Doppler Spectrum Segmentation of Radar Sea Clutter by Mean-Shift and Information Geometry Metric

Doppler that is observed varies from 0 to 5 m/s and peaks at more than 10 m/s induced by breaking waves. The coastal circulation has local characteristics and is very variable depending on weather conditions. Close to the shore, we have to take into account drift currents. The permanent and seasonal components constitute the so-called general currents. These are generally low. The wind generates the drive current drift of the surface layers, which is transmitted by viscosity to the deeper layers. According to the theory, for a wind that had blown in the same direction for several days at any point of a body of water and indefinite water depth (over 200 m), the surface drift current is directed at 45 ° of the wind direction. The decrease of these parameters (duration, extent, depth) has the effect of reducing the deviation. So, near the coast and variable wind, the surface drift current is substantially oriented in the direction of the wind.

The coast is an obstacle for the drift current, causing an accumulation or conversely a water withdrawal, according to the relative orientation of the wind and of the coastline. Tidal currents are often distinguished by their very high speed. They can indeed be greater than 10 knots (5 m/s). Usually the directions of the tide vary very quickly. The variation of the current amplitude with the amplitude of the wave is not equal if the tide behaves like a wave, a standing wave or an hydraulic phenomenon of filling/emptying a basin. In figure 1, we give the surface currents in knots from the SHOM close to Ouessant Island. Variations can therefore be seen from 0 to 4 m/s. As consequence, Doppler mean is not zero and varies along the range axis, induced by means of Doppler surface current (which may vary depending on the distance to the coast and wind exposure). These variations may be important and equal to several meters per second (tidal current and the case of variable wind exposure in the presence of island or local phenomena depending on the water depth). The spectral width of the sea clutter may also vary along the distance axis based on the variable swell after exposure to wind. Simulation of coherent radar sea clutter has been described in [START_REF] Watts | Modelling of coherent detectors in sea clutter[END_REF][START_REF] Watts | Modeling and simulation of coherent sea clutter[END_REF][START_REF] Watts | A new method for the simulation of coherent radar sea clutter[END_REF][START_REF] Corretja | Sea-spike analysis in high range and Doppler resolution radar data[END_REF]. For the Ground Clutter of the Shore, the Doppler spectrum width could vary with vegetation and wind exposure.

We illustrate in the figure 3, Doppler variations of clutter in littoral environment. Both methods will estimate the covariance matrix that will optimize the whitening for all cells of the learning window. If the Doppler mean or spectrum width varies in range along radar cells of the learning window, the estimated spectrum will be widened and will be no longer representative of the local spectrum. As first approach to mitigate this drawback, we propose to compute "Median" Doppler spectrum as L1 geometric barycenter. The covariance matrix will be estimated to minimize the sum of geodesic distance to each covariance matrix of learning window radar cells. This robust approach will interpolate a Doppler spectrum as illustrated in the 2 cases of Doppler variations in the figure 5.

In the figure 6, we illustrate the good property of geodesic median L1-barycenter method to estimate Doppler Spectrum in case of non-stationary for clutter Doppler mean. As illustrated in the figure 6, as "Fixed Point" and Multisegment Burg algorithms take into account all neighbor cases with the same weights, the resulting spectrum is artificially widened. On the contrary, the median-based estimator only depends on the considered Riemannian geometry in the space of covariance matrices, and is able to "interpolate" Doppler spectrum to provide a good estimator of "centrality".

For the robust metric and distance requested to define geodesic median L1-barycenter, we propose to use Fisher metric. As the signal is assumed to be stationary in each burst of radar cells, we can apply the Trench theorem proving that THPD (Toeplitz Hermitian Positive Definite) Covariance matrix could be parameterized by Complex Auto-Regressive (CAR) model. All THPD matrices are diffeomorphic to (P 0 , μ 1 ,…, μ n )∈R + xD n (P 0 is a real "scale" parameter, μ k are called reflection/Verblunsky coefficients of CAR model in D the complex unit Poincare disk, and are "shape" parameters). This Trench theorem is based on the Block Structure of THPD matrices given by:
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This block structure also provides iteratively André-Louis Cholesky decomposition of 1 n R :
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In the framework of Information Geometry, we can consider this covariance matrix as a parameter for a probability density of a multivariate random process of zero mean p(./θ). The fisher metric I(θ) defines a Riemannian metric in the space of parameters:
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We can then define a metric in dual space of
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For Multivariate Gaussian Process of zero mean, Entropy is ( )
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If we use the canonical vector of parameters:
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The dual metric of Information Geometry is finally given by:

( ) - = - - + = = 1 1 2 2 2 0 0 , * ) ( ) ( 2 1 ) ( . n i i i j i n j n i dual ij dual d i n P P d n d d g ds μ μ θ θ (12)
The robust "Information Geometry" distance can be computed by integration in product space R + xD n :
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The L p -barycenter on M cells is given by [START_REF] Yang | Medians of probability measures in Riemannian manifolds and applications to radar target detection[END_REF][START_REF] Decurninge | Robust Burg Estimation of Radar Scatter Matrix for Mixtures of Gaussian Stationary Autoregressive Vectors[END_REF][START_REF] Arnaudon | Riemannian medians and means with applications to radar signal processing[END_REF][START_REF] Barbaresco | Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains[END_REF]:
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B. Kernel Density Estimation of Doppler Spectrum Statistics

In this section, we introduce a kernel density estimation on the elements of the product (P 0 , μ 1 ,…, μ n )∈R + xD n , to estimate density for Doppler Spectrum.

