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Abstract. Mathematical morphology is a nonlinear image processing
methodology based on computing min/max operators in local neigh-
bourhoods. In the case of tensor-valued images, the space of SPD ma-
trices should be endowed with a partial ordering and a complete lattice
structure. Structure tensor describes robustly the local orientation and
anisotropy of image features. Formulation of mathematical morphology
operators dealing with structure tensor images is relevant for texture
filtering and segmentation. This paper introduces tensor-valued mathe-
matical morphology based on a supervised partial ordering, where the
ordering mapping is formulated by means of positive definite kernels and
solved by machine learning algorithms. More precisely, we focus on sym-
metric divergences for SPD matrices and associated kernels.

Keywords: matrix-valued image, tensor mathematical morphology, su-
pervised morphology, structure tensor image processing

1 Introduction

An extensive development of morphological operators has been started with the
revolutionary work of Matheron [10] and Serra [13] more than four decades ago.
In the long way of the evolution of mathematical morphology, from binary im-
age to vector-valued images, several monographs and articles have illustrated the
requirement of a partial ordering for an adequate application of the adjunction-
based morphological transformations [8,15,1,18]. However, nowadays the world
of digital images includes also unconventional acquisition methods as Diffusion
Tensor MRI, which produce matrix-valued images. We wish to consider the situ-
ation where the available data (pixel information) are symmetric positive definite
(SPD) matrices. In that case, we denoted by I the image defined as a function:

I :

{
E→ P(d)

x→ X
(1)



where E ∈ Z2 for 2D images, is the support space of pixels x and X ∈ P(d)
denotes a matrix in the set of SPD matrices of dimension d×d. Genuine matrix-
valued concepts with channel interaction are available for nonlinear regularisa-
tion methods and related diffusion filters [19], median filtering [20], morpholog-
ical filters [6] and regularisation [11]. However, we would like to take in consid-

(a) I (b) WS(4(I)) (c) Tensor struct. on I (d) WS(4{B,F}(I))

Fig. 1. (a) Red and blue squares show the pixels of sets F and B respectively. Image
(c) is the representation of the structure tensor of the grey scale image (a). Pixels in
F and B are coloured in red and blue. Image (b) is the marked based watershed on
classical gradient, and (d) is the marked based watershed on supervised gradient.

eration some a priori information about important objects on the image. In our
context, two set of SPD matrices, B = {B1, . . . ,B|B|} and F = {F1, . . . ,F|F |}
containing local orientation information of pixel associated with background and
foreground of the image are available.

Figure 1 illustrates the practical motivation behind our approach. We would
like to perform a segmentation on a grey scale image from two sets of markers:
one for the background and other for foreground. The classical morphological
approach performs marker based watershed on the gradient of the Fig. 1(a).
Watershed detects the most contrasted gradient between F and B, as it is il-
lustrated in Fig. 1(b). However, it does not includes any information about the
texture of the objects in the image. We characterises the “texture” by a local
orientation/anisotropy of gradient, which can vary arbitrarily over the entire
image. That means, that every point in the image is associated with a dominant
local orientation or degree of anisotropy of the flow pattern. One way of visu-
alising oriented textures is to think about the image intensity surface as being
comprised of ellipses, whose direction and height can vary continuously as it
is illustrated in Fig. 1(c). This is the rationale behind the notion of structure
tensor. We refer keen readers to [4] for a comprehensive review of structure ten-
sors on image processing. We note that structure tensors, defined by the tensor
product of gradient vectors, are elements of P(d). Given the texture information
at each pixel extracted from the structure tensor, a main question arises: How
that texture information can be included to perform segmentation, smoothing,
interpolation and so on?



The main difficulty is that tensor space is not a vector space with the usual
operations. In fact, it is the space of SPD matrices form a convex half-cone in the
vector space of matrices. In this paper, we limit ourselves to follow the idea in-
troduced in [18] for designing morphological transformation on vector-valued im-
ages. Roughly, the idea in [18], can be summarised as follows: To use supervised
morphology methods on image I : E→ P(d), we require the definition of a posi-
tive definite kernel (PDK) on P(d) is required. A mapping K : P(d)×P(d)→ R,
so that K(A,B) = K(B,A) and

∑n
i=1

∑n
i=1 K(Ai,Aj)cicj ≥ 0 for all finite se-

quence of matrices A1, . . . ,An ∈ P(d) and all choices of real numbers c1, . . . , cn.
From K a supervised classification problem between B and F is solved and the
evaluation function can be utilised as a partial ordering to perform mathematical
morphology transformation. Following the same methodology, a morphological
transformation can be designed for structure tensor-valued images by building
a PDK on P(d). The usual approach of computing kernels is the application of
univariate kernel on the Euclidean Distance. However, since the space of posi-
tive semidefinite matrices is a non-Euclidean space, it is more natural to consider
alternatives distances.

