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Introduction

This work is motivated by the exploration of a mathematical image model f where instead of having a scalar intensity t ∈ R at each pixel p, i.e., f (p) = t, we have a univariate Gaussian probability distribution of intensities N (µ, σ 2 ) ∈ N , i.e., image f is dened as the function f :

{ Ω → N p → N (µ, σ 2 )
where Ω is the support space of pixels p (e.g., for 2D images Ω ⊂ Z 2 ) and N denotes the family of univariate Gaussian probability distribution functions (pdf). Henceforth, the corresponding image processing operators should be able to deal with Gaussian distributions-valued pixels. In particular, morphological operators for images f ∈ F (Ω, N ) involves that the space of Gaussian distributions N must be endowed of a partial ordering leading to a complete lattice structure. In practice, it means that given a set of Gaussian pdfs, we need to be able to dene a Gaussian pdf which corresponds to the inmum (inf) of the set and another one to the supremum (sup). Mathematical morphology is a nonlinear image processing methodology based on the computation of sup/inf-convolution lters (i.e., dilation/erosion operators) in local neighborhoods [START_REF] Soille | Morphological Image Analysis[END_REF]. Mathematical morphology is theoretically formulated in the framework of complete lattices and operators dened on them [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF][START_REF] Heijmans | Morphological image operators[END_REF].

We are inspired here by an information geometry viewpoint [START_REF] Amari | Methods of Information Geometry[END_REF], which is based on considering that the univariate Gaussian pdfs are points in a hyperbolic space [START_REF] Costa | Fisher information distance: a geometrical reading[END_REF][START_REF] Nielsen | Hyperbolic Voronoi diagrams made easy[END_REF]. For a deep avor on hyperbolic geometry see [START_REF] Cannon | Hyperbolic Geometry. Flavors of Geometry[END_REF]. There are several models representing the hyperbolic space.There exists an isometric mapping between any pair among these models and analytical transformations to convert from one to other are well known [START_REF] Cannon | Hyperbolic Geometry. Flavors of Geometry[END_REF][START_REF] Nielsen | Hyperbolic Voronoi diagrams made easy[END_REF]. In this paper, we focus on the simplest Poincaré half-plane model, H 2 , which is sucient for our practical purposes of manipulating Gaussian pdfs. In summary, from a theoretical viewpoint, the aim of this paper is to endow H 2 with partial orderings which lead to useful invariance properties in order to formulate appropriate morphological operators for images f : Ω → H 2 . This paper is a summary of a more developed study available in [START_REF] Angulo | Morphological processing of univariate Gaussian distribution-valued images based on Poincaré upper-half plane representation[END_REF].

2 Geometry of Poincaré upper-half plane H 2 In complex analysis, the upper-half plane is the set of complex numbers with positive imaginary part:

H 2 = {z = x + iy ∈ C | y > 0}.
We use also the notation x = ℜ(z) and y = ℑ(z). The boundary of upper-half plane is the real axis together with the innity.

Riemannian metric and distance. In hyperbolic geometry, the Poincaré upper-half plane model (originated with Beltrami and also known as Lobachevskii space in Soviet scientic literature) is the space H 2 together with the Poincaré metric (g kl ) = diag

( 1 y 2 1 y 2
) such that the hyperbolic arc length is given by

ds 2 = dx 2 +dy 2 y 2 = |dz| 2 y 2 = y -1 dzy -1 dz * . The distance between two points z 1 = x 1 + iy 1 and z 2 = x 2 + iy 2 in ( H 2 , ds 2 ) is the function dist H 2 (z 1 , z 2 ) = cosh -1 ( 1 + (x 1 -x 2 ) 2 + (y 1 -y 2 ) 2 2y 1 y 2 ) (1) 
Distance ( 1) is derived from the logarithm of the cross-ratio between these two points and the points at the innity. From the latter formulation is easy to check that for two points with

x 1 = x 2 the distance is dist H 2 (z 1 , z 2 ) = log ( y1 y2 
) .

