu
Pop (from MINES ParisTech’s Computer Science Research Center). The osc execution
result is the printing on the standard output of the first 200 values of the expected
sinusoid.� �
#include < s t d l i b . h>
#include < s t d i o . h>
#include <math . h>

#define f r eq 440
#define ou tpu ts i ze 200
#define twopi 6.28318530717958623

s t a t i c i n l i n e f l o a t f r a c p a r t (f l o a t x) { return x − f l o o r (x) ; }

i n t main (i n t argc , char ∗∗argv) {
i n t i ;
i n t t a b l e s i z e = 1 << 16;
i n t sampl ingf req = 44100;
f l o a t ∗sinwaveform = (f l o a t ∗) malloc (t a b l e s i z e ∗ sizeof (f l o a t)) ;

for (i = 0 ; i < t a b l e s i z e ; ++ i)
sinwaveform [i] = s in (((f l o a t) i) ∗ twopi / ((f l o a t) t a b l e s i z e)) ;

#pragma omp p a r a l l e l num_threads (2) defaul t (none)
shared (t ab les i ze , sinwaveform , sampl ingf req) {

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:26 K. Barkati and P. Jouvelot

#pragma omp single {
f l o a t f _ s f _ r a t i o , index , phase ;
f l o a t f rac_add = 0 . 0 ; i n t i = 0 ;
while (i ++ < ou tpu ts i ze) {

#pragma omp task shared (sampl ingf req) output (f _ s f _ r a t i o)
num_threads (2) {

f _ s f _ r a t i o = ((f l o a t) f r eq) / ((f l o a t) sampl ingf req) ;
}
#pragma omp task i npu t (f _ s f _ r a t i o) output (index)

shared (f rac_add) {
f rac_add = f r a c p a r t (f rac_add + f _ s f _ r a t i o) ;
index = frac_add ;

}
#pragma omp task shared (t a b l e s i z e) i npu t (index)

output (phase) {
phase = index ∗ t a b l e s i z e ; / / A stream processor

}
#pragma omp task shared (sinwaveform) i npu t (phase)

shared (s tdou t) {
f p r i n t f (s tdout , "%f \ t %f \ n " ,

sinwaveform [(i n t) phase] , phase) ;
} } } }

return 0;
}� �

Design Notes

— OpenMP Stream Extension is an upward-compatible extension of the OpenMP
standard [Dagum and Menon 1998], which extends sequential languages with options
for parallel execution. OpenMP has multiple language bindings, and its C variant uses
#pragma omp C preprocessor-like directives to describe thread-parallel tasking.

— The parallel pragma is an OpenMP-specific directive used to open a parallel
section in which multiple tasks may be used on up to num_threads parallel threads. A
separate task is launched for each omp task pragma, running the statement following
it in parallel on one of these threads. The single pragma enforces its following se-
quence of code to be run by only one thread (which runs here the while loop that starts
all required tasks).

— All variables declared within a parallel block are local to each task by default;
global variables accessed by a particular parallel construct have to be listed in the
shared parameter.

— OpenMP Stream Extension extends the task pragma, used to specify an OpenMP
parallel task, with the input and output parameters that introduce stream process-
ing into OpenMP. Variables such as index and phase are promoted to streams; mem-
ory is allocated and managed automatically by the OpenMP Stream Extension run-
time in a pipeline fashion, hiding to the programmer the implementation details. The
input/output arguments can be seen as queues on which the pipeline stages, imple-
mented as separate parallel tasks, synchronize and exchange signal data.

— A stream parallel task such as the one defining phase (see commented line) pro-
cesses its input signals to yield output data accordingly.

6. DISCUSSION
We look, in this section, at some of the issues raised by our implementations of osc.
In particular, we discuss (1) the differences between DSL and general-purpose lan-
guages, (2) the subtle differences in the notions of time and signals these formalisms
introduce, (3) how the synchronous hypothesis affects language design, (4) the way

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:27

these languages handle aggregate data structures such as arrays, and finally (5) the
integration of asynchrony.

6.1. The DSL vs. General-Purpose Languages Debate
In this work, we surveyed 10 languages, 5 specific to computer music applications
and 5 general synchronous languages. Each of these languages provides in one way or
another answers to the same design questions, such as how to manage time or what
are signals supposed to represent for the problems at hand. Yet, the final language
design decisions, summarized in Table IV, vary widely, mostly along the line of whether
the corresponding language is intended to be used in a somewhat limited application
domain, i.e., strives to be a music-specific DSL, or able to tackle a wide range of time-
constrained problems, i.e., is a general-purpose synchronous language.

