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Parameter Sensitivity Analysis of the
Energy/Frequency Convexity Rule

for Nanometer-scale Application Processors
Karel De Vogeleer, Gerard Memmi, and Pierre Jouvelot

Abstract—Both theoretical and experimental evidence are presented in this work in order to validate the existence of an
Energy/Frequency Convexity Rule, which relates energy consumption and microprocessor frequency for nanometer-scale
microprocessors. Data gathered during several month-long experimental acquisition campaigns, supported by several independent
publications, suggest that energy consumed is indeed depending on the microprocessor’s clock frequency, and, more interestingly, the
curve exhibits a clear minimum over the processor’s frequency range. An analytical model for this behavior is presented and motivated,
which fits well with the experimental data. A parameter sensitivity analysis shows how parameters affect the energy minimum in the
clock frequency space. The conditions are discussed under which this convexity rule can be exploited, and when other methods are
more effective, with the aim of improving the computer system’s energy management efficiency. We show that the power requirements
of the computer system, besides the microprocessor, and the overhead affect the location of the energy minimum the most. The
sensitivity analysis of the Energy/Frequency Convexity Rule puts forward a number of simple guidelines especially for by low-power
systems, such as battery-powered and embedded systems, and less likely by high-performance computer systems.

Index Terms—DVFS, energy optimization, Energy/Frequency Convexity Rule, SoC.
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1 INTRODUCTION

THE execution time characteristics and power require-
ments of a code sequence are the main drivers that

define its final energy consumption. This is a direct result
of the definition of electrical energy consumption: the in-
tegral of electrical power over time. The execution time
is influenced by the type and the amount of operations
contained by the code sequence of concern. For example
register-based operations will require less energy to execute
compared to external memory-based instructions. As such,
each functional unit within a microprocessor and, more
generally, each component of the computer system have
their own respective power and execution time profiles. As
a result, every code sequence has different power and exe-
cution time demands. For example, Carroll and Heiser [1]
showed that, for an embedded system running equake,
vpr, and gzip from the SPEC CPU2000 benchmark suite,
the microprocessor energy consumption exceeds the RAM
memory consumption, whereas crafty and mcf from the
same suite showed to be straining more energy from the
device RAM memory.

A property of a code sequence’s energy consumption is
that, under certain assumptions, it shows convex properties,
which is henceforth referred to as the Energy/Frequency
Convexity Rule [2]. The rule states that there exists an
optimum clock frequency for the execution of each sequence
of code that minimizes the energy consumption of that
code sequence. Under certain conditions this optimal clock
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frequency, minimizing energy consumption, lies between
the minimum and maximum clock frequency. The existence
of a minimum energy point results from the behavior of
the microprocessor’s power and the execution time w.r.t.
the clock frequency. The microprocessor’s power increases
about linearly with clock frequency, meaning that more
energy is consumed when the microprocessor’s speed is
increased. On the other hand, the slower the clock fre-
quency, the longer execution time will increase the energy
expenditure. As will be shown, running at the optimal clock
frequency is a trade-off between performance, in terms of
execution time, and energy savings. For applications requir-
ing human interaction, it has been shown that the clock fre-
quency can be scaled down considerably without affecting
user’s experience [3]. In this paper, experimental evidence is
presented, supported by several independent publications,
for the existence of an Energy/Frequency Convexity Rule
that relates energy consumption and microprocessor clock
frequency on mobile devices. This convexity property seems
to ensure the existence of an optimal frequency where en-
ergy consumption is minimal. This existence claim is based
on both theoretical and practical evidence on a Systems-
on-Chip (SoC). Data gathered via acquisition campaigns on
multiple platforms suggest that the energy consumed per in-
put element is strongly correlated with microprocessor clock
frequency and, more interestingly, that the corresponding
curve exhibits a clear minimum over a frequency window
specific to the computer system. An analytical model of this
behavior is also motivated, which fits well with the experi-
mental data. A parameter sensitivity analysis is carried out
to assess the influence of the parameters on the optimal fre-
quency minimizing energy consumption. This optimal fre-
quency is shown to increase when the power requirements
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of the computer system, excluding the microprocessor’s,
increase. Clock cycles lost for routine maintenance of the
system also force the optimal frequency up. The optimal
frequency as derived from the theoretical framework is,
however, independent of the number of instructions to be
executed.

In addition to a deeper theoretical and practical under-
standing of a microprocessor’s energy consumption and
the Energy/Frequency Convexity Rule, this paper offers a
new, in-depth, parameter sensitivity analysis compared to
what was presented in De Vogeleer et al. [2]. The main
contributions of this paper are thus:

• a theoretical framework for the Energy/Frequency
Convexity Rule;

• a sensitivity analysis of the Energy/Frequency Con-
vexity Rule to estimate the impact of multiple input
parameters;

• an analysis of the Energy/Frequency Convexity Rule
under special conditions, such as, out-of-order execu-
tion (OOE) and absence of slack time;

• supportive experimental data and a comprehensive
survey of the state of the art.

The rest of the paper is organized as follows. Section 2
elaborates the Energy/Frequency Convexity Rule. Followed
by the presentation of experimental results in Section 3, a
parameter sensitivity analysis is carried out in Section 4. An
overview of the related work is presented in the state-of-
the-art Section 5. Finally, Section lists the main conclusions
drawn from our analysis supporting a better usage of the
energy especially for embedded systems.

