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ABSTRACT

In this paper, a probability density function of object contours
based on the stochastic watershed transform is carried out.
The watershed transform produces an over-segmentation of
the image due to noise, illumination problems, low contrast,
etc., because each regional minimum of the image gives place
to a region in the output image. To solve this problem, the ef-
forts are focused on the definition of markers to impose new
minima in the image, and enhancing the gradient image. The
stochastic watershed performs a probability density function
(pdf) of the object contours based on a MonteCarlo simula-
tion of random markers. A variation on the method for defin-
ing this pdf based on regional regularization of the image is
carried out. The objective is to obtain a pdf of the object con-
tours with less noise and better contrast than that produced by
the stochastic watershed to use it as a new gradient image for
segmentation purposes.

Index Terms— mathematical morphology, segmentation,
stochastic watershed, probability density function

1. INTRODUCTION

The watershed transform is an image segmentation technique
based on mathematical morphology with application in multi-
ple situations [1]. This technique interprets the grayscale im-
age as a topographic surface where the pixel intensity is equal
to the altitude, Fig. 1. Each regional minimum of this sur-
face represents a catchment basin, and the idea of the water-
shed transformation is to flood the surface from these basins.
To prevent the merging of two different basins the watershed
lines or watersheds are built. These watersheds lines will
conform the result of the watershed transform. The standard
framework of watershed transform is based on the flooding al-
gorithm, but there are other alternative frameworks: based on
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Fig. 1. Image represented as topographic surface: (a) original
image; (b) gradient image; (c) representation as topographic
surface of gradient image.

a continuous formulation using topographic distance [2]; the
topological watershed based on discrete geometry tools [3];
the graph-based watershed using minimum spanning-tree al-
gorithms [4]; the power watershed algorithm [5]; the viscous
watershed [6]; etc.

A segmentation based on the watershed transform is suc-
cessfully achieved if the minima of the image are located in-
side of the objects of interest and the edges of these objects
are the maxima of the image. For this reason, the gradient
image is usually used as input of this transform. The over-
segmentation is produced by the great number of minima that
appear in the gradient image. The reduction of these minima
is the objective of several solutions to improve the watershed
transform. One approach is the marker-watershed transform
where the minima are imposed by a set of markers introduced
artificially in the image gradient [7]. The automatic defini-
tion of these markers is not an easy task in some cases but
manual markers are user-dependent and the robustness of the
watershed transform is limited. The hierarchical watershed
paradigms and the waterfall algorithm are based on the strat-
egy of region fusion and the relative weights of the watershed
lines that separate the initial basins [8]. Other solutions try to
achieve an equivalent image of the object edges that reduces
the minima inside of the objects and enhances the bound-
aries. This is the case of the stochastic watershed [9]. Original



stochastic watershed is based on Monte Carlo simulations. It
was shown in [10] that the corresponding probability density
function of contours obtained by stochastic watershed can be
calculated using graph algorithms; this latter approach is out
of the scope of the paper. More recently, other variants of
stochastic watershed has been also proposed [11].

The objective of this paper is to obtain a probability den-
sity function of the object edges in a similar way of the origi-
nal stochastic watershed but taking into account some ideas of
the hierarchical and waterfall paradigms in order to achieve an
equivalent gradient image less noisy where the regional min-
ima are considerable reduced in comparison to the stochastic
watershed or the morphological gradient image. This image
will be the input of the watershed algorithm or other variation
as the marker-controlled watershed.

The paper is divided as follows. In Section 2, some tools
used in this work, the methodology and the mathematical for-
mulation of our approach is explained. Results of several ex-
periments that demonstrate the advantages of this method are
presented in Section 3. Finally, in Section 4 the main conclu-
sions are discussed.

2. METHOD

2.1. Tools

Let I be an image defined as the mapping

I(x) : E→ T , (1)

where x ∈ E is the pixel position in the support space of
pixels E, e.g., for 2D images E ⊂ N2. In the case of discrete
images, T = {tmin, tmin + 1, ..., tmax} represents the pixel
intensity.