Table IV. Design concepts comparison summary

Music programming languages Synchronous languages
Code size much shorter longer
Time mostly a hardware notion mostly a logical notion
Signals simple tick mappings abstract and complex clocks
Layers low-level and interactive high-level synchronous layer and GALSa

aSee Section 6.5 for GALS.

Of course, the DSL vs. General-Purpose separation line is not enough to automati-
cally imply which particular programming traits a given language should adopt. To get
a feel for the spectrum of notions spanned by this survey, we summarize in Table V the
main features of these programming tools: (1) their core computing paradigm, (2) the
way they specify, in particular for recursive definitions, the memory values at previous
time slots, via delays and initializations, and (3) their design approach of parallelism
specification at the most abstract level, thus not taking in account any hardware con-
straints.

Table V. Salient design points of surveyed languages

Paradigm Delay Initialization Parallelism
Csound orchestra and score delay 2nd arg. orchestra
SuperCollider object-oriented DelayN 3rd arg. implicit
Pure Data visual delread∼ 2nd arg. graph
ChucK on-the-fly Delay .delay implicit
Faust functional ∼ 0 , or par
Signal relational signal$ init implicit
Lustre equational pre -> implicit
Esterel imperative pre(?signal) init ||
Lucid Synchrone functional pre -> implicit
OMP Stream imperative window explicit omp task

One obvious result of our work is that using a single simple yet significant applica-
tion to illustrate the expressiveness power of various programming languages provides
an interesting and practical point of view for software development tool selection. In
particular, choosing an audio application as our main running test case yields a specific
example of the intrinsic value of Domain Specific Languages as a general and practi-
cal approach to the software productivity wall [Mernik et al. 2005; Van Deursen et al.
2000]. Indeed and not surprisingly, we were able to use all these tools to get the work
done, except for a technical limitation of the open-source version of Lustre we used.
Yet, and as anyone could have expected, all programs using music-focused DSLs are

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:28 K. Barkati and P. Jouvelot

much shorter, and also readable, than the ones based on general-purpose synchronous
languages.

A positive by-product of the conciseness of DSL-based programs is that they are
consequently probably more often correct than those based on the other formalisms.
Indeed, even though the idea that the number of bugs introduced in a particular pro-
gram is mainly a function of the number of lines of code and is rather independent of
the programming language used may be mostly folklore, we feel that our analysis illus-
trates in a very concrete manner that conciseness, and hopefully then lack of software
defects, clearly lies within the field of DSLs.

6.2. Logical and Physical Times
Although time is, as we mentioned in Section 2, the core concept that structures the
definition of all the languages used in this use case study, it is obvious that music-
oriented and reactive systems have a somewhat different view of what this notion
means. In the traditional synchronous programming world, time is mostly a logical
notion, around which computations are scheduled; indeed, multiple clocks can even be
defined, e.g., via the ^= symbol in Signal. For music aficionados, time is a hardware,
physical notion deeply linked to the speed at which sound is sampled by input and
output converters; the key notion here is the “sampling rate”, e.g., via the SR predefined
identifier in Faust. In some sense, music languages, as DSLs, are more closely linked to
the practical matters at hand than the more abstract, hence more general, traditional
synchronous programming languages.

Consequently, the notion of what a signal is varies also in the two communities,
even though both use the same foundation, i.e., the concept of time. Following a more
pragmatic approach, music synchronous languages view signals as mappings from
regularly-spaced, sampling rate-sequenced time ticks to values. Traditional languages
have to deal with more complex clocks, for instance where time events might even
be absent, which leads to more abstract notions of signals. In music applications, all
values of a sampled signal are defined (barring computing errors such as a 1/0 divi-
sion), while general signals may yield undefined values for some time events, and such
undefined values are first-class in these languages [Benveniste et al. 2003].

The apparently limited approach of what time and signals must be in music appli-
cations is mitigated by the fact that there is a strong tendency in this community to
address timing issues as a two-tiered problem. First, a low-level synchronous layer,
synchronized to the audio rate, deals with concrete and predictive sampled signals.
Then, a higher-level control layer, in fact mostly asynchronous (Csound being a no-
table exception, using the ksmps variable we discuss in Section 6.3), schedules the
low-level activities in response to the user. These two strata are often embedded in the
same language or environment, using one scheduler at audio rate (typically 44,100 Hz,
with high priority and low latency based on buffering techniques) and another one at
a much lower “control rate”, usually managing MIDI events (medium priority and la-
tency) and GUI objects (low priority and high latency). On the other hand, traditional
synchronous languages tend to address only the issues relevant to the first class of
problems, using either a sample-driven execution scheme as in Lustre or an event-
driven one as in Signal, and rely on a different programming paradigm to link the
synchronous modules together, possibly using a GALS16 approach [Teehan et al. 2007].
Thus, they usually require more general and flexible notions for time and signals than
the ones found in audio languages, since they do not have to follow the fundamental
rhythm of the otherwise primary audio sampling rate.

