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Abstract. In this paper, we propose methods to extract texture features from
multispectral skin images. We first describe the acquisition protocol and correc-
tions we applied on multispectral skin images. In the framework of a cosmetology
application, a skin morphological texture evaluation is then proposed using either
multivariate approach on multispectral dataset or marginal on a dataset whose
dimensionality has been reduced by a multivariate analysis based on PCA.
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1 Introduction

Most common image texture features have been primarily designed for 2D or 3D scalar
images. Those features focus on variations in the spatial domain living up information
contained in spectral domain. However, in some classification studies [10,25] the defi-
nition of color or multispectral texture features led to better results than classical scalar
texture features. This study tackles the issue of multispectral texture extraction in the
context of skin description and classification.
In literature, three main approaches are used to obtain texture features from multi-
chromatic images [12,25]:

- In the parallel approach, texture and spectral data are considered separately. In
other words, spatial information is extracted on a greyscale version of initial im-
ages, whereas spectrum (or color) information is measured globally. This approach
is often used in image retrieval [24].

- Frequently used in material analysis [19,30], the sequential approach consists in
labeling the image spectra before extracting texture features. Usual scalar texture
algorithms are processed on the labeled imaged since each label value can be con-
sidered as a scalar. The major disadvantage of this method is its lack of repro-
ducibility induced by the preliminary step of image labeling.
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- The integrative approach regroups two alternatives for multivariate image texture
analysis. The first one is the marginal integrative approach. It proposes to com-
pute usual scalar texture features on each image component separately [10,27]. On
the contrary, the second alternative is called multivariate integrative approach
and relies on different algorithms allowing to extract texture features using all im-
age components simultaneously [1,15,16,26,25,31,34].

In this paper, we adopt the integrative approach since we intend to define multi-
spectral texture descriptors which are not content-dependent. In particular, we focus on
building up multispectral texture features corresponding to the multivariate integrative
approach, i.e. , texture features for which every single value is obtained using all avail-
able wavelengths of a given multispectral image.

The new multispectral texture descriptors are applied to a database of human skin
multispectral images acquired in-vivo within the context of a cosmetological study. Tex-
ture data are employed to analyze and predict the degradation of a foundation make-up.
In the next section, we briefly introduce the database acquisition protocol and the differ-
ent preprocessing steps applied to each image. Section 2 presents an original multivari-
ate analysis called Inverted and Permuted Principal Component Analysis (IP-PCA)[9],
used to reduce image dimensionality by projecting images components into consistent
orthogonal spaces of representation. All multispectral texture parameters proposed in
this paper are detailed in Sect. 4. Finally, in Sect. 5 we use data from the cosmetologi-
cal study to illustrate and assess the multispectral texture efficiency.

2 Multispectral image acquisition and preprocessing

2.1 Acquisition device

Our base of skin images was obtained using a multispectral camera called Asclepios
System. This camera designed by the Le2i Laboratory was originally dedicated to der-
matological issues [17,18,35]. Inside the Asclepios System, light emitted by a constant
light source passes through a wheel of 10 spectral filters and is guided to a hand-held
acquisition device directly placed on the volunteers skin. The device contains a grey-
level CCD camera synchronized to the filter wheel so that it acquires reflection images
whose illuminant only depends on single spectral filter of the wheel. Functional schema
of Fig. 1 gives an overview of the system different components.

Each multispectral acquisition is taken in about 2.5 s and is composed of 10 gray
level spectral images between 430 nm and 85 nm. A raw acquisition is illustrated in
Fig. 2. Spectral images are sized 1312×1082 pixels for approximately 35 mm×28 mm
surface of skin (2,67×10−2 mm par pixel). This definition has proved to be sufficient
to observe the impact of make-up on skin texture.
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Fig. 1. Functional schema of the Asclepios System.

Fig. 2. Example of skin image raw acquisition from Asclepios System.