The main operators define in mathematical morphology
are the dilation (δ) and the erosion (ε) and the combination of
them produces the opening (γ) and the closing (ϕ), the two
basic filters in mathematical morphology [12]. The morpho-
logical gradient is defined as ρ(I) = δ(I) − ε(I). Typically,
it is the input image of the watershed algorithm and its vari-
ations. With the marker-controlled watershed the minima are
imposed by a set of seeds that mark the objects of interest and
the background, so the output regions can be controlled ac-
cording the number of makers defined. The marker-controlled
watershed transform is defined as Eq. 2:

WS(ρ(I))m(x) = WS(Rε(ρ(I)∧m(x))(m(x))), (2)

where m(x) is a set of markers:

m(x) =

{
0, if x belongs to a marker,
255, otherwise,

(3)

and Rε(ρ∧m(x))(m(x)) is a reconstruction by erosion that im-
poses the minima of the gradient image, ρ(I), to the pixels set

to zero in m(x). Thus, the output regions are limited to the
number of connected components of marker image m(x).

In marker-controlled watershed, marker definition is es-
sential to achieve an accurate segmentation. The stochastic
watershed uses a different strategy due to the random defini-
tion of the markers. This variation is based on an interactive
process whose objective is obtain a probability density func-
tion of the object contours.The stochastic watershed trans-
form is based on applying M times the marker-controlled
watershed with N markers (mi(x)) that change randomly in
each iteration. Using this approach a probability density func-
tion can be computed with the Parzen method [13] as Eq. 4.

pdf(x) =
1

M

M∑
i=0

WSi(x) ∗ G(x; s), (4)

where WSi(x) = WS(ρ(I))mi(x) and G(x; s) represents
typically a Gaussian kernel of variance s2 (in our case, s = 3)
and mean m̄ (m̄ = 0), that is defined as:

G(x; s) =
1

2πs2
e−(

‖x‖2

2s2
). (5)

Fig. 2 shows some images that produce the algorithm.
Fig. 2a and 2b are a synthetic image and its respective gra-
dient. This image has internal low gradients that divided the
cube in four different regions. This situation tries to simulate
when the illumination or contrast is not uniform in an image.
Fig. 2c and 2d show two outputs of the marker-controlled wa-
tershed with two different set of markers created randomly. In
these output images the watershed lines has the same weight
and low gradients are enhanced. Fig. 2e is the average of
the 30 output images (the watershed lines) of the marker-
controlled watersheds carried out following Eq. 4 to obtain
the pdf of object contours. In this image, the low gradients
that separate the square in four regions are high contrasted
while artificial edges that are created in each iteration are re-
duced by the stochastic procedure. Fig. 2f is the average of
Fig. 2b and 2e proposed in [9] ant it is observable that lo-
cal gradients intensity are not taken into account and the final
segmentation may be worse that in the case of the gradient
image is directly used.

2.2. Regional graylevel-based model

Stochastic watershed enhances low gradients in the image that
can be produced by problems as not uniform illumination or
noise. This is justified since the pdf is directly extracted from
the gradient image, which contains information about all the
local changes in the intensity of the pixels. The stochastic
procedure fulfils to reduce irrelevant contours that the water-
shed itself introduces but it enhances significant contours and
also low gradients of the image, Fig. 2. For this reason, in
this paper a novel strategy in the way of obtaining the pdf of
object contours is presented. In this strategy, irrelevant edges
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Fig. 2. Stochastic watershed procedure (M=30, N=50): (a)
original image; (b) gradient image; (c) j-th output image
of the marker-controlled WS; (d) i-th output image of the
marker-controlled WS; (e) pdf of stochastic watershed; (f)
(pdf +gradient)/2.

are also filtered but in each iteration the watershed lines are
weighted according to the gradient of the associated region.

The output image of the watershed transform can be also
considered by a dual representation as an image partition
of the support space E into N connected classes Cn ⊂ E,
denoted Π(WS(ρ(f))) (Eq. 6), where each watershed line
which separates two regions (catchment basin) belongs to one
of them.

Π(WS(x)) = {Cn}1≤n≤N ;

with
⋃

1≤n≤N Cn = E and Cp ∩ Cq = ∅,∀p 6= q.
(6)

The stochastic procedure gives in each iteration an esti-
mation of the gradient image which only measures the local
energy of the object contours. In our approach and accord-
ing to the representation of Eq. 6, each output image of the
marker-controlled watershed transform can be represented as
an image partition Π, i.e.,

I(x) 7→ ρ(I(x)) 7→WS(x) 7→ Π(WS(x)). (7)

Each n-connected class Cn of the partition Π is then eval-
uated with the mean intensity of pixels belonging to this class
from the initial image I in order to construct a “mosaic im-
age”, denoted by p(x), and formally defined as

p(x) = {µCn(I) : x ∈ Cn}, (8)

where µCn(I) = 1/|Cn|
∑

y∈Cn I(y) is the average of pixel
values of image I in the connected class Cn, Fig. 3b. The
morphological gradient of this mean-based simplified model

(a) (b)

(c) (d)

Fig. 3. Regional graylevel-based model applied in image of
Fig.1 (M=30, N=50): (a) pdf proposed in [9]; (b) i-th mosaic
image, pi(x); (c) Ei(x); (d) p̃df(x).

of the image can be interpreted as a regional edgeness energy
term, Eq. 9 (Fig. 3c).