16GALS stands for “Globally Asynchronous, Locally Synchronous”.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:29

6.3. The Synchronous Hypothesis in Computer Music
Synchronous languages, because of their more abstract and logical view of time and
signals, are formally defined through complex mathematical semantic models [Manna
and Pnueli 1995; Schneider 2004]. These formal specifications are moreover of key
importance given the domains these languages target, i.e., within strongly reactive
and very often mission-critical environments. Music, on the other hand, can, and has
to, deal with more “soft” constraints: the notion of truth is more in the ear of the
listener/composer than in the strict structure of a mathematical proof. Of course, the
human ear is quite a subtle device, and professional listeners have been shown to be
quite sensitive to even very small differences in two audio signals; even one missing
sample may induce a dramatic sound artefact that any listener will hear. Moreover,
even for music applications, a trend is appearing, which calls for more assurance in
the fidelity of the audio processing methods, in particular when one wishes to address
the issue of long-term and exact preservation of the world musical heritage [Guercio
et al. 2007; Bachimont et al. 2003; Barkati et al. 2011].

These two approaches regarding this core notion of time in the synchronous layer
lead to different approaches to the compilation process. Traditional synchronous lan-
guages are more specification-oriented than audio languages; the programmer pro-
vides equations defining clock and signal values, relying on the compiler to implement
them in efficient sequences of computations. Audio/music frameworks have to deal less
with the issue of reifying relationships between logically synchronized computations
than with the efficient implementation of explicitly synchronized processes (see for
instance Pure Data connected graphs or Faust functional expressions).

These two different ways of addressing the issue of correctness, i.e., the ability of per-
forming a given set of computations under timing constraints, have had a significant
impact on language design. Synchronous languages adopt the synchronous hypothesis,
which mathematically ensures that all specifications will be met, both in the computa-
tion and time domains; no event will ever be lost. On the contrary, in the music realm,
the synchronous hypothesis has never been a well-identified key design principle; au-
dio samples may, in practice, be lost. To lower the number of such occurrences, music
language designers have adopted a much more pragmatic approach: audio processing
is not performed on a sample basis, but rather on buffers of multiple audio and control
samples, thus lowering the I/O overhead associated to per-sample computations. This
hands-on design decision is in fact visible in many music languages we surveyed above;
for instance, our Csound example defines the variable ksmps, which specifies the num-
ber of elements to be used to size the control buffers used internally to process sound.
Such low-level buffer management does not need to appear in synchronous languages.
Note however that, as as consequence of this more “relaxed” approach to correctness
handling, music languages have been sometimes explicitly equipped to deal with event
loss; the outcomes of this research might, interestingly, be of use by the synchronous
language community, having to handle hardware faults that may fall outside of the
synchronous hypothesis protection.

6.4. Dynamic Array Management
Table lookup is about performance: computer music makes an intensive use of waveta-
bles to avoid the expensive computation of trigonometric functions like sine functions
for each sample at given audio rates, typically 44,100 times by second, for audio syn-
thesis (wavetable synthesis, waveshaping, etc.). It is noticeable that most of the music
programming languages studied here, except Faust, borrow the idea of the GEN rou-
tines introduced in Csound; they are used as data generators to fill so-called function
tables [Boulanger et al. 2000]. For instance, our oscillator uses the GEN10 routine to

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:30 K. Barkati and P. Jouvelot

fill the oscillator sample table at initialization time with a sum of sinusoids (only one
here); this table is then read using a wrap-around lookup process. Faust provides sup-
port for load-time table initialization and reading operation via the rdtable ternary
function.
Our study reveals that general-purpose synchronous languages are often poorly

Table VI. Table support

Initialization Dynamic Access
Csound f1 0 65536 10 1 ; GEN10 oscil p4, p5, 1
SuperCollider b.sine1 {OscN.ar(b,440,0,1)}.play
Pure Data sinesum $1 1 tabread∼ myarray
ChucK [1.] => g10.coefs Gen10 g10 => dac
Faust rdtable 1st and 2nd arg. rdtable 3rd arg.
Signal [i to (size-1):sin(...)] sinwaveform[tableindex]
Lustre v4 external C code imported function
Lucid Sync. OCaml Array.make and .set OCaml Array.get
Esterel v5 external C code imported function
OMP Stream C code C code

equipped to support tables. Of course, they cannot be expected to provide music-specific
GEN-like routines, but, more surprisingly at first sight, most of them simply do not
handle array data structures, as is the case with the Esterel and Lucid Synchrone lan-
guages in the versions we used. Furthermore, the Lustre version we tested do provide
an array syntax, but only as syntactic sugar for variables numbering, not for dynamic
array access. Of course, it is generally possible to handle array initialization and dy-
namic access by importing foreign functions, C functions in most languages, as we
did in our Esterel implementation of the oscillator, or OCaml functions in Lucid Syn-
chrone, as we showed. The underlying reason for not handling arrays in the languages
themselves is often the difficulty of ensuring that the synchronous time and memory
constraints are still enforced, which is crucial for critical synchronous applications.