Geodesics. The geodesics of H 2 are the vertical lines, V L(a) = {z ∈ H 2 | ℜ(z) = a}, and the semi-circles in H 2 which meet the horizontal axis

ℜ(z) = 0 orthogonally, SC r (a) = {z ∈ H 2 | |z -z ′ | = r; ℜ(z ′ ) = a and ℑ(z ′ ) = 0}.
In particular, given any pair z 1 , z 2 ∈ H 2 , there is a unique geodesic connecting them, or in other terms, given these two points with x 1 ̸ = x 2 there exists a unique semi-circle of center c = (a, 0), radius r, and being orthogonal to x-axis, i.e., (z 1 , z 2 ) → SC r1⌢2 (a 1⌢2 ) where

a 1⌢2 = x 2 2 -x 2 1 + y 2 2 -y 2 1 2(x 2 -x 1 ) ; r 1⌢2 = √ (x 1 -a 1⌢2 ) 2 + y 2 1 = √ (x 2 -a 1⌢2 ) 2 + y 2 2 .
(

) 2 
More precisely, the unique geodesic parameterized by the length, t → γ(z 1 , z 2 ; t), γ : [0, 1] → H 2 joining two points z 1 = x 1 + iy 1 and z 2 = x 2 + iy 2 such as γ(z 1 , z 2 ; 0) = z 1 and γ(z 1 , z 2 ; 1) = z 2 is given by

γ(z 1 , z 2 ; 0) = { x 1 + ie ξt+t0 if x 1 = x 2 [r tanh(ξt + t 0 ) + a] + i [ r cosh(ξt+t0) ] if x 1 ̸ = x 2 (3) 
with a and r given in (2) and where for x 1 = x 2 , t 0 = log(y 1 ), ξ = log y2 y1 and for

x 1 ̸ = x 2 : t 0 = cosh -1 ( r y1 ) = sinh -1 ( x1-a y1
)

, ξ = log

( y1 y2 r+ √ r 2 -y 2 2 r+ √ r 2 -y 2 1 )
.

Hyperbolic polar coordinates. 

{ x = sinh η cos ϕ cosh η-sinh η sin ϕ , η > 0 y = 1 cosh η-sinh η sin ϕ , -π 2 < ϕ < π 2 { η = dist H 2 (O H 2 , z) ϕ = arctan x 2 +y 2 -1 2x (4) 
We notice that the center of the geodesic passing trough (x, y) from O H 2 has Cartesian coordinates given by (tan ϕ, 0).

3 Endowing H 2 with partial ordering and its complete lattice structure

The notion of ordering invariance in the Poincaré upper-half plane was considered in the Soviet literature [START_REF] Guts | Mappings of families of oricycles in Lobachevsky space[END_REF][START_REF] Guts | Mappings of an ordered Lobachevsky space[END_REF]. Ordering invariance with respect to simple transitive subgroup T of the group of motions was studied, i.e., group T consists of transformations t of the form: z = x + iy → z ′ = (λx + α) + iλy, where λ > 0 and α are real numbers. We named T the Guts group. We introduce here partial orders in H 2 and study invariance properties to transformations of Guts group or to subgroups of SL(2, R) (Möbius transformations).

Upper half-plane polar ordering. Let us introduce a total ordering in H based on hyperbolic polar coordinates, which takes into account an ordering relationship with respect to O H 2 . Given a pair of points ∀z 1 , z 2 ∈ H, the upper half-plane polar ordering states

z 1 ≤ pol H 2 z 2 ⇔ { η 1 < η 2 or η 1 = η 2 and tan ϕ 1 ≤ tan ϕ 2 (5) 
The polar inmum (z 1 ∧ pol H 2 z 2 ) and supremum (z 1 ∨ pol H 2 z 2 ) are naturally dened from the order (5); and are naturally extended for any subset of points Z = {z k } 1≤k≤K , denoted by

∧ pol H 2 Z and ∨ pol H 2 Z. Total order ≤ pol
H 2 leads to a complete lattice, bounded from the bottom (i.e., the origin O H 2 ) but not from the top. Furthermore, as ≤ pol H 2 is a total ordering, the supremum and the inmum will be either z 1 or z 2 .

Polar total order is invariant to any Möbius transformation M g which preserves the distance to the origin (isometry group) and more generally to isotone maps in distance, i.e., η(z 1 ) ≤ η(z 2 ) ⇔ η(M g (z 1 )) ≤ η(M g (z 2 )) but which also preserves the orientation order, i.e., order on the polar angle. This is for instance the case of orientation group SO(2) and the scaling maps z → M g (z) = λz,