4 Joris Corvo, Jesus Angulo, Josselin Breugnot, Sylvie Bordes, and Brigitte Closs

2.2 Cosmetology protocol for database generation

The study of foundation make up effect and degradation on multispectral images skin
was led on a panel of 30 volunteers. All of them applied the same amount of foundation
make up on their faces. Multispectral acquisitions were taken on their cheek. Only left
side of their faces was made up so that the other side could serve as normalization value.
In order to track in time the make-up degradation, 4 acquisitions series were realized on
each volunteer. The two firsts corresponding to the skin before and right after applica-
tion, whereas the two lasts were taken respectively 3 and 6 hours after application. An
example of image time series is given in Fig. 3. We note that for the purpose of visual-
ization, a RGB color rendering from the multispectral is used. This rendering is based
on pixel-wise linear regressions that associate RGB values to each pixel expressed in
the Asclepios spectral space. Those regressions are estimated using several Asclepios
multispectral acquisitions of a Macbeth colorchart.

(a) Before application (b) After application (c) 3 hours later (d) 6 hours later

Fig. 3. Color-rendering of Asclepios system acquisitions of the same volunteer on the left cheek
at four different times.

2.3 Image prepocessing

Images acquired through the Asclepios system suffer from various perturbations leading
to degraded images. In order to increase the quality of computed texture features, we
seek to improve collected data by correcting and standardizing the multispectral raw
images. A chain of four different preprocessing steps is applied to the data set in a
specific order.

First of all, image normalization is performed by subtracting from each spectral
image the average spectral image of the same wavelength. This results in eliminating
the illumination gradient and some constant artifacts, e.g., Fig. 4(b).

Then a Vector Median Filtering (VMF) [2] is implemented to filter out noise of
multispectral images without introducing artificial spectral values, e.g., Fig. 4(c).

In practice, we can observe small displacements between spectral images of the
same acquisition. Those might be caused by movements of experimenter hand, volun-
teer facial expression changes or vibrations of the filter wheel during the 2.5 s acqui-
sition. We compensate these shifts by computing a non-rigid registration vector field
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between all pairs of successive spectral images. Vector fields are then composed and
applied in a way that all spectral images are registered to the same reference spectral
image, e.g., Fig. 4(d).
The last preprocessing step is dedicated to deal with skin hairiness as it is not a com-
ponent we want to take into account for the foundation make-up study. We designed a
Digital Hair Removing (DHR) algorithm whose first part is to detect pixels belonging to
hairiness using a linear opening and a binary thresholding. Second part is an inpainting
method (Fast Marching inpainting method described in [6]) to fill in pixels classified as
hairiness with values from their neighborhoods, e.g., Fig. 4(e).

(a) Raw image sample (b) Normalization (c) Denoising

(d) Registration (e) Hair removing

Fig. 4. Color-rendering of a multispectral skin image after successive preprocessing steps.

3 Dimensionality reduction by IP-PCA

In our set of acquisitions, we noticed important redundancy level between spectral im-
ages which is a recurrent issue of multispectral imaging. Principal Component Analysis
(PCA) is classically used to reduce image dimensionality since this analysis method is
canonical [3,5,20,28,35] and was proved to be the most effective in the case of real ap-
plication datasets [33]. Given a multispectral image, PCA computes a reduced space of
representation composed of the image eigenvectors. It allows us to transform a 10 com-
ponents multispectral image into 4 eigenimages containing at least 95% of the original
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image variance.

However, PCA is only suitable for single group study, in our case, for a single multi-
spectral image. Applying PCA to each multispectral skin image separately will generate
several reduced spaces non homogeneous bases to one another because of possible in-
versions and permutations of eigenvectors and consequently, eigenimages which are
not consistent between different acquisitions. Thus, we practice Inverted and Permuted
Principal Component Analysis (IP-PCA) [9] to generate group-wise reduced spaces
corrected by means of inversions and permutations as shown in Fig. 5. The algorithm
detailed in [8,9], was proved to be useful on our dataset [8].

Now that redundancy is decreased, we can focus on extracting significant texture
parameters on resulting eigenimages.

Fig. 5. Spatial representation (for the first three coordinates) of the eigenvectors of rank {1,2,3}
for the entire images base in the case of PCA (left side) and IP-PCA (right side). Each base of 3
eigenvectors corresponds to one of the multispectral images.