Commercial and more recent versions of Lustre and Esterel do handle arrays. Nev-
ertheless, our survey suggests that the designers of synchronous languages could look
at the GEN-like mechanism inspired by music programming languages as a safe strat-
egy for the introduction of array data structures in these formalisms. Another possible
approach to ensure a mathematically-correct integration of arrays and synchronous
constraints is to couple in a single analysis the rates of signals with the size of the
elements they convey (see for instance [Jouvelot and Orlarey 2011]).

6.5. Event Management
Our survey focused on the audio signal processing part of the computer music domain,
since audio DSP shares obvious features with synchronous applications, among which
time and signal concepts – even though these are subtly different in both fields, as
we have shown. The DSP part corresponds to the sampled scheme of evaluation of
synchronous languages, where the main loop handles each sample, as opposed to their
control scheme, where the main loop manages each interaction event. Synchronous
languages often rely on a two-tier strategy to handle the integration of asynchrony, for
instance via a GALS approach; most computer music languages are, them, inherently
hybrid along the synchronous/asynchronous separation line.

Indeed, in addition to the DSP part, most music programming languages also embed
event management for the inherently asynchronous occurences of musical notes and
interactive remote control of parameters. Asynchronous event management is usually
handled using message passing standards such as MIDI or OSC with no time tags.
It is typically implemented via fixed-size event FIFOs or dedicated schedulers that

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:31

run at a lower priority than the DSP one: such implementations may lead to non-
deterministic effects when overflows occur. Note that this approach can also be applied
to user-induced asynchronous events such as I/O operations, as is the case for Super-
Collider.

On the other hand, dealing with these asynchronous events can be performed by
embedding them within a synchronous framework, as is done in Csound, Pure Data
or ChucK. They are here synced on a clock running at a specific control rate, which is
usually lower than the audio rate since these events occur less frequently than audio
samples. This approach may lower the computing load but lead to a loss of precision
or even data loss when events are issued at too fast a pace; such a behavior may occur,
for instance, in SuperCollider, when events are synchronized on AppClock instead of
SystemClock. Such a synchronous handling can also be used when dealing with more
time-based events such as timeouts, which may also be synced to the audio or control
rates.

A challenging idea suggested by our survey would be to study if and how musical
programming languages could improve their event management processes by borrow-
ing from the mathematically-well founded control handling of the sophisticated syn-
chrony traits introduced by synchronous languages, and thus benefit from their formal
consistency.

7. CONCLUSION
We performed a practical, use case-oriented survey of ten key music-specific and
general-purpose synchronous programming languages, implementing in each of them
a simple yet significant audio processing algorithm, namely a frequency-parameterized
oscillator. We believe this survey provides the first bridge between two mature and
widely successful computing fields, the more than 50-year old computer music domain
and the 40-year old niche of synchronous programming languages. Our work showed
that the wide variety of existing music and synchronous languages leads to a large
spectrum of program sizes and styles, even for the simple case of the oscillator, which
was our running example throughout the article.

Our application-oriented comparison work, and the discussion points it led to, can be
of use to language designers interested in the relationships and opportunities for mu-
tual interactions between synchronous and computer music language designs. More-
over, programmers will get from our survey a better feeling for what the two audio and
synchronous families of programming languages have to offer, both in common and on
their own, extending their views on how explicit timing issues can be dealt with at
various levels of abstraction.

Our present work has focused on programming language design issues. It would be
interesting to see whether our findings regarding DSLs’ benefits can be leveraged to
more complex use case applications. Future work needs also to address the implemen-
tation, performance, environment integration and event management aspects of such
a comparison, since these factors are also key in the decisions leading to the choice of
a particular language or language paradigm in software projects. Finally, the choice of
our audio oscillator running example creates some bias in our comparison of general-
purpose and music-specific languages; this calls for an other, symmetric study, which
would use a typical synchronous application, such as for instance ABRO [Berry 2000],
to provide a balanced assessment of both programming paradigms.