E(x) = ρ(p(x)) (9)

This regional edgeness energy term is introduced in each
of the M realizations of the stochastic watershed. That is, by
integrating the gradient of the mean-based simplified model
of each realization instead of directly the watershed lines, Eq.
10. The objective is to obtain a new probabilistic density func-
tion of object contours taking into account local properties of
the image, Fig. 3d.

p̃df(x) =
1

M

M∑
i=0

Ei(x) ∗ G(x; s). (10)

3. RESULTS

Several experiments demonstrate the benefits of the proposed
method in comparison with other approaches. The effect of
the two parameters (M , N ) of the stochastic watershed have
been analysed to obtain the number of minima that different
methods produced in the pdf of object contours. Fig. 4 shows
the image and the gradient used in the next experiments. In
this gradient image, the number of regional minima was cal-
culated (the number of output regions of the watershed trans-
form). After, theN parameter was fixed (N = 50) and theM
parameter was changed between five and one hundred with a
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Fig. 4. (a) original image; (b) gradient image; (c) Number
of minima that different methods produce according M,N
parameters.

step of five. In each value of M , the stochastic watershed was
applied five times independently in the gradient image and
five pdf of object contours were obtained. Then, The number
of minima of each pdf was calculated and the average in each
value of M was obtained. This procedure tries to mitigate the
random procedure of the whole algorithm. The same steps
were carried out with our approach. In other experiment, the
same protocol was applied but the M parameter was fixed
(M = 30) and the N parameter was changed applying the
stochastic watershed and our approach. Fig. 4c summarizes
these results, representing the number of minima that our ap-
proach and the stochastic watershed produces in relation to
the variation of the parameter M (fixing N ) and N (fixing
M ) independently.

4. CONCLUSIONS

In this paper some of the problems of the watershed trans-
form have been analysed. The problem associated with the
number of regional minimum (since each one represents a re-
gion in the output image) is the most important to obtain an
accurate segmentation with this procedure. This great number

(a) (b) (c)

Fig. 5. (a) image used in [11]; (b) pdf extracted from [11];
(c) pdf of our approach.

of minima is associated with a process of noise, low contrast
or non-uniform illumination often introduced at the stage of
image capture and it is hardly predictable. To solve this prob-
lem, different approaches try to reduce the number of regional
minima merging regions or imposing artificial minima in the
image. Other approaches seek to improve the image gradient
to do it less noisy and/or better enhanced to get a lower num-
ber of minima. The stochastic watershed transform creates
a probability density function of the object contours based
on an iterative process and in the creation of random mark-
ers. This process allows to filter the artificial edges that can
generate the watershed process itself and generally reduces
the number of regions in comparison to the gradient image
(Fig.4c) but low gradients sometimes caused by illumination,
contrast or noise are enhanced (Fig. 2). To mitigate this prob-
lem, some variations in the process of obtaining the pdf of the
object contours are proposed in this paper. With this approxi-
mation, the number of regional minimum decreases respect to
the stochastic watershed (Fig. 4c), since the noise of the pdf
is lower than in the original stochastic watershed.

The effects of the parameters M, N in our approach are
analysed in Fig. 4c. The M parameter can increase, but there
is a value where the p̃df is stable and if the M value increases
results are similar and computational cost increases. The N
parameter has a direct relationship with the number of minima
detected in each iteration and the p̃df , so the higher value of
N, the higher number of regions/minima there is in the p̃df .

In [11] an improvement of the stochastic watershed based
on stratified random markers and noise addition is presented.
Fig. 5 shows the pdf of our approach and the result presented
in [11]. Our approach is less noisy and some objects are better
detected than [11]. In all cases under study, the way in which
the random markers are generated can be decisive for the fi-
nal result. In our work, the worst case was taken into account
where such markers were generated uniformly and randomly
throughout the image in comparison to [11]. In addition, if
a priori information was considered the improvement of our
approximation can be more significantly than when markers
are randomly generated. This would be case of medical im-
ages, where much information can be known a priori (organ
position, intensity of organs under study, etc.).
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