4 Texture extraction from multispectral images

Starting from our multispectral dataset, the goal is to quantify the presence of founda-
tion make-up. This section explains the strategy of texture extraction directly on mul-
tispectral data (integrative approach). This objective can be driven following either a
marginal approach, i.e. , component by component, or a multivariate one using all com-
ponents simultaneously.
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4.1 Marginal approach from eigenimages

Marginal approach has the advantage of using classical grey level algorithms on each
image component. In our case, marginal texture features are extracted separately on the
4 first IP-PCA eigenimages, which are linear combinations of initial spectral images. In
this sense, even marginally computed texture data take all spectral images into account.
Thus, texture descriptors obtained that way can be qualified as multispectral texture
descriptors.
Several texture parameters are considered in order to enrich the skin surface analysis. In
the following definitions, we consider a multispectral image F(x) = { f1(x), . . . , fD(x)}
composed of D components defined for each pixel x.

- Statistical moments
Statistical moments until the 4th order (i,e., the mean, variance, asymmetry coeffi-
cient and kurtosis) are computed from the gray level distribution.

- Variogram
The geometric variogram function [22] is a morphological texture description de-
fined for a given angle θ and a distance h by :

γ f ,θ (h) =
1
2

Var ( f (x)− f (x+hθ )) , (1)

where x+hθ is the translated pixel from x at the amplitude h in the direction θ .
The variogram itself is not used as a texture parameter. Instead some characteristic
values measured on it, for instance, the range, the practical range, the slope [7]. In
practice, we studied 6 parameters from variograms in 2 directions θ ∈ {0◦,90◦}.

- Granulometry
A morphological granulometry is the study on an image size distribution [23,29].
Pattern spectrum (PS) is a granulometric curve obtained by measuring the differ-
ence between successive size growing morphological openings or closings. The
granulometric PS function (PS+) and the anti−granulometric PS function (PS−)
are just defined by the two following equations:

PS+( f ,n) =
m(γn( f ))−m(γn+1( f ))

m( f )
, (2)

and

PS−( f ,−n) =
m(ϕn( f ))−m(ϕn−1( f ))

m( f )
, (3)

where m is the Lebesgue integral of a gray level image, i.e., the sum of its pixels
value, γn( f ) is the morphological opening of f by the nth element of a size increas-
ing family of structuring elements and ϕn( f ) is the dual morphological closing.
Finally, the mean, variance, asymmetry coefficient and kurtosis of the PS+ and PS−

functions are computed as texture parameters.
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- Haralick’s parameters
Gray level co-occurrence matrices into 4 directions (0◦, 45◦, 90◦, 135◦) are also
computed. Among the 14 Haralick’s parameters [14] we extracted the 6 parameters
considered to be the less correlated [4], i.e. , the energy, contrast, entropy, correla-
tion, homogeneity and variance.

4.2 Multivariate approach from multispectral images

Multivariate approach takes into account all wavelengths at the same time and is prac-
ticed on original images space (instead of IP-PCA reduced spaces). A spectral distance
is necessary to build texture descriptors. We selected the Spectral Angle Mapper (SAM)
and the Euclidian distance because they were proved to be the most effective with our
dataset [8]. For two spectra F(x) = { f1(x), . . . , fD(x)} and F(y) = { f1(y), . . . , fD(y)},
the distance SAM(F(x),F(y)) is given by:

SAM(F(x),F(y)) = cos−1
(

∑
D
d=1 fd(x) fd(y)
‖F(x)‖.‖F(y)‖

)
.

Once the spectral distance is defined, we can extend some marginal texture defini-
tions to the multivariate case as follows.

- Multispectral variogram
A multispectral variogram function can be obtained by generalizing the solution
proposed in [21], which consists in replacing in (1) the variance operator by a spec-
tral distance :

γ
Dist
F,θ (h) =

1
2 ∑

x
Dist2 (F(x),F(x+h)) , (4)

where Dist is a spectral distance (SAM or Euclidian in our case), cumulated on all
the pixels of the image. Likewise, the same parameters are measured on the multi-
spectral variogram curve.

