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ABSTRACT
The polyhedral model is powerful for analyzing and trans-
forming static control programs, hence its intensive use for
the optimization of data locality and automatic paralleliza-
tion. Affine transformations excel at modeling control flow,
to promote data reuse and to expose parallelism. The ap-
proach has also successfully been applied to the optimization
of memory accesses (array expansion and contraction), al-
though the available tools in the area are not as mature.
Yet data locality also depends on other parameters such as
data layout and data placement relatively to the memory
hierarchy; these include spatial locality in cache lines and
scalability on NUMA systems. This paper presents Ivie,
a parallel intermediate language which complements affine
transformations implemented in state-of-the-art polyhedral
compilers and supports spatial and NUMA-aware data local-
ity optimizations. We validate the design of the intermediate
language on representative benchmarks.

Keywords
data locality, parallel intermediate language, NUMA sys-
tems, data layout

1. INTRODUCTION
Writing a program with good data locality involves mul-

tiple expertises, from the application domain to the com-
puter architecture. It is also an intrinsically non-portable
approach. This task must therefore be left to automatic
tools capable of finding the appropriate code transforma-
tions. Loop transformations (e.g., tiling, fusion or inter-
change), layout transformations and data placement are ex-
amples of techniques involved in temporal and spatial local-
ity optimization.

The powerful abstraction provided by the polyhedral model
has led to its intensive use for analyzing and performing
many of these transformations, targeting regions of the con-
trol flow that fit the model constraints (SCoPs). Today,
polyhedral tools are capable of producing highly optimized
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parallel code for multicore CPUs [19], distributed systems
[18], GPUs [39] or FPGAs [36].

Unfortunately, data layout transformations are not al-
ways taken into account as a first-class citizen in the design
and implementation of such tools. Furthermore, an impor-
tant category of multicore CPUs has been overlooked by
most polyhedral compilation studies: Non-Uniform Mem-
ory Access (NUMA) systems. These large scale systems or-
ganize the physically shared memory across several nodes
connected through cache-coherent high-performance links.
With such a design, threads either access the memory re-
sources located on the same node as the core executing the
thread—the local node—or on a different node—a remote
node. Consequently, uncontrolled data placement may yield
traffic contention when all threads are accessing the same
memory bank. Moreover, accessing data on remote nodes
may increase memory latency. NUMA systems were initially
introduced as a cure to the scalability issues of symmet-
ric multiprocessors with Uniform Memory Access (UMA),
yet ironically, NUMA-unaware programs running on NUMA
platforms tend to not benefit from the additional computa-
tional power and memory bandwidth offered by the mul-
tiple nodes of the system. NUMA-awareness is commonly
introduced at run time using tools such as numactl [7], but
introducing NUMA-awareness to the application or better,
to the compiled code automatically, provides much greater
performance portability and transparency for the user.

The purpose of this paper is twofold:

• highlighting the benefits of integrating NUMA-awareness
and layout transformations, more specifically transpo-
sitions, in polyhedral compilation;

• providing a concrete means for implementing these fea-
tures in a polyhedral tool.

As a proof of concept, Pluto [19] is our demonstration
framework but our work is applicable to other tools. It is
probably best to consider integrating these features as an
ad-hoc implementation in the considered polyhedral tool.
Nevertheless, we choose to add such features by the means
of a parallel intermediate language which design is currently
in progress. This allows us to anticipate future extensions
beyond static control region, as our aim for such an interme-
diate language is its integration in a general purpose com-
piler.

To model different loop- and data-centric optimizations,
we implement our intermediate language as a meta-language.
Meta-programming facilitates the development of prototypes
to study the impact of data placement and layout transfor-
mations on a given program. In turn, this study allows to



deduce a general algorithm that can be implemented to-
wards complete automation from a high-level programming
language such as OpenMP C.

Our contributions are as follows:

• We present Ivie, a parallel intermediate language (IL)
focusing on the abstraction of array layout and map-
ping and on the ordering of the operations applied
to these arrays. The IL decouples the expression of
data transposition, implicit transposition through ac-
cess functions, and placement on NUMA nodes.

• We provide a prototype compilation flow where Pluto
is interfaced with a downstream automatic transfor-
mation step based on the IL.

• We present experiments on several, automatically par-
allelized PolyBench programs [8]. We study the ef-
fect of controlling the data placement on NUMA nodes
and of different ways to implement array transpositions
(explicitly or implicitly), considering both naively par-
allelized and tiled versions generated by Pluto.

This paper is structured as follows. The Ivie parallel in-
termediate language is presented in Section 2, the compila-
tion flow for Pluto in Section 3 and experimental results in
Section 4. Finally, in Sections 5, 6 and 7, we respectively
discuss future work, related work and conclude.

2. IVIE, AN ARRAY-CENTRIC PARALLEL
INTERMEDIATE LANGUAGE

We introduce the Ivie parallel intermediate language (IL),
where arrays are considered as first-class data structures
with decoupled data layout and NUMA allocation policy
control. We choose a decoupled approach for manipulat-
ing arrays: the layout, NUMA mapping, and subscript ex-
pressions can be modified independently from one another.
The language is also designed to ease the composition of ar-
ray optimizations. Dedicated language constructs are pro-
vided for manipulating data layouts and memory allocation
policies. And rather than explicit array subscripts, the lan-
guage provides more abstracted iterators and additional con-
structs to manipulate iteration spaces—effectively making
loop bounds implicit. Figure 1 describes the syntax the lan-
guage. We will informally define each construct through
small examples.

Let us first present the abstraction of access functions,
then introduce the memory model and layout for the dif-
ferent types of arrays, and finally the NUMA mapping of
these.

2.1 Access Function Abstraction
A nested loop is abstracted as follows:

# First kernel of Gemver
with i as piter:
with j as siter:

A[i][j] = k1(A[i][j], u1[i], v1[j], u2[i], v2[j])

First, we need to distinguish iterators for parallel loops from
those for sequential loops. Hence, the with construct is used
to declare an iterator and the as piter and as siter con-
structs are respectively used to qualify the declared iterator
as used in a parallel and a sequential loop. Secondly, state-
ments are abstracted as functions performing element-wise

operations. That is, it takes as arguments and returns array
elements only. The order in which arguments are listed cor-
responds to their order of appearance in the source program.
Inductive definitions are made