2 SINGLE-CORE CONVEXITY MODEL

The energy consumption of a computer system comprising a
microprocessor, and possibly other components, over a time
interval ∆t, is equal to the integral of its system’s power
usage over time:

Esys(∆t) =

∫ ∆t

0
Psys(t) dt =

∫ ∆t

0
I(t) · V (t) dt. (1)

If the power is considered constant, the integral is equiv-
alent to the product of the power consumption and the
timespan of interest. V (t) can often be considered constant
by design; for example, portable devices such as smart-
phones are supplied by 3.7 V lithium-ion batteries, and
microprocessors operate at very specific voltage levels. The
current’s time-dependent variance depends on the context,
its history and the state of the microprocessor. However,
at the time frame of an instruction execution, henceforth
referred to as a time quanta, the energy consumption can be
deemed quasi constant. Following this definition, the pa-
rameters that define the energy consumption during a time
quanta are also constant. As such, similar to the rationale
behind the Riemann sum, the total energy consumption of a
code sequence can be thought of as the sum of the energy
consumption during each time quanta ∆t:

Esys =
n∑

i=1

Esys,i =
n∑

i=1

Psys,i ·∆ti, (2)

where n is the number of time quanta. ∆ti is the time frame
over which Psys,i is constant. ∆ti could be the length of
one instruction execution or, when the power variance is
negligibly small, ∆ti can be the length of an arbitrary-sized
code sequence. One has ∆t =

∑n
i=0 ∆ti.

The models for the power and execution time are
developed separately in the next two subsections . A
more profound expound of the models can be found in
De Vogeleer [4].

2.1 Power Model
A computer system’s power usage Psys is the sum of three
power components:

1) Pcpu, the microprocessor’s power,
2) Pdrop, the system’s power usage that is dependent

or controllable by the microprocessor, and
3) Pback, the system’s power that is independent of the

microprocessor.

Pdrop can be due to components that are put to sleep
when the microprocessor doesn’t need their functionality,
e.g., audio codecs, camera circuits, or the radio interface.
Pback constitutes components that require power indepen-
dent from what the microprocessor is doing, e.g., memory
refreshing in synchronous dynamic random access memory
(SDRAM). Pback is however controllable. It is noted that the
display of a hand-held device falls also under Pback as it is
active when the user requires interaction with the device,
not necessarily when the microprocessor is active.

For the formulation of the microprocessor’s power Pcpu,
we combined the well know expression for an electronic
circuit’s power dissipation 1

2αV
2f [5], referred to as the

dynamic power, and the leakage current model of Skadron et
al. [6] :

Pcpu = (1 + γV ) · ξfV 2, (3)

where γ is a parameter describing the magnitude of the
leakage currents due to capacitor-based circuits, V is the
supply voltage and ξ is a parameter defining the power re-
quirements of the microprocessor. It is known that the leak-
age currents are temperature-dependent [7]. Henceforth,
however, we deem the temperature constant throughout our
analysis.

2.2 Execution Time Model
The execution time ∆t of a code sequence, including slack
time β and time thieves fk (the time spend by the operating
system), can be modeled as:

∆t = ccb

(
1

f − fk
+ β

)
, (4)

where ccb is the number of clock cycles dedicated to the
execution of the user program’s statements, fk the average
number of clock cycles per time unit lost due to time thieves,
and β the average amount of slack time per clock cycle. By
definition f ≥ fk since the system can’t steal more clock
cycles than what is available.

Time thieves, represented by fk in Equation 4, are clock
cycles lost due to low-level operations. These time thieves
have higher priority than ccb. Examples of fk are pipeline
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stalls due to branch miss-predictions, misaligned memory
accesses, page faults, operation interventions, interrupt han-
dling, operating system routine tasks, etc. The slack time
represented by ccbβ is the time the microprocessor cannot
continue execution as it is waiting for external data, e.g., in
the main memory due to cache misses. Slack time can be
addressed with out-of-order execution (OOE), which would
scale down β (See Section 4.3).

2.3 System’s Energy Consumption Model
Inserting the power model and execution time model from
Equation 3 and 4, respectively, into the definition of the
system’s energy consumption in quanta time i:

Esys,i = Psys,i ·∆ti
= (Pcpu,i + Pdrop,i + Pback) ·∆ti
=

(
(1 + γiV ) · ξifV 2 + Pdrop,i + Pback

)
· ccb,i

(
1

f − fk,i
+ βi

)
. (5)

Here, Psys,i is a monotonic increasing function of f , whereas
∆ti is a monotonic decreasing function of f , given that
{Pdrop,i, Pback, V, γ, ξi, fk, β} ∈ R+. Note that Pback and ccb
are scaling factors of Esys,i and that this implies that the
energy consumed during the execution of a piece of code is
linearly dependent on its code complexity and background
power demands. Moreover, this also implies that compiler
optimization techniques that target code size optimization
will directly also lead to an improved energy profile of
the code [8]. On the other hand, a microprocessor can also
reduce energy consumption by parallelizing code execution,
increasing power demands but reducing execution time.
Similar observations between the interaction of energy and
power consumption were made by Valluri and John [9].

At this stage, we only apparently observe an hyper-
bolic relation between energy and frequency. We have to
take into account the relationship between the voltage
and the frequency to find a convex analytical relationship
between E and f . Such convexity is of interest as there
would exist a microprocessor configuration that minimizes
the energy consumption for that particular combination of
{Pdrop,i, Pback, γ, ξi, fk, β}.