- Multispectral granulometry
In order to set up a multispectral pattern spectrum function, we first rely on the color
top-hat [13], to propose a multispectral circular top-hat associated to a spectral
distance:

ρB(F(x)) = sup
y∈Bx

{−ξB(y)} , (5)

where Bx is the structuring element centered on x and

ξB(y) = inf
z∈By
{−Dist(F(y),F(z))} . (6)

Then, the proposed multispectral circular Pattern Spectrum PS corresponds to (2)
where γn( f ) is replaced by ρn(F). Contrary to an usual top-hat, the ρ has no inter-
pretation in the sense of positive peak extraction or image order. Hence, there is no
need to define an anti-granulometric function.
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- Texture differential image
To extract statistical moments and Haralick’s parameters in the context of a mul-
tivariate integrative approach, we transform the multispectral initial images into
texture differential images in which each pixel (of D components) is replaced by
the mean distance between the pixel spectrum and spectra of the pixel neighbor-
hood. Haralick’s parameters and statistical moments are extracted afterwards on
the differential image.

5 Applications to a cosmetology study

The protocol (see Sect. 2) to study foundation make-up presence on skin with the Ascle-
pios System mentioned that 4 acquisitions were taken on each volunteer corresponding
to 4 states of the applied product (before and after foundation make-up application,
3 hours and 6 hours after application). Our goal is to predict the acquisition time of
each image using its texture descriptors as predictive variables. We expect this multi-
class prediction case to be able to illustrate the relevance of texture data depending on
whether they are extracted marginally or in a multivariate way.

5.1 Prediction process

Instead of using Asclepios System entire images, texture descriptors are extracted on
25 smaller samples of initial surface. This method is called bootstraping and allows us
to artificially grow the number of experiments from 720 to 180000. Samples dimension
(256×256 pixels) is chosen larger than 4 times the size of estimated biggest skin struc-
tures.
In order to process the 4 times prediction, Support Vector Machines (SVM) [32] with a
Radial Basis Function (RBF) kernel and a constant σ automaticaly defined (by the hill
climbing algorithm) are used. SVM were selected among several predictors (Random
Forest, Naives Bayes Classifier, linear regression,... ) because they provided the best
results. Their extension to multiclass prediction is handled by the One-vs-All model.
Precision score i.e. rate of correct class attribution is the considered performance cri-
terium. It is estimated using a cross validation method compatible with the bootstrap-
ping: the 30 volunteers are splitted into 5 groups of 6, then data issued from a group of
6 volunteers (i.e. 20% of the available data) are iteratively used as test samples whereas
data from the other groups serve for learning.
Since marginal approach produces more texture features than multivariate approach, we
limit the number of multivariate features using a backward feature elimination routine
(belonging to the wrapper methods) [11]. Likewise, when blending both marginal and
multivariate texture features to proceed the time prediction, the same feature elimination
process is used.

5.2 Prediction results

Prediction accuracy obtained with different texture parameters and approaches of ex-
traction (marginal or multivariate) is given in Table 1. We can notice that the marginal
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integrative approach seems more effective. However, mixing both multivariate and marginal
approaches provides the best precision rates. Thus, multivariate parameters are also in-
teresting in our task of prediction.

Table 1. Precision scores of acquisition time prediction obtained with different texture features
computed with marginal (Marg.) and multivariate (Multi.) approaches.

Parameters Marg. Multi. Marg.+Multi.

Statistical moments (8 parameters) 58.4% 42.7% 67.1%
Variogram (18 parmeters) 61.9% 50.1% 61.9%
Granulometry (32 parameters) 61.7% 61.4% 69.2%
Haralick (12 parameters) 61.9% 56.7% 76.0%
All parameters (70 parameters) 82.2% 72.1% 84.8%

6 Conclusion

This paper presented new multispectral texture features based on mathematical mor-
phology as well as two alternatives of multispectral images texture analysis. The first is
to reduce images dimensionality before measuring standard parameters on each eigen-
image separately, the other is to process multivariate texture extraction directly on all
the image wavelengths.
After a dedicated preprocessing chain, data from our study of foundation make-up on
skin allow us to demonstrate the efficiency of both approaches and simoultaneously the
validity of the new multivariate texture features.
The next step is to confirm our methods efficiency on another dataset from a different
context.
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