The specificity of the hyperbolic space enables to adapt the different density estimation methods at a reasonable cost. Recently convergence rates for the kernel density estimation without the compact assumption have been introduced, which enables the use of Gaussian-type kernels.
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Given n ref H p ∈ , μ k the empirical measure and "*" the natural convolution on homogeneous spaces [START_REF] Helgason | Geometric Analysis on Symmetric Spaces[END_REF], let:
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One still needs to obtain an explicit expression of p θ . Given a reference point p, the point of polar coordinates (r, ) of the hyperbolic space n H is defined as the point at distance r of p on the geodesic with initial direction [START_REF] Aubry | Median matrices and their application to radar training data selection[END_REF] The polar coordinates are a polar expression of the exponential map at p. In an adapted orthonormal basis of the tangent plane the metric takes the following form: [START_REF] Watts | Modelling of coherent detectors in sea clutter[END_REF] where G is the matrix of the metric and 1 n I is the identity matrix of size n 1. The volume volume dvol is given by: IV. RESULTS OF MEAN-SHIFT ALGORITHMS ON REAL SEA CLUTTER DATA Figure 8 and 9 represent respectively the Doppler spectrum of the radar signal on one burst and its associated reflection coefficients. Figure 10, 11 and 12 show the results obtained after running the Mean-Shift algorithm on the product space RxD 4 using different kernel shapes -uniform, quartic and Gaussian. The number of samples is 270 along the direction of the radar burst (range axis). It can be seen that the samples tend to converge towards limit points, which represent maxima of the probability density function. There doesn't seem to be a significant difference coming from the choice of the kernel shape according to the plots obtained.
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We can define clusters by specifying a distance threshold to group close points together. The reader must bear in mind that we are reasoning in a product space so this threshold cannot be directly read from the plots.

One solution is to use the convergence criterion used in the Mean-Shift algorithm (in our case 10 -4 ). Then for each point in the product space, calculate its distance to the other points and test whether this distance is lesser than 10 -4 . This way, we can define clusters as sets of points which are less than 10 -4 distant from each other. It is interesting to note that there are less nonconvergent point when using the uniform mean-shift (about 2 points) than with the two other kernels (10 to 20 points). V. CONCLUSION

We will deepen this non-supervised segmentation method to reduce the number of clusters by using "persistence" approach. This method will be mixed with robust detection algorithm as in [START_REF] Decurninge | Robust Burg Estimation of Radar Scatter Matrix for Mixtures of Gaussian Stationary Autoregressive Vectors[END_REF]. Approach will be also extended for STAP [START_REF] Jeuris | The Kähler mean of block-Toeplitz matrices with Toeplitz structured blocks[END_REF].
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 1 Figure 1. Maximum current in knots in French Brittany close to the Shore IFREMER has developed the accurate Mars model (coastal hydrodynamic model) as illustrated in the figure 2:

Figure 2 .

 2 Figure 2. Residual streams in m 2 /s (speed x water level) for different exposure to winds, illustrating the spatial variability of the current.

Figure 3 .

 3 Figure 3. (left) Recorded Doppler/Range Spectrum in coastal environment, (right) synthetic model of Doppler Mean/Width variations On real sea clutter recorded in the figure 4, we can observe evolution of Doppler/Range Spectrum for different Sea states 1, 3 and 5.
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 45 Figure 4. Recorded Doppler/Range Spectrum in coastal environment for different Sea states: 1 (left), 3 (middle), and 5 (right)

Figure 6 .

 6 Figure 6. Doppler Mean variation: (left) Estimation by classical methods, (right) Estimation by geodesic median L1-barycenter method

  the hyperbolic space of dimension n; H 2 =D), the exponential map p exp defines a new injective parametrization of n H . The Lebesgue measure of the tangent space is of the Riemannian measure with respect to the image of the Lebesgue measure of

  Given K and a scaling parameter , the estimator of f proposed by Pelletier[START_REF] Pelletier | Kernel density estimation on Riemannian manifolds[END_REF] is defined by:

  r = d(p, q). Finally, one obtains:
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 7 Figure 7. Estimation of the density for the 3 first reflexion coefficients

Figure 13 ,

 13 Figure13, 14 and 15 represent the clusters obtained along the range axis. Each color corresponds to one cluster. The x axis does not represent anything. We can see that there are a lot of clusters (35 to 138) with some singletons. It is extremely difficult to interpret these plots in terms of number and width of homogeneous zones due to the lack of smoothness of certain clusters. Next steps would be to investigate different shapes of kernels, using intrinsic smoothing methods such as persistence.
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 8 Figure 8. Doppler/Range Spectrum of Sea Clutter Data
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 9 Figure 9. Reflexion coefficients of Sea clutter
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 1112131415 Figure 11. Mean-Shift run with kernel based density estimation (quartic kernels) on the product space RxD 4
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