0 < λ ∈ R.
Upper half-plane geodesic ordering. As discussed above, there is a unique hyperbolic geodesic joining any pair of points. Given two points z 1 , z 2 ∈ H 2 such that x 1 ̸ = x 2 , let SC r1⌢2 (a 1⌢2 ) be the semi-circle dening their geodesic, where the center a 1⌢2 and the radius r 1⌢2 are given by Eqs. [START_REF] Cammarota | Travelling Randomly on the Poincaré Half-Plane with a Pythagorean Compass[END_REF]. Let denote by z 1⌢2 the point of SC r1⌢2 (a 1⌢2 ) having maximal imaginary part, i.e., its imaginary part is equal to the radius:

z 1⌢2 = a 1⌢2 + ir 1⌢2 .
The upper half-plane geodesic ordering ≼ geo H 2 denes an order for points being in the same half of their geodesic semi-circle as follows,

z 1 ≼ geo H 2 z 2 ⇔ { a 1⌢2 ≤ x 1 < x 2 or x 2 < x 1 ≤ a 1⌢2 (6) 
Property of transitivity of this partial ordering, i.e.,

z 1 ≼ geo H 2 z 2 , z 2 ≼ geo H 2 z 3 → z 1 ≼ geo H 2 z 3 ,
holds for points belonging to the same geodesic. For two points in a geodesic vertical line,

x 1 = x 2 , we have z 1 ≼ geo H 2 z 2 ⇔ y 2 ≤ y 1 .
According to this partial ordering, we dene the geodesic inmum, denoted by geo H 2 , as the point on the geodesic joining z 1 and z 2 with maximal imaginary part, i.e., for any z 1 , z 2 ∈ H 2 , with x 1 ̸ = x 2 , we have

z 1 geo H 2 z 2 ⇔    (x 1 ∨ x 2 ) + i(y 1 ∨ y 2 ) if x 1 , x 2 ≤ a 1⌢2 (x 1 ∧ x 2 ) + i(y 1 ∨ y 2 ) if x 1 , x 2 ≥ a 1⌢2 z 1⌢2 otherwise (7) If x 1 = x 2 , we have that z 1 geo H 2 z 2 = x 1 + i(y 1 ∨ y 2 ). In any case, we have that dist H 2 (z 1 , z 2 ) = dist H 2 (z 1 , z 1 geo H 2 z 2 )+ dist H 2 (z 1 geo H 2 z 2 , z 2 ).
Intuitively, we notice that the geodesic inmum is the point of the geodesic farthest from the real line.

We observe that if one attempts to dene the geodesic supremum from the partial ordering ≼ geo H 2 , it results that the supremum is not dened for any pair of points, i.e., supremum between z 1 and z 2 is dened only if and only if both points are in the same half of its semi-circle. To tackle this limitation, we propose to dene the geodesic supremum z 1 geo H 2 z 2 by duality with respect to the following involution in H 2 :

z → z = -x + iy -1 .
(8) Hence, we have the geodesic supremum given by 

z 1 geo H 2 z 2 = ( z 1 geo H 2 z 2 ) (9) 
(µ = x k , σ 2 = y 2 k ); in green, inmum Gaussian pdf N inf (µ = x inf , σ 2 = y 2 inf ); in red, supremum Gaussian pdf N inf (µ = x inf , σ 2 = y 2 inf ). (d)
Cumulative distribution functions of Gaussian pdfs from (c).

Nevertheless, in order to have a structure of complete lattice for (H 2 , ≼ geo

H 2 ),
it is required that the inmum and the supremum of any set of points Z = {z k } 1≤k≤K with K > 2, are well dened. Namely, according to [START_REF] Guts | Mappings of families of oricycles in Lobachevsky space[END_REF], the geodesic inmum of Z, denoted ∧ geo H 2 Z, corresponds to the point z inf with maximal imaginary part on all possible geodesics joining any pair of points z n , z m ∈ Z. In geometric terms, that means that between all these geodesics, there exists one which gives z inf . Instead of computing all the geodesics, we propose to dene the inmum ∧ geo H 2 Z as the point z inf = a inf + ir inf , where a inf is the center of the smallest semi-circle in H 2 of radius r inf which encloses all the points in the set Z. We have the following property

∧ geo H 2 Z = z inf ≼ geo H 2 z k , 1 ≤ k ≤ K,
which geometrically means that the geodesic connecting z inf to any point z k of Z lies always in one of the half part of the semi-circle dened by z inf and z k .