2 From Bregman matrix divergences to PDK on P(d)

2.1 Matrix spaces

LetM(d) be the set of d×d real matrices and GL(d) be its subset containing only
non-singular matrices. GL(d) is a Lie group, i.e., a group which is a differentiable
manifold and for which the operations of group multiplication and inverse are
smooth. InM(d) we shall use the Euclidean (or Frobenius) inner product defined
by 〈A,B〉F = tr(ATB), where tr(·) stands for the trace and the superscript T

denotes the transpose. Additionally, let S(d) = {A ∈ M(d),AT = A} be the
space of all d× d symmetric matrices, and P(d) = {A ∈ S(d),A > 0} be the set
of all d × d positive-definite symmetric matrices. Here, A > 0 means that the
quadratic from xTAx > 0 for all x ∈ Rd,x 6= 0. It is well known that P(d) is
an open convex cone, i.e., if A and B are in P(d), so is A + cB for any c > 0.

2.2 Bregman matrix divergences

A possibility to measure the nearness between two matrices are the Bregman
matrix divergences[9], which are generalisations of Bregman vector divergences.
Let φ be a real-valued strictly convex function defined over set dom(φ) ⊂ Rd
such that φ is differentiable on the relative interior of dom(φ). The Bregman
vector divergence [3] with respect to φ is defined as:

divφ(x,y) = φ(x)− φ(y)− (x− y)T∇φ(y) (2)

For instance, if φ(x) = xTx then divφ(x,y) = ||x−y||22. If φ(x) =
∑
i xi log xi−

xi the divφ(x,y) =
∑
i(xi log xi

yi
− xi + yi), corresponds to the unnormalised

relative entropy. Bregman divergences generalise many properties of squared



loss and relative entropy. See for more details in [12]. We can naturally extend
this definition to real, symmetric d×d matrices, in S(d). Given a strictly convex,
differentiable function φ : S(d) → R, the Bregman matrix divergence is defined
to be:

divφ(A,B) = φ(A)− φ(B)− tr((∇φ(B))T (A−B)), (3)

Particular cases of Bregman divergences for matrices are the following:

– if φFrob(A) = ||A||2F leads to the well-know Frobenius norm.
– if φNeuman(A) = tr(A logA −A), where logA is the matrix logarithm3, the
∇φNeuman(B) = (logB)T and the resulting Bregman divergence is:

divNeuman(A,B) = tr(A logA−A logB−A + B) (4)

– Another important matrix divergence arises by taking the Burg entropy of
the eigenvalues, that is, φBurg(A) = − log det(A), so ∇φBurg(B) = −(B−T ),
where we obtain:

divBrug(A,B) = tr(AB−1)− log det(AB−1)− d. (5)

Expression (5) is also known as Stein’s loss[17] or the LogDet-Divergence
[9,16].

The most obvious computational benefit of using the divergences arise from the
fact that they are defined over positive definite matrices. Because of this, our
algorithms not need to explicitly constrain our learned matrices to be positive
definite. However, Bregman divergences are non negative and definite, but almost
always asymmetric.

2.3 Symmetric divergence and associated kernels

Despite the broad applicability of Bregman divergence, their asymmetry is some-
thing undesirable. This drawback prompted researchers to consider symmetric
divergences [7,16], among which the most popular is the Jensen-Shannon diver-
gence

Sφ(A,B) = divφ

(
A,

A + B

2

)
+ divφ

(
A + B

2
,B

)
(6)

Applying (6) in the case of (5), we obtain the symmetric stein divergence [16]
defined as follows

Sstein(A,B) = log det

(
A + B

2

)
− 1

2
log det(AB) (7)

The PDK is obtained from the Stein symmetric divergence using an impor-
tant result from [16].

3 If A = VΛVT ∈ P(d) is the eigendecomposition, then logA = V logΛVT , where
logΛ is the diagonal matrix whose entries contain the logarithm of the eigenvalues.
The matrix exponential can be defined analogously.



Theorem 1. [16] Define divstein(A,B) =
√
Sstein(A,B). Then, divstein is a

metric on P(d).