2.4 Voltage/Frequency Relationship
The following derivation regarding the energy/frequency
relationship is similar to Yuki and Rajopadhye [10]; how-
ever, different frequency and voltage relationships are used,
mainly more contemporary, and the leakage current is
scaled more realistically. Note that Pback and Pdrop can be
arbitrarily large; their values are inherent to the computer
system and independent of the microprocessor. In the re-
mainder of this work it is also assumed that the temperature
of the microprocessor remains constant unless otherwise
noted. In practice it was shown by De Vogeleer [7] that
the microprocessor’s power requirements show a strong
exponential relation with the temperature. The non-linear
temperature effects complicate the microprocessor’s tem-
poral power demands considerably. The temperature has,
however, a small impact on the convex behavior of the
Energy/Frequency Convexity Rule [4]. Therefore, we omit
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Fig. 1. Frequency/voltage relationships of multiple modern and vintage
application microprocessors, as found in the Linux kernel. Two dashed
linear curves are drawn: V = m1f+m2; the red is fitted on the depicted
data of the three Exynos microprocessors; the blue is borrowed from
Yuki and Rajopadhyes [10].

the temperature effects on the Energy/Frequency Convexity
Rule further on.

For modern microprocessors, the frequency f and sup-
ply voltage V are approximately linearly related as shown
in Figure 1. It is to be noted that the S3C6410 and the
PXA320 are fairly outdated microprocessors and their low
performance is visible; the Exynos series and the Intel M
are more recent microprocessors designed for embedded
multimedia applications, e.g., smartphones and tablets. The
exact relationship between the voltage and frequency is
dependent on the physical abilities of the microprocessor’s
internals, but also on the capability of the microprocessor’s
voltage and frequency regulator to scale the voltage and
frequency on-demand. When the frequency of a micropro-
cessor is ramped up, the transistors inside need to switch
faster to meet timing and delay constraints. As subparts of
transistors are essentially very small capacitors as well; a
finite time is required to switch the transistor from one state
to another. Thus if stringent timing delays need to be met,
the microprocessor voltage needs be increased accordingly.
The higher voltage supply will decrease the transistors’
transition time and capacitors’ charging time. This translates
in a positive slope of the frequency/voltage relationship.

An affine transformation between voltage and frequency
is expressed as follows:

V = m1f +m2, (6)

where m1 and m2 are positive regression coefficients. Fig-
ure 1 shows the voltage and frequency relationship for
several microprocessors. The values m1 = 2

3 and m2 = 1
3 ,

for the dashed blue line in Figure 1, are motivated to
be adequate for high-performance microprocessors based
on theoretical values [10]. Here, the values m1 = 1

3 and
m2 = 4

5 are shown to better represent the voltage/frequency
relationship for microprocessors for embedded applications.
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These values are approximates of a linear fit on the com-
bined data of the Exynos microprocessors.

Henceforth, the microprocessor’s default clock frequency
window (Fcpu) is defined as the clock frequency range
bounded by the minimum and maximum clock frequency
of the microprocessor:

Fcpu = fmin ≤ fcpu ≤ fmax. (7)

We have seen in Section 2.2 that f ≤ fk. Hence, the
exploitable clock frequency window (Fepx) is defined as the
frequency range with an upper bound characterized by
the microprocessor’s maximum frequency fmax, and the
lower bound defined by the largest of the microprocessor’s
minimum frequency fmin and fk:

Fepx = max(fmin, fk) ≤ fcpu ≤ fmax. (8)

It is the exploitable clock frequency window that is open for
energy optimization via clock frequency scaling.

2.5 Optimal Microprocessor Clock Frequency fopt

The power model independent of V is obtained by inserting
Equation 6 in the definition of Pcpu:

Pcpu = (1 + γV )ξfV 2

= af4 + bf3 + cf2 + df, (9)

where a = γξm3
1, b = m2

1ξ(1 + 3γm2), c = m1m2ξ(3γm2 +
2), and d = m2

2ξ(γm2 + 1). This power formulation can
then be inserted in the energy consumption model Esys of
Equation 5.

For further analysis the normalized energy consumption
En for code size and background power-independent anal-
ysis is introduced. The normalized energy consumption is
defined as

En =
Esys − Pback∆t

ccb
. (10)

Normalizing the energy consumption Esys has no effect
whatsoever on its tentative convex properties as ccb and
Pback merely induce an affine transformation of En without
rotation. Pback has an effect on the convex properties. Pback

should however not be part En as this power component
will be present in the system regardless of what the mi-
croprocessor is doing. As a consequence, Pback should not
influence optimal operating settings of the microprocessor.

The energy function in Equation 10 is called strictly
convex over the exploitable clock frequency window if and
only if (iff)

∀f1 6= f2 ∈ Fcpu,∀t ∈ (0, 1) :

En(tf1 + (1− t)f2) < tEn(f1) + (1− t)En(f2). (11)

In other words, if Esys is strictly convex, then Esys possesses
no more than one minimum in the exploitable frequency
window. If the minimum of Esys is not within the micropro-
cessor’s boundaries, then the minimum fopt can be found
via the first derivative of En, while its second derivative
must remain positive:(

∂En

∂f

)
f=fopt

= 0 and
∂2En

∂f2
> 0. (12)

To simplify the derivative calculation for Equation 5, En

is split into a polynomial and non-polynomial part, namely
EA

n and EB
n :

En = EA
n + EB

n

EA
n = (af4 + bf3 + cf2 + df + Pdrop,i) · β (13a)

EB
n = (af4 + bf3 + cf2 + df + Pdrop,i) ·

1

f − fk
, (13b)

The respective derivatives are then as follows:

∂EA
n

∂f
= (4af3 + 3bf2 + 2cf + d) · β (14a)

∂EB
n

∂f
=

3af4 + (2b− 4afk) f3 + (c− 3bfk) f2

(f − fk)
2

− 2cfkf + Pback + dfk

(f − fk)
2 (14b)

∂2EA
n

∂f2
= (12af2 + 6bf + 2c) · β (14c)

∂2EB
n

∂f2
=

6af4 + (2b− 16afk) f3 +
(
12af2

k − 6bfk

)
f2

(f − fk)
3

+
6bf2

kf + 2(Pback + cf2
k + dfk)

(f − fk)
3 . (14d)

These equations will be used further on in Section 4 on
parameters sensitivity analyses and are also the base for the
next section’s approximate solutions.