ACKNOWLEDGMENT

The authors thank Daniel Gaffé, Léonard Gérard, Yann Orlarey, Cédric Pasteur, Antoniu Pop, Marc Pouzet,
Annie Ressouche, Xavier Rival and Valérie Roy for their help, Laure Gonnord and Jean-Pierre Talpin for

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:32 K. Barkati and P. Jouvelot

their kind feedback, and the reviewers for their detailed comments and suggestions. The motivation for this
study comes from the French ASTREE17 ANR 2008 CORD 003 01 research project, which addresses the
preservation issues of synchronous programs in computer music, using the Faust real-time audio processing
language as the core foundation for such preservation efforts.

References
K. Altisen, F. Maraninchi, and D. Stauch. 2006. Aspect-oriented programming for reactive systems: Larissa,

a proposal in the synchronous framework. Science of Computer Programming 63, 3 (2006), 297–320.
X. Amatriain, P. Arumi, and D. Garcia. 2006. CLAM: A framework for efficient and rapid development of

cross-platform audio applications. In Proceedings of the 14th Annual ACM International Conference on
Multimedia. ACM, 951–954.

C. André. 1996. Representation and analysis of reactive behaviors: A synchronous approach. In CESA’96
IMACS Multiconference: computational engineering in systems applications. 19–29.

M. Antonotti, A. Ferrari, A. Flesca, and A. Sangiovanni-Vincentelli. 2000. JESTER: An Esterel based reac-
tive Java extension for reactive embedded systems. In Forum on Specification & Design Languages.

G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue. 1999. Computer-assisted composition at IR-
CAM: from PatchWork to OpenMusic. Computer Music Journal 23, 3 (1999), 59–72.

B. Bachimont, J.F. Blanchette, A. Gerzso, A. Swetland, O. Lescurieux, P. Morizet-Mahoudeaux, N. Donin, and
J. Teasley. 2003. Preserving interactive digital music: a report on the MUSTICA research initiative. In
Proceedings of the Third International Conference on Web Delivering of Music. IEEE, 109–112.

A.D. Baker, T.L. Johnson, D.I. Kerpelman, and H.A. Sutherland. 1987. GRAFCET and SFC as Factory Au-
tomation Standards Advantages and Limitations. In American Control Conference. IEEE, 1725–1730.

R. Baker and L.A. Hiller. 1963. MUSICOMP: MUsic Simulator-Interpreter for COMpositional Procedures
for the IBM 7090. (1963).

F. Balarin. 1997. Hardware-software co-design of embedded systems: the POLIS approach. Vol. 404. Springer
Netherlands.

K. Barkati, D. Fober, S. Letz, and Y. Orlarey. 2011. Two Recent Extensions to the FAUST Compiler. In
Proceedings of the Linux Audio Conference.

A. Benveniste and G. Berry. 1991a. Another look at real-time programming. In Special Section of the Pro-
ceedings of the IEEE, Vol. 79.

A. Benveniste and G. Berry. 1991b. The synchronous approach to reactive and real-time systems. Proc. IEEE
79, 9 (1991), 1270–1282.

A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. De Simone. 2003. The synchronous
languages twelve years later. Proc. IEEE 91, 1 (2003), 64–83.

G. Berry. 2000. The Esterel v5 Language Primer: Version v5_91. Centre de mathématiques appliquées, Ecole
des mines and INRIA.

G. Berry and L. Cosserat. 1985. The ESTEREL synchronous programming language and its mathematical
semantics. In Seminar on Concurrency. 389–448.

R. Bharadwaj. 2002. SOL: A verifiable synchronous language for reactive systems. Electronic Notes in The-
oretical Computer Science 65, 5 (2002), 140–154.

P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. 1998. Lava: hardware design in Haskell. In Proceedings of
the Third ACM SIGPLAN International Conference on Functional Programming. ACM, 174–184.

G. Boudol. 2004. ULM: A core programming model for global computing. Programming Languages and
Systems (2004), 234–248.

R.C. Boulanger and others. 2000. The Csound Book. Vol. 309. MIT Press.
F. Boussinot. 1991. Reactive C: An extension of C to program reactive systems. Software: Practice and Ex-

perience 21, 4 (1991), 401–428.
F. Boussinot and R. De Simone. 1996. The SL synchronous language. Software Engineering, IEEE Transac-

tions on 22, 4 (1996), 256–266.
F. Boussinot and J.F. Susini. 1998. The SugarCubes tool box: a reactive Java framework. Software: Practice

and Experience 28, 14 (1998), 1531–1550.
J. Bresson, C. Agon, and G. Assayag. 2009. Visual Lisp/CLOS programming in OpenMusic. Higher-Order

and Symbolic Computation 22, 1 (2009), 81–111.

17ASTREE stands for “Analyse et synthèse de traitements temps réel”, i.e., “Analysis and Synthesis of Real-
Time Processes”.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:33

C. Cadoz, A. Luciani, and J.L. Florens. 1993. CORDIS-ANIMA: a Modeling and simulation system for sound
and image synthesis: the general formalism. Computer Music Journal (1993), 19–29.

P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. 2003. From Simulink to SCADE/Lus-
tre to TTA: a layered approach for distributed embedded applications. ACM SIGPLAN Notices 38, 7
(2003), 153–162.

P. Caspi, D. Pilaud, N. Halbwachs, and J. A Plaice. 1987. LUSTRE: A declarative language for programming
synchronous systems. In Conference Record of the 14th Annual ACM Symp. on Principles of Program-
ming Languages.

P. Caspi and M. Pouzet. 1996. Synchronous Kahn networks. In ACM SIGPLAN Notices, Vol. 31. 226–238.
N. Castagné and C. Cadoz. 2002. GENESIS : a friendly musician-oriented environment for mass-interaction

physical modeling. In Proceedings of the International Computer Music Conference. Goteborg, Suede,
330–337. http://hal.archives-ouvertes.fr/hal-00481717/en/

A. Chaudhary, A. Freed, and M. Wright. 2000. An Open Architecture for Real-time Music Software. Proceed-
ings of the International Computer Music Conference (2000).

M. Compton. 2000. SCOOP: An investigation of concurrency in Eiffel. Master’s thesis, Department of Com-
puter Science, The Australian National University (2000).

P.R. Cook and G. Scavone. 1999. The synthesis toolkit (STK). In Proceedings of the International Computer
Music Conference. 164–166.

L. Dagum and R. Menon. 1998. OpenMP: an industry standard API for shared-memory programming. Com-
putational Science & Engineering, IEEE 5, 1 (1998), 46–55.

R.B. Dannenberg. 1997. Machine tongues XIX: Nyquist, a language for composition and sound synthesis.
Computer Music Journal 21, 3 (1997), 50–60.

F. Déchelle, R. Borghesi, M. De Cecco, E. Maggi, B. Rovan, and N. Schnell. 1999. jMax: an environment for
real-time musical applications. Computer Music Journal 23, 3 (1999), 50–58.

F.X. Dormoy. 2008. Scade 6: a model based solution for safety critical software development. In Proceedings
of the 4th European Congress on Embedded Real Time Software (ERTS’08). 1–9.

G. Eckel, F. Iovino, and R. Caussé. 1995. Sound synthesis by physical modelling with Modalys. In Proc.
International Symposium on Musical Acoustics. 479–482.

J. Ellsberger, D. Hogrefe, and A. Sarma. 1997. SDL: formal object-oriented language for communicating
systems. Prentice Hall.

A. Gamatié. 2009. Designing embedded systems with the Signal programming language: synchronous, reac-
tive specification. Springer Verlag.

E. Gaudrain and Y. Orlarey. 2003. A Faust Tutorial. Technical Report. Grame, Lyon.
T. Gautier, P. Le Guernic, and L. Besnard. 1987. Signal: A declarative language for synchronous pro-

gramming of real-time systems. In Functional Programming Languages and Computer Architecture.
Springer, 257–277.

N. Gehani and K. Ramamritham. 1991. Real-time concurrent C: A language for programming dynamic real-
time systems. Real-Time Systems 3, 4 (1991), 377–405.

J.-L. Giavitto. 1991. A Synchronous Data-Flow Language for Massively Parallel Computers. In Proceedings
of the International Conference on Parallel Computing’91, D. J. Evans, G. R. Joubert, and H. Liddell
(Eds.). London, UK, 391.

A. Girault. 2005. A survey of automatic distribution method for synchronous programs. In International
Workshop on Synchronous Languages, Applications and Programs, SLAP, Vol. 5.

M. Guercio, J. Barthélemy, and A. Bonardi. 2007. Authenticity issue in performing arts using live electron-
ics. In Sound and Music Computing Conference Proceedings.

N. Halbwachs. 1993. Synchronous Programming of Reactive Systems. Kluwer Academic Pub.
N. Halbwachs. 2005. A synchronous language at work: the story of Lustre. In Proceedings of the 2nd

ACM/IEEE International Conference on Formal Methods and Models for Co-Design. IEEE Computer
Society, 3–11.

D. Harel. 1987. Statecharts: A visual formalism for complex systems. Science of computer programming 8, 3
(1987), 231–274.

D. Harel and A. Pnueli. 1985. On the development of reactive systems. Weizmann Institute of Science, Dept.
of Computer Science.

L.A. Hiller and R.A. Baker. 1964. Computer Cantata: A study in compositional method. Perspectives of New
Music 3, 1 (1964), 62–90.

P. Hudak, T. Makucevich, S. Gadde, and B. Whong. 1996. Haskore music notation: An algebra of music.
Journal of Functional Programming 6, 3 (1996), 465–483.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

A:34 K. Barkati and P. Jouvelot

IEEE standard. 1988. VHDL language reference manual. IEEE Std (1988), 1076–1987. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=26487

M. Ingham, R. Ragno, and B. Williams. 2001. A Reactive Model-based Programming Language for Robotic
Space Explorers. In Proceedings of ISAIRAS-01.

OSC Initiative. 2006. IEEE Standard SystemC Language Reference Manual. IEEE Computer Society 2002,
March (2006).

Y. Ishikawa, H. Tokuda, and C.W. Mercer. 1992. An object-oriented real-time programming language. Com-
puter 25, 10 (1992), 66–73.

Pierre Jouvelot and Yann Orlarey. 2011. Dependent vector types for data structuring
in multirate Faust. Comput. Lang. Syst. Struct. 37 (July 2011), 113–131. Issue 3.
DOI:http://dx.doi.org/10.1016/j.cl.2011.03.001

M. Laurson and J. Duthen. 1989. PatchWork, a graphical language in PreForm. In Proceedings of the Inter-
national Computer Music Conference. San Francisco, CA, 172–173.

M. Laurson, M. Kuuskankare, and V. Norilo. 2009. An overview of PWGL, a visual programming environ-
ment for music. Computer Music Journal 33, 1 (2009), 19–31.

L. Lavagno and E. Sentovich. 1999. ECL: a specification environment for system-level design. In Proceedings
of the 36th Annual ACM/IEEE Design Automation Conference. ACM, 511–516.

V.E.P. Lazzarini. 2000. The SndObj Sound Object Library. Organised Sound 5, 1 (2000), 35–49.
P. Le Guernic, J. P Talpin, and J. C Le Lann. 2003. Polychrony for system design. Journal of circuits systems

and computers 12, 3 (2003), 261–304.
X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. 2010. The Objective Caml system

release 3.12 Documentation and user’s manual. Technical Report. INRIA.
G. Loy and C. Abbott. 1985. Programming languages for computer music synthesis, performance, and com-

position. ACM Computing Surveys (CSUR) 17, 2 (1985), 235–265.
F. Mallet and C. André. 2009. On the semantics of UML/MARTE clock constraints. In 2009 IEEE Inter-

national Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing. IEEE,
305–312.

L. Mandel and M. Pouzet. 2005. ReactiveML: a reactive extension to ML. In Proceedings of the 7th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Programming. ACM, 82–
93.

Z. Manna and A. Pnueli. 1995. Temporal verification of reactive systems: safety. Vol. 2. Springer Verlag.
F. Maraninchi. 1990. Argonaute: graphical description, semantics and verification of reactive systems by

using a process algebra. In Automatic Verification Methods for Finite State Systems. 38–53.
F. Maraninchi. 1991. The Argos language: Graphical representation of automata and description of reactive

systems. In IEEE Workshop on Visual Languages.
M.V. Mathews, J.E. Miller, F.R. Moore, J.R. Pierce, and J.C. Risset. 1969. The technology of computer music.

The MIT Press, Boston.
J. McCartney. 1996. SuperCollider, a new real time synthesis language. In Proceedings of the International

Computer Music Conference. International Computer Music Association, 257–258.
M. Mernik, J. Heering, and A.M. Sloane. 2005. When and how to develop domain-specific languages. ACM

Computing Surveys (CSUR) 37, 4 (2005), 316–344.
R. Milner. 1980. A calculus of communicating systems. Vol. 92. Springer-Verlag.
C. Nilson. 2007. Live coding practice. Proceedings of New Interfaces for Musical Expression (NIME) (2007).
Y. Orlarey, D. Fober, and S. Letz. 1997. Elody: A Java + MidiShare based music composition environment.

In Proceedings of the International Computer Music Conference. Thessaloniki, Greece.
Y. Orlarey, D. Fober, and S. Letz. 2002. An Algebra for Block Diagram Languages. In Proceedings of Inter-

national Computer Music Conference. 542–547.
Y. Orlarey, D. Fober, and S. Letz. 2004. Syntactical and Semantical Aspects of Faust. Soft Computing-A

Fusion of Foundations, Methodologies and Applications 8, 9 (2004), 623–632.
Y. Orlarey, D. Fober, and S. Letz. 2009. FAUST: an Efficient Functional Approach to DSP Programming. In

New Computational Paradigms for Computer Music, Assayag G. and Gerzso A. (Eds.). IRCAM/Delatour
France.

Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens. 2011. Multi-task im-
plementation of multi-periodic synchronous programs. Discrete Event Dynamic Systems 21, 3 (2011),
307–338. http://hal.inria.fr/inria-00638936

A. Pnueli, O. Shtriehman, and M. Siegel. 1998. Translation validation for synchronous languages. Automata,
Languages and Programming (1998), 235–246.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

Synchronous Programming In Audio Processing: A Lookup Table Oscillator Case Study A:35

A. Pop. 2011. Leveraging Streaming for Deterministic Parallelization : an Integrated Language, Compiler
and Runtime Approach. Ph.D. Dissertation. MINES ParisTech.

A. Pop and A. Cohen. 2011. A Stream-Computing Extension to OpenMP. In Proc. of the 6th Intl. Conf. on
High Performance and Embedded Architectures and Compilers (HiPEAC’11).

M. Puckette. 1991. Combining event and signal processing in the MAX graphical programming environment.
Computer Music Journal (1991), 68–77.

M. Puckette. 1996. Pure Data: Another Integrated Computer Music Environment. Proceedings of the Second
Intercollege Computer Music Concerts (1996), 37–41.

M. Puckette. 2002. Max at seventeen. Computer Music Journal 26, 4 (2002), 31–43.
M. Puckette. 2007. The Theory and Technique of Electronic Music. World Scientific Pub Co Inc.
J.H. Reppy. 1999. Concurrent Programming in ML. Cambridge University Press, Cambridge, England.
X. Rodet, Y. Potard, and J.B. Barriere. 1984. The CHANT project: from the synthesis of the singing voice to

synthesis in general. Computer Music Journal 8, 3 (1984), 15–31.
C. Scaletti. 1987. Kyma: An object-oriented language for music composition. In Proceedings of the Interna-

tional Computer Music Conference. 49–56.
E.D. Scheirer and B.L. Vercoe. 1999. SAOL: The MPEG-4 structured audio orchestra language. Computer

Music Journal 23, 2 (1999), 31–51.
K. Schneider. 2000. A Verified Hardware Synthesis of Esterel Programs. In Proceedings of the IFIP WG10.

Kluwer, BV, 205–214.
K. Schneider. 2004. Verification of reactive systems: formal methods and algorithms. Springer Verlag.
K. Schneider and T. Schuele. 2005. Averest: Specification, verification, and implementation of reactive sys-

tems. In Conference on Application of Concurrency to System Design (ACSD).
D. Simon and A. Girault. 2001. Synchronous programming of automatic control applications using OrCAD

and Esterel. In Proceedings of the 40th IEEE Conference on Decision and Control, Vol. 4. IEEE, 3290–
3295.

J.O. Smith III. 2010. Audio Signal Processing in Faust. Technical Report. CCRMA.
A. Sorensen. 2005. Impromptu: An interactive programming environment for composition and performance.

In Proceedings of the Australasian Computer Music Conference 2009.
H. Taube. 1991. Common Music: A music composition language in Common Lisp and CLOS. Computer Music

Journal (1991), 21–32.
P. Teehan, M. Greenstreet, and G. Lemieux. 2007. A survey and taxonomy of GALS design styles. Design &

Test of Computers, IEEE 24, 5 (2007), 418–428.
W. Thies, M. Karczmarek, and S. Amarasinghe. 2002. StreamIt: A Language for Streaming Applications. In

International Conference on Compiler Construction. Grenoble, France. http://groups.csail.mit.edu/commit/
papers/02/streamit-cc.pdf

D.E. Thomas and P.R. Moorby. 2002. The Verilog hardware description language. Vol. 1. Springer Nether-
lands.

A. Valle and others. 2007. The SuperCollider Help Book. (2007).
A. Van Deursen, P. Klint, and J. Visser. 2000. Domain-specific languages: An annotated bibliography. ACM

Sigplan Notices 35, 6 (2000), 26–36.
P. Van Roy. 2009. Programming Paradigms for Dummies: What Every Programmer Should Know. New

Computational Paradigms for Computer Music (2009).
B. Vercoe. 1992. Csound: a manual for the audio processing system and supporting programs with tutorials.

Massachusetts Institute of Technology.
B. Vercoe and others. 2007. The Canonical Csound Reference Manual. (2007).
G. Wang and P.R. Cook. 2007. The ChucK Manual 1.2.1.3. Princeton University.
G. Wang, P.R. Cook, and others. 2003. ChucK: A Concurrent, On-the-fly Audio Programming Language. In

Proceedings of the International Computer Music Conference. 219–226.
M. Wright. 2005. Open sound control: an enabling technology for musical networking. Organised Sound 10,

03 (2005), 193–200.
D. Zicarelli. 1998. An extensible real-time signal processing environment for Max. In Proceedings of the

International Computer Music Conference. 463–466.

Received Month Year; revised Month Year; accepted Month Year

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.