Theorem 2. [16] Let A1,A2, . . . ,An be real symmetric matrices in P(d), the
following functions

K(Ai,Aj) = exp(−βSstein(Ai,Aj)) (8)

forms a PDK if and only if β satisfies

β ∈
{
j

2
: j ∈ N|1 ≤ j ≤ (d− 1)

}
∪ {j : j ∈ R|j > 1

2
(d− 1)}

3 Supervised morphology on structure tensor-valued
images

3.1 Orders on P(d)

Loewner partial order There are also a natural ordering on S(d), the so-
called Loewner’s partial ordering defined via the cone of positive semidefinite
matrices S(d) by

A ≤Loewner B ⇐⇒ A−B ∈ S(d),∀A,B ∈ S(d) (9)

i.e., if and only if A−B is positive semidefinitive. This definition is equivalent
to the statement [14]:

A ≤Loewner B ⇐⇒ xTAx ≤ xTBx (10)

for all non-zero x such that x′x = 1. The application of this order to induce
mathematical morphology transformation have been introduced in [5].

Lexicographic spectral order Recently, in [2] was introduced the idea of
ordering based on the singular value decomposition, as follows:

A ≤LS B ⇐⇒ ∃j, 1 ≤ j ≤ d such that λi(A) = λi(B)∀i < j,

and λj(A) < λj(B) for j ≤ d

where λi(A), i = 1, . . . , d are the ordered eigenvalues of A.

h-supervised order Following the approach in [18] which takes advantage of
supervised classification approaches to define a partial ordering, we introduce
a particular case for matrices in P(d). Given two sets B = {B1 . . . ,B|B|} and
F = {F1 . . . ,F|F |} such that Fi and Bf ∈ P(d), for all i = 1, . . . , |F | and
j = 1, . . . , |B|,

A ≤B,FSuper B ⇐⇒ hB,F (A) ≤ hB,F (B) (11)



where the supervised h-mapping, h : P(d)→ R, is given by

hB,F (X) =

|F |∑
i=1

λiK(X,Fi)−
|B|∑
j=1

λjK(X,Bj) (12)

and K(·, ·) is a PDK and λj are computed as solution of the optimisation problem
associated with a supervised classification problem between F and B, see details
in [18].

(a) I (b) εSE,hGrey(I) (c) εSE,hStein(I)

Fig. 2. Background and foreground sets are blue and red ellipses in (a). Note that
the erosion by hGrey causes a colour homogenisation in comparison to an orientation
uniformity by hStein. SE is a disk of diameter 20 pixels.

3.2 Morphological operators

Standard morphological operators use the so-called structuring element, denoted
by SE, to work on images represented by scalar functions I(x, y) with (x, y) ∈ E.
Grey scale dilation δSE (·), resp., erosion εSE (·) is defined by:

∀x ∈ E, δSE (I) (x) =
∨

y∈ŠE(x)

I(y), εSE (I) (x) =
∧

y∈SE(x)

I(y) (13)

where SE(x) ∈ E denote the spatial neighbourhood induced by the structuring
element SE centred at x and ŠE is the structuring element mirrored in the origin.
A structure tensor image is considered as a mapping I : E→ P(d). Our solution
involves a structure of total ordering which allows to compute directly the h-
erosion and h-dilation formulated as

εSE,hB,F
(I)(x) = {I(y)|hB,F (I)(y) =

∧
hB,F (z), z ∈ SEx},

δSE,hB,F
(I)(x) = {I(y)|hB,F (I)(y) =

∨
hB,F (z), z ∈ ŠEx},



3.3 Application to robust segmentation

A watershed transform, denoted by WS(I) associate a catch basin to each min-
imum of the image I. We note in passing that in practice one often does not
apply the watershed transform to the original image, but to its (morphological)
gradient [15]. Basically, we apply the watershed transformation in the gradient
induced by the h-ordering calculated4 by the kernel in P(d), i.e., 4hB,F

(I) =
hB,F (δSE,hB,F

(I) − εSE,hB,F
(I)), where SE is typically a unitary structuring ele-

ment. We notice that the gradient image, 4hB,F
(I) is scalar function and con-

sequently standard watershed algorithm can be applied on it. In the case of the
example illustrated in Fig.3(a), markers in (b) are included in the classical wa-
tershed to produce only two regions. Additionally, they are the sets B and F to
compute the h-mapping in (12).

(a) Original image (b) Markers (c) WS(4(I)) (d) WS(4stein(I))

(e) Noisy image (f) WS(4(I)) (g) WS(4stein(I))

Fig. 3. Note that marked based watershed on the supervised gradient by Stein-Kernel
performs similar than classical one for the image (a). Adding random noise (e), we
observe that supervised gradient segment correctly the object (g) in opposition to
classical approach(e).
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10. Matheron, G.: Éléments pour une théorie des milieux poreux. Masson et Cie (1967)
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