Convex properties can be observed for En. For f →+ fk,
EA

n will approach βPdrop,i, whereas EB
n is amplified, and

tends to positive infinity because of the presence of f − fk

in the denominator. When f
2 < fk, the system is spending

more energy in overhead than in the actual program, as the
overhead has priority over the program. In the limit, En

goes to infinity at fk. At this point the system is overloaded
and is not reactive anymore from the point of view of ccb.
For f → ∞, it is EA

n that inflates whereas EB
n approaches

zero. In other words, for the smaller clock frequencies, by
virtue of the increased execution time, more energy due to
leakage currents needs to be accounted for. The execution
time for large frequencies are dramatically lower, but the dy-
namic power consumption of the microprocessor increases
cubically and the leakage currents increase quartically with
clock frequency. As a result, the convex minimum of the
energy function, at the optimal frequency fopt, is the point
where a balance is found between the consequences of the
inflated execution time and the total power demands of the
microprocessor.

Given an energy/frequency convex behavior, three
classes of microprocessor configurations can be distin-
guished, as shown in Figure 2. When the optimal clock
frequency fopt is left of the default clock frequency window
(fopt < fmin), setting the clock frequency at fmin yields
the best energy gains; if max(fmin, fk) < fopt < fmax

then chasing fopt will earn the best energy efficiency; and
when fopt > fmax, then the race-to-halt1 energy opti-
mization technique is shown to be most effective. It was
noted by Rizvandi [11] that under certain circumstances

1. The energy optimization technique race-to-halt runs the micropro-
cessor at full speed until all tasks are completed; then the microproces-
sor is put in a low-power mode.
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Fig. 2. The location of the optimal frequency fopt w.r.t. default clock frequency window (blue) is an indication of which energy optimization technique
is most effective: (a) when fopt is left of the exploitable clock frequency window (fopt < fmin), one should set the clock frequency as low as
possible; (b) if max(fmin, fk) < fopt < fmax then chasing fopt will yield the best energy efficiency; (c) when fopt > fmax, then the race-to-halt
energy optimization technique is most effective. Powerful microprocessors are most likely to fall in the category (c), e.g. DGEMM 8C in Figure 7c,
whereas low-power microcomputers are more likely to be in category (b), e.g. TI C62 in Figure 7f.

it can be more efficient, in terms of energy consumption,
to have a binary frequency scheme, including the maxi-
mum and minimum clock frequency, rather than scaling the
clock frequency through the whole frequency space. The
presented performance-oriented work, and also the user-
oriented work of Seeker et al. [3], suggest that this is, in
fact, not the case. fopt may assume any frequency within
the default clock frequency window, and may fluctuate
throughout the code execution depending on the kind of
operations scheduled.

2.6 Approximate Optimal Clock Frequency fopt

The power model (Equation 3) in the energy consumption
formulation of Equation 5 is of the fourth order. When the
fourth-order power equation can be adequately approxi-
mated with a quadratic polynomial, the derivations can be
simplified somewhat. The power consumption Psys of the
system can then be represented as:

Psys = af4 + bf3 + cf2 + df ≈ kf2 + lf +m, (15)

and accordingly the energy consumption of the system
becomes

En = (kf2 + lf +m+ Pdrop,i) ·∆t. (16)

k ∈ R+
0 , though {l,m} ∈ R. The first and second derivatives

of the normalized energy consumption are then as follows:

∂En

∂f
= β(2kf + l)− fk(2kf + l)− kf2 +m+ Pdrop,i

(f − fk)2
,

(17a)
∂2En

∂f2
= 2kβ +

2(f2
kk + fkl +m+ Pdrop,i)

(f − fk)3
. (17b)

There exists a convex minimum if ∂En

∂f has a root and ∂2En

∂f2

is a monotonous increasing function. In other words:

0 = 2kβf3 + (k + β(l − 4fkk))f2 + 2fkβ(fkk − l)f
−2fkkf − (m+ Pdrop,i + fkl(1− βfk)) (18)

2kβ ≥ −2
f2

kk + fkl +m+ Pdrop,i

(f − fk)3
.

The solution to Equation 18 is the frequency that minimizes
energy consumption. Via Ferarri’s solution [12] for the cal-
culation of the roots of a third order polynomial, the optimal
frequency can be determined analytically. Yet, the analytical
formulation to calculate the roots of a cubic polynomial is
still elaborate. Let’s assume some further simplifications.
For β = 0, one gets that

fopt = fk +

√
2k2f2

k + 2k(m+ Pdrop,i + fkl)

k
(19)

0 ≤ 2
f2

kk + fkl +m+ Pdrop,i

(f − fk)3
.

If all parameters are elements of R+, the latter inequality
holds whenever fk < f . Additionally, for fk = 0, one
obtains

fopt =

√
m+ Pdrop,i

k
(20)

0 ≤ 2(m+ Pdrop,i)

f3
,

which is only valid for −Pdrop,i < m. These simplified
models for β = fk = 0 may be used when the context allows
for, i.e., when ccb is executed without any interruption. For
example, from practical experience and in the literature, fk

is often observed to be close to zero in a multi-core context. β
may vary considerably for different applications and should
be assessed before deeming insignificant.

3 EXPERIMENTAL RESULTS

In this section experimentally-obtained power and execu-
tion time measurement traces are presented and used as a
reference to study the Energy/Frequency Convexity Rule in
the next section.

3.1 Platform and Benchmark Description
A Samsung Galaxy S2, sporting an ARM Cortex A9 dual-
core microprocessor, was used as testbed. The A9 uses
clock frequency ranges from 0.2 GHz to 1.6 GHz in steps of
100 MHz. The Gold-Rader implementation of the bit-reverse
algorithm was used as benchmark; it is part of the ubiqui-
tous Fast Fourier Transformation (FFT) algorithm, in which
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TABLE 1
Benchmark execution time model parameters: ξ, γ and Psys as per

Equation 3, and ccb, fk, β as per Equation 4 for running the
Gold-Rader algorithm on the A9 microprocessor. These values were

used for the fitted models in Figure 3b.

GOLD-RADER – INPUT SIZE 2N – A9
N 6 8 10 12 14 16
ccb 1.943 8.596 31.1 144.359 670.8 2918.837
fk 0.134 0.129 0.137 0.13 0.13 0.129
β -0.166 -0.167 -0.152 -0.202 -0.183 -0.182
ξ 0.101 0.108 0.134 0.137 0.44 0.011
γ 5.578 5.127 4.030 4.36 1.035 65.985
Psys 0.480 0.480 0.477 0.469 0.394 0.407

it rearranges deterministically elements in an array. Besides
the Gold-Rader algorithm, the BEEBS benchmark [13] was
also run on an ODROID XU+E, featuring an Exynos 5240,
while the execution time and power was measured. The
measurement data of the Gold-Rader algorithm and BEEBS
show large similarities. The Gold-Rader algorithm is chosen
as a base for the expound in the sequel. More info on the
BEEBS measurements can be found in De Vogeleer [4].

3.2 Execution Time and Power Consumption

Figure 3a shows the execution time of the Gold-Rader
algorithm on the A9 microprocessor. Table 1 shows the fitted
execution time parameters as per Equation 4. The fitted
execution time model has a relative error such that 90 %
of the errors are between 0.18 % and 7.36 % and shows a
median of 3.12 % for the execution time traces.

Figure 3b shows the power profile of the Gold-Rader
algorithm on the A9. All traces were recorded while the
temperature of the hardware fluctuated. During the record-
ing of the power traces the temperature of the testbed
was artificially oscillated around 37◦C and then the power
samples at a temperature of 37◦C were selected.

Table 1 also shows the fitted values for ξ, γ and Psys as
per Equation 3 for the A9. Discrete voltage/frequency pairs
were used to fit the measured data as reported in Figure 1
for the Exynos 4210.

The fitted model parameters in Table 1 seem to be consis-
tent for an input size up to 212. The fitted model parameters
for larger input sizes seem to be much different. Note that
array sizes up to 29 fit in the L1 cache, while sizes over 218

are too big to fit in the L2 cache. Therefore external memory
accesses and microprocessor slack time may influence the
power of the microprocessor. Overall, the power variation
of the different input sizes are not as large as what was
observed for the case of the execution time. The magnitude
of the power of all traces are all of the same order, whereas
for the execution time it may differ by multiple orders.

As observed from Figure 3b the power model fits well
on the experimental data. The fitting errors for the A9 are
between 0.07 % and 3.18 % with a median of 0.86 %. The
fitted model for the A9 in Figure 3b for f = 1.5 GHz seems
to deviate persistently from the measured data. This could
be due to a slightly higher supply voltage at 1.5 GHz than
reported in Figure 1 for the Exynos 4210 microprocessor.

3.3 Energy Consumption

The estimated experimental energy consumptions are ob-
tained by multiplying the power traces with the execution
time traces for each frequency. This was done for both the
experimental traces and the fitted power and execution time
models. Figure 3c shows the energy consumption of the
Gold-Rader algorithm on the A9 microprocessor. The fitted
errors are the sum of the errors of the power and execution
time traces separately. For the A9 traces a clear minimum
energy consumption is observed between 500 MHz and
800 MHz.

4 SENSITIVITY OF THE CONVEXITY MODEL

To analyze the behavior and parameter sensitivity of the
convexity model of Equation 5, the Cortex A9 processor
of the Exynos 4210 is used as reference use case, represen-
tative for embedded multimedia applications, e.g., smart-
phones [2]. The following values were used, based on the
measurements presented in the previous section: m1 = 0.330
[V/f], m2 = 0.808 [V], β = 0 [s], γ = 3.137 [V−1], fk

= 0.130 [GHz], ξmax = 0.181 [W/(GHz·V2)], ξmin= 0.155
[W/(GHz·V2)], Pdrop = 0 [W]. The microprocessor’s clock
frequency starts at 200 MHz and goes to 1.6 GHz and ξ is a
parameter that describes the power profile of an application.
The values for β, fk, γ and ξ were defined via fitting as
presented in the previous sections. The microprocessor’s
clock frequency is also considered a continuous variable
from here on. In reality the clock frequency is limited to a
discrete set of values. However, for analytical purposes, not
to mention the aesthetics of the graphs, the clock frequency
is deemed continuous.

In the next sections we will look at how time thieves
and OOE impacts the convexity model. Time thieves are
basically clock cycles lost to overhead, whereas OOE is an
intelligent instruction execution scheme to minimize execu-
tion slack time.

4.1 What About Those Time Thieves?

When considering the execution time of a code sequence,
fk was previously defined as the number of clock cycles
per time unit not available to the execution of the user
code. These clock cycles are spent, for example, to handle
microprocessor exceptions, or to execute operating system
routine tasks. fk can therefore be regarded as little time
thieves. From a mathematical point of view, the presence
of fk in Equation 5 also introduces some complexity for
derivations such as Equation 14. Bear in mind that the
microprocessor’s clock frequency f is always larger than fk;
otherwise the execution time is not defined. Consequently,
fk < fmax must be satisfied.

Figure 4 shows the sensitivity of fk with regards to the
optimal frequency fopt, the microprocessor power (Pcpu ∝
ξ), and the background power Pback. In the bottom plot it is
seen that fopt(fk = 0, Pback = 0.5) ≈ 0.8 GHz. The optimal
frequency increases for increasing values of fk and hits
the microprocessor’s maximum frequency fmax = 1.6 GHz
around fk = 0.7 GHz. At this point, about 45 % (≈ 0.7/1.6)
of the clock cycles would not be available to the code
sequence. Furthermore, it is observed that fopt > fk always
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Fig. 3. Experimental data for the Cortex A9 microprocessor. The energy consumption of the benchmarks with different input sizes is shown for the
Gold-Rader algorithm. The solid lines represent the measured data whereas the dotted lines is the product of the fitted power and execution time
models from Figure 3a and Figure 3b, respectively.

holds. The effect of the microprocessor’s power demands
on fopt is fairly small, expressed by the ξ parameter. A
30 MHz to 50 MHz difference in fopt is observed between
the minimum and maximum microprocessor’s power usage
as ξ varies between 0.155 V−1 and 0.181 V−1 (see Figure 4a).

The background power usage Pback has a bigger impact
on fopt than ξ. For Pback = 0, fopt even drops below
the minimum operation frequency of the microprocessor.
Increasing Pback inflates fopt. For fk = 0 and Pback ≈ 2.5 W
the optimal frequency already surpasses fmax. For a typical
value of fk (130 MHz), an increase in fopt is observed for
increasing values of Pback; yet, the increase becomes smaller
for larger values of Pback. The average difference between
fopt(fk = 0) and fopt(fk = 0.13), within the microproces-
sor’s clock frequency range, is approximately 100 MHz.

In the rest of this section it will be assumed for simplicity
that fk � f unless otherwise stated. For a more realistic

estimate of fopt, in case fk is not negligible, it was observed
from the graphs that adding 100 MHz to fopt is a reasonable
assumption.

4.2 Absence of Time Thieves

It is not unthinkable that, in particular contexts, fk is indeed
negligibly small compared to f : fk � f . For example,
such occasions may occur when the clock frequency mi-
croprocessor is reasonably fast, or the code sequence of
concern is running only on one of the available cores of
a multi-core microprocessor without interruption. Assum-
ing fk negligible considerably simplifies Equation 14. For
max(fmin, fk) < fopt < fmax, En was said to be strictly
convex iff there exists only one point in the exploitable
clock frequency window for which ∂En

∂f = 0 and ∂2En

∂f2 > 0.
Given the system of Equations 14, these two requirements
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Fig. 4. Optimal microprocessor frequency fopt for variable levels of fk in
function of ξ, on the top, and Pback, on the bottom. A typical value for fk
is drawn at 0.13 GHz (dashed vertical line). The area encapsulated by
the dotted line signals the microprocessor’s exploitable clock frequency
window: max(0.2GHz, fk) ≤ f ≤ 1.6GHz.

translate, respectively, into:

Pback

f2
opt

= 4aβf3
opt + 3(a+ bβ)f2

opt

+ 2(b+ cβ)fopt + (dβ + c), (21)

0 < 12aβf2
opt + 6(a+ bβ)fopt

+ 2(b+ cβ) + 2
Pback

f3
opt

. (22)

Recall that for all constants in this system of equations:
{a, b, c, d, β} ∈ R+. Thus the requirement in Equation 22
is satisfied by default as the right-hand side will never be
negative. Accordingly, the root requirement of Equation 21
is also satisfiable. It is immediately clear that the back-
ground power demands Pback directly controls the optimal
frequency fopt. The constants {a, b, c, d} describe the micro-
processor’s power usage whereas Pback describes the power
demands of everything in the computer system besides the
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Fig. 5. Optimal microprocessor frequency fopt for variable background
power consumption Pback. On the top fopt, is shown for various micro-
processor loads ξ. On the bottom, the ratio between the background
power and the microprocessor power Pcpu at fopt is shown. The area
between the dotted lines signals the effective clock frequency window:
0.2GHz ≤ f ≤ 1.6GHz.

microprocessor. For systems with a large Pback, e.g., servers
or desktop computers, fopt will therefore be higher than for
systems with a low Pback, e.g., wireless sensors. Moreover,
fopt may be so high that it is larger than the maximum
microprocessor’s clock frequency.

Figure 5 shows the optimal frequency for a variable
background power consumption Pback and microprocessor
loads ξ. Also, the ratio between the microprocessor Pcpu

and the background Pback power consumption is given. The
area encapsulated by the dotted line signals the operating
range of the microprocessor. For the microprocessor to be
able to exploit the minimum-energy operation frequency,
the background power consumption needs to be between
0.02 W and about 2.75 W, depending on the exact micropro-
cessor load. The influence of the different microprocessor
loads on Pback is not significant; at 1.6 GHz there is a 0.5 W
difference between Pback for ξmin and ξmax. If Pback is
larger than 2.75 W, it is advised to run the microproces-
sor at the maximum clock frequency to minimize energy
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consumption. Under such conditions, the energy optimiza-
tion technique known as race-to-halt is a good strategy.
This was also Yuki and Rajopadhye’s [10] main conclusion
while studying high-performance computers. The optimal
frequency fopt surpasses the microprocessor’s maximum
frequency roughly around the point where the background
power demands become larger than the microprocessor’s
power usage. Battery-powered electronic systems such as
embedded systems, wireless sensors or smartphones aim
at minimizing their background power demands, which
thus increases the feasibility of fopt exploitation. For more
powerful computers, however, such as servers, the optimal
frequency will be very likely out of reach of the micropro-
cessor’s capabilities: fopt > fmax. For example, Seo et al. [14]
claim that Dynamic Voltage and Frequency Scaling (DVFS)
in general hardly improves the energy efficiency of mobile
multimedia electronics. The testbed power measurements
of their embedded system show, however, that their Pcpu

to Pback ratio is smaller than 1 to 18, and their m1 is very
small. For their specific testbed, fopt is very likely larger
than fmax, and race-to-halt should indeed be most benificial
when aiming for energy savings.

4.3 Out-of-Order Execution
Out-of-order execution (OOE) is parametrized via β ∈ [0,∞[
in Equation 4: β = 0 when OOE is perfectly able to
cover the time during external memory accesses with data-
independent code execution; otherwise β is larger than 0.
The system’s normalized energy consumption, assuming
fk ≈ 0, is given by:

En = (af4 + bf3 + cf2 + df + Pback) ·
(

1

f
+ β

)
.

Its requirements for convexity are defined the same as for
the case where time thieves are absent, given by Equation 21
and 22. It can be observed that for β = 0 the most left-
hand term in Equation 21 becomes zero, resulting in an
increased fopt for the equality to be satisfied. Similarly, the
larger β, the more fopt needs to decrease for the inequality
of Equation 22 to hold. Figure 6 shows the sensitivity of the
β parameter on the optimal frequency fopt. Indeed, from
the figure, it is observed that fopt decreases for increasing
β. Moreover, fopt changes about 100 MHz over a 0 to 0.25µs
β range for medium levels of Pback. The larger Pback, the
larger the spread in fopt for variable β. For Pback over 4 W,
the fopt spread between β = 0 and β = 0.25 increases to
more than 200 MHz.

In theory, β can be frequency-dependent as well. That
is, the memory clock frequency can be scaled along with
the microprocessor’s frequency, this to ensure the timely
delivery of data in the microprocessor registries and caches.
β in such a case would not be constant over f . Here, it was
assumed that the microprocessor’s clock frequency, once
set at fopt, doesn’t change over time. Another common ap-
proach to save energy is to have a variable clock frequency
to minimize OOE slack-time and also energy consumption.

5 STATE OF THE ART

In the previous sections, it is shown that the energy con-
sumption of a microprocessor shows convex properties with
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Fig. 6. Optimal microprocessor frequency fopt for variable levels of β in
function of ξ, on the top, and Pback, on the bottom. The area below
the horizontal dotted line signals the microprocessor’s default clock
frequency window (0.2GHz ≤ f ≤ 1.6GHz).

regard to its clock frequency. The convex energy consump-
tion curve has been mentioned before several times in
the literature. A sensitivity study of the convexity model,
as presented here, has not been reported before. A series
of papers, approaching the problem from a chip point of
view, without the consideration of software, have shown the
energy consumption with respect to Dynamic Voltage and
Frequency Scaling (DVFS) [15], [16], [17], [18]. The literature
puts forward some motivation for the energy consumption’s
convexity, but rarely provides analytical frameworks based
on physical explanations. For example, Senn et al. [19] and
Austin and Wright [20] provide a heuristic model. Other
studies, e.g., Hager et al. [21] and Freeh et al. [22], dis-
cuss what the consequences are of said behavior and how
to exploit them, from a high-level point of view. Other
researchers have also shown energy measurements under
DVFS processes but no convexity is shown by the measure-
ments, e.g., Sinha and Chandrakasan [23], and Šimunić et
al. [24], who are not running their benchmarks on top of
an Operating System (OS). Authors, such as Austin and
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Wright [20] and Snowdon [15], [16], have shown more
specifically that for applications with certain behavioral pat-
terns no energy convexity is observed. However, the energy
consumption model presented in our work can explain such
behavior.

In the Very-Large-Scale Integration (VLSI) design do-
main, voltage scaling has also been discussed but usually
for a fixed frequency [25], [26], [27]. The aim of the volt-
age scaling is to find a minimum energy operation point
where the digital circuit yields the correct output. The major
trade-off is between increased circuit latency and leakage
power, and decreasing dynamic power. This trade-off also
yields a convex energy consumption curve, but for a fixed
frequency. In this paper, however, the combined effect of
voltage/frequency scaling is of interest.

There are some works that cover the energy/frequency
convexity properties in a more analytical framework. Fig-
ure 7 shows excerpts of convex energy graphs provided
by the cited works. Yuki and Rajopadhye [10] explored the
particular case of energy consumption of high-performance
computers in the context of compiler optimization and
optimal frequency conditions of the microprocessor. One
of their conclusions is that for power-hungry systems the
race-to-halt energy optimization technique is more effective
than DVFS. Hager et al. [21], on the other hand, showed
that race-to-halt is not always the most effective strat-
egy in a multi-core context with bandwidth-bound codes.
The authors studied the energy consumption of modern
multi-core chips via simple machine models and showed
how to minimize the energy consumption with respect to
the number of cores, serial code performance, and clock
frequency. Austin and Wright [20] examined the energy
consumption of micro-benchmarks and applications on a
Cray CX30 super computer system. The authors developed a
simple linear heuristic energy model. They also stressed that
the frequency/energy minimum is application-specific. Cho
and Chang [28] assessed the optimal frequency conditions
for a microprocessor in conjunction with a memory. Their
resulting model is fairly complex; yet the authors show the
feasibility of a microprocessor’s optimal frequency condi-
tions in conjecture with a memory system. Cho and Mel-
helm [29] produced a convex model derived from Amdahl’s
law and extended with the notion of energy. The authors use
a simplifying assumption for the representation of power
and execution time. They show via their model that there
is a certain clock frequency range that yields both energy
and speed improvements. Similarly, Rizvandi et al. [30]
devised a convex model but, just as Cho and Melhelm, sim-
plified representations of power and execution time were
assumed. Vasilaki [31] showed experimental evidence for
a convex energy curve in relation to the microprocessor’s
clock frequency for almost all individual instructions of the
ARM Cortex A7. No theoretical framework is provided by
Vasilaki, however, to backup these findings analytically.

From an experimental perspective, Halimi et al. [32]
claim to save up to 39 % of energy, and Qiu et al. [33]
advertise an energy gain of 25 %, by adjusting the micro-
processor’s clock frequency via an experimental algorithm
with predefined user or application constraints. Although
no theoretical framework was provided by the authors
about the energy/frequency convexity, their algorithm is

essentially chasing the convex minimum. Senn et al. [19]
showed also convex energy/frequency curves, based on a
simplified system model, for their TI C55, C62, C64, and C67
platforms.

Applications of the work presented in this paper fo-
cuses on embedded systems, in contrast with Yuki and
Rajopadhye’s, Hager et al. and Austin and Wright’s work,
which is dedicated to more powerful computer architec-
tures. The sensitivity of the parameters that constitute the
energy consumption equation are also analyzed via both an
analytical approach and via experimental data, the former
fitted with data from the latter. The convex energy model
presented here is, in contrast with the mentioned works,
more extensive, which allows for a more realistic modeling.
For example, temperature has not been a subject of interest
and a sensitivity analysis of parameters has also not been
carried out in any of the referenced works.

6 CONCLUSION

In this paper we developed and analyzed the energy con-
sumption equation of a microprocessor operating in a com-
puter system with other components. An analytical anal-
ysis, along with numerical simulation and measurement
data, was used to study the behavior and sensitivity of
its parameters. It was shown through an analytical frame-
work, measurements, and literature review that the energy
consumption curve shows convex properties with regard
to the clock frequency of the microprocessor. The convex
energy minimum is the point with a given clock frequency
fopt where the computer system consumes the minimum
amount of energy while executing a code sequence.

The energy saving gained by running at the optimal
clock frequency is a trade-off with the performance of
the system, in terms of execution time. For applications
requiring human interaction, it has been shown by Seeker et
al. [3], however, that the clock frequency can be scaled down
considerably without affecting the user’s experience. More
generally, this kind of energy savings can be obtained for
code sequences where a limited slowdown can be tolerated
and time is not critical. For example, such slowdowns could
be applied to code sequences, in multithreaded programs
that are not on the critical path [34].

The existence of the energy/frequency convexity prop-
erty was further confirmed via experimental measurement
traces of multimedia microprocessors commonly used for
embedded system applications. The main conclusions of the
analysis are:

• Energy/frequency convexity occurs always, but, to
exploit the convex minimum, fopt should be within
the exploitable clock frequency window;

• The background power requirement (Pback) is the
parameter that influences the optimal frequency the
most; the larger the background power demands,
the larger the optimal clock frequency: when Pback

equals Pcpu, fopt will be close to the maximum
microprocessor clock frequency;

• An application’s power profile (ξ) has a minimal
effect on the optimal frequency, mostly because the
variations in power profiles are fairly small in the
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Fig. 7. Excerpts of energy/frequency measurements as found in the literature. Convex minimums are observable for the energy at a certain
microprocessor clock frequency, depending on the microprocessor and architecture. In the sequel the behavior of this convex minimum is analyzed.
All figures were originally published in the papers referenced in their respective captions.

experiments we ran, an average of 50 MHz in fopt

between the power profile’s extremities;
• The number of instructions of a code sequence has no

influence on the optimal clock frequency, following
the energy consumption model, but does scale the
energy consumption linearly on the premise that ξ
has minimal effect at constant temperature;

• Application concurrency and clock cycle thieves (fk)
significantly affect the optimal frequency; the less
clock cycles available to the applications, the larger
the optimal clock frequency: on average for a 1 GHz
increase in fk, fopt increases by 2 GHz;

• Microprocessor slack time (β), during off-chip op-
erations, forces the optimal clock frequency down:
300 MHz for 0 < β < 0.25 in the extreme case;

• The race-to-halt strategy is justified only when the
optimal clock frequency is larger than the micropro-
cessor’s maximum frequency.

Given that Pback has a large effect on the optimal frequency
fopt, it was shown that a system with a Pback of the order
of Pcpu and larger will have a fopt likely outside the reach
of the microprocessor’s clock frequency range. Thus chasing
the optimal clock frequency fopt is especially beneficial for
low-power systems, such as for embedded applications, as
their Pback is much smaller than what would be expected
for high-performance computer systems.
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