In practice, the minimal enclosing semi-circle dening z inf can be easily computed by means of the following algorithm based on the minimum enclosing Euclidean circle M EC of a set of points: (1) Working on R 2 , dene a set of points given, on the one hand, by Z and, on the other hand, by Z * which corresponds to the reected points with respect to x-axis (complex conjugate), i.e., points Z = (x k , y k ) and points

Z * = (x k , -y k ), 1 ≤ k ≤ K; (2) Compute the M EC(Z ∪ Z * ) → C r (c)
, in such a way that, by symmetric point conguration, we necessarily have the center on the x-axis, i.e., c = (x c , 0); (3) The inmum As for the case of two points, the geodesic supremum of Z is dened by duality with respect to involution (8), i.e., [START_REF] Nielsen | Hyperbolic Voronoi diagrams made easy[END_REF] with a sup = -x dual c and r sup = 1/r dual , where SC r dual (x dual c ) is the minimal enclosing semi-circle from dual set of points Z. According to this formulation by duality we have that, for any Z ⊂ H 2 , z inf ≼ geo H 2 z sup , which is a consequence of the fact z sup lies inside the semi-circle dened by z inf . An example of computing the geodesic supremum z sup is also given in Fig. 1(a)-(b).

∧ geo H 2 Z = z inf is given by z inf = x c + ir.
z sup = geo ∨ H 2 Z = ( geo ∧ H 2 Z ) = a sup + ir sup ,
It is easy to see that geodesic inmum and supremum have the following properties:

(i) ℑ(z inf ) ≥ ℑ(z k ) and ℑ(z sup ) ≤ ℑ(z k ), ∀z k ∈ Z; (ii) ∨ 1≤k≤K ℜ(z k ) < ℜ(z inf ), ℜ(z sup ) < ∧ 1≤k≤K ℜ(z k ).
The proofs are straightforward from the notion of minimal enclosing semi-circle. An interpretation of the geodesic inmum and supremum for a set of Gaussian pdfs is also given in Fig. 1.

Geodesic inmum and supremum being dened by minimal enclosing semicircles, their invariance properties are related to homothetic transformations as well as translation on x-axis. That corresponds just to the Guts group of transformations.

Upper half-plane asymmetric geodesic inmum/supremum. According to the properties of geodesic inmum z inf and supremum z sup discussed above, we note that their real parts ℜ(z inf ) and ℜ(z sup ) belong to the interval bounded by the real parts of points of set Z. Moreover, ℜ(z inf ) and ℜ(z sup ) are not ordered between them. Therefore, the real part of supremum can be smaller than that of the inmum. For instance, in the extreme case

Z = {z k } 1≤k≤K , if y k = y, 1 ≤ k ≤ K, we have ℜ(z inf ) = ℜ(z sup ) = 1/K ∑ K k=1 x k .
From the viewpoint of morphological image ltering, it can be potentially interesting to impose an asymmetric behavior for the inmum and supremum such that

ℜ(z -→+ inf ) ≤ z k ≤ ℜ(z -→+ sup ), 1 ≤ k ≤ K.
Note that the proposed notation -→ + indicates a partially ordered set on x-axis. In order to full these requirements, we can geometrically consider the rectangle bounding the minimal enclosing semi-circle, which is just of dimensions 2r inf × r inf , and use it to dene the asymmetric inmum z -→+ inf as the upper-left corner of the rectangle. The asymmetric supremum z -→+ sup is similarly dened from the bounding rectangle of the dual minimal enclosing semi-circle. Mathematically, we have:

{ z -→+ inf = ∨ -→+ H 2 Z = (a inf -r inf ) + ir inf ; z -→+ sup = ∧ -→+ H 2 Z = -(x dual c -r dual ) + i 1 r dual . ( 11 
)
4 Morphological operators on F (Ω, H 2 ) for processing univariate Gaussian distribution-valued images

If (H 2 , ≤) is a complete lattice, the set of images F(Ω, H 2 ) is also a complete lattice dened as follows: for all f, g ∈ F(Ω, H 2 ), (i

) f ≤ g ⇔ f (p) ≤ g(p), ∀p ∈ Ω; (ii) (f ∧ g)(p) = f (p) ∧ g(p), ∀p ∈ Ω; (iii) (f ∨ g)(p) = f (p) ∨ g(p)
, ∀p ∈ Ω , where ∧ and ∨ are the inmum and supremum in H 2 . One can now dene the following adjoint pair of at erosion ε B (f ) and at dilation δ B (f ) of each pixel p of the image f [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF][START_REF] Heijmans | Morphological image operators[END_REF]:

ε B (f )(p) = ∧ q∈B(p)
f (p + q), and δ B (f

)(p) = ∨ q∈B(p) f (p -q), ( 12 
)
where the set B is called the structuring element, which denes the set of points in Ω when it is centered at point p, denoted B(p) [START_REF] Soille | Morphological Image Analysis[END_REF]. These operators, which are translation invariant, can be seen as constant-weight (this the reason why they are called at) inf/sup-convolutions, where the structuring element B works as a moving window. The above erosion (resp. dilation) moves object edges within image in such a way that expands image structures with values in H 2 close to the bottom element (resp. close to the top) of the lattice F(Ω, H 2 ) and shrinks object with values close to the top element (resp. close to the bottom).

Given the adjoint image operators (ε B , δ B ), the opening and closing by adjunction of image f , according to structuring element B, are dened as the product operators [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF][START_REF] Heijmans | Morphological image operators[END_REF]:

γ B (f ) = δ B (ε B (f )) , and φ B (f ) = ε B (δ B (f )) . ( 13 
)
Openings and closings are referred to as morphological lters, which remove objects of image f that do not comply with a criterion related, on the one hand, to the invariance of the object support to the structuring element B and, on the other hand, to the values of the object on H 2 which are far from (in the case of the opening) or near to (in the case of the closing) to the bottom element of H 2 according to the given partial ordering ≤. Once the pairs of dual operators (ε B , δ B ) and (γ B , φ B ) are dened, the other morphological lters and transformation can be naturally dened [START_REF] Soille | Morphological Image Analysis[END_REF] for images in F(Ω, H 2 ). We limit here the the illustrative examples with the basic ones.

Example. Fig. 2 illustrates an example of image enhancement from a very noisy image g(p). The noise is related to an acquisition at the limit of exposure time/spatial resolution. We consider an image model f (p) = f x (p) + if y (p), where f x (p) = g(x) and f y (p) is the standard deviation of intensities in a patch of radius equal to 4 pixels centered a p. Results obtained from a closing φ B (f )(p) using the polar ordering-based lattice, the geodesic lattice (H 2 , geo H 2 ) and the asymmetric geodesic lattice (H 2 ,

∧ -→+ H 2 , ∨ -→+ H 2
) are compared, where the structuring element B is a square of 5 × 5 pixels. In order to be able to compare them with a non morphological operator, it is also given the result of ltering by computing the minimax center [START_REF] Arnaudon | On approximating the Riemannian 1-center[END_REF] in H 2 in a square of 5 × 5 pixels. 

Fig. 1 .

 1 Fig. 1. (a) Set of nine points in H 2 , Z = {z k } 1≤k≤9 . (b) Computation of inmum ∧ geo H 2 Z = z inf (blue ×) and supremum ∨ geo H 2 Z = zsup (red ×). Black * are the original points and green * the corresponding dual ones. (c) In black, set of Gaussian pdfs associated to Z, i.e., N k(µ = x k , σ 2 = y 2 k ); in green, inmum Gaussian pdf N inf (µ = x inf , σ 2 = y 2 inf ); in red, supremum Gaussian pdf N inf (µ = x inf , σ 2 = y 2 inf ). (d)
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 1 a)-(b) gives an example of computation of the geodesic inmum from a set of points in H 2 .

5 ( 2 )Fig. 2 .

 522 Fig. 2. Morphological processing of Gaussian distribution-valued noisy image: (a) Original image f ∈ F (Ω, H 2 ), showing both the real (top row) and the imaginary (bottom row) components; (b) ltered image by computing the minimax center in a square of 5 × 5 pixels; (c) morphological closing working on the polar ordering-based lattice; (d) morphological closing working on the geodesic lattice; (e) morphological closing on the asymmetric geodesic framework. In the three cases the structuring element B is also a square of 5 × 5 pixels.

  The position of point z = x + iy in H 2 can be given either in terms of Cartesian coordinates (x, y) or by means of polar hyperbolic coordinates (η, ϕ), where η represents the distance of the point from the origin O H

2 = (0, 1) and ϕ represents the slope of the tangent in O H 2 to the geodesic (i.e., semi-circle) joining the point (x, y) with the origin. The formulas which relate the hyperbolic coordinates (η, ϕ) to the Cartesian ones (x, y) are

[START_REF] Cammarota | Travelling Randomly on the Poincaré Half-Plane with a Pythagorean Compass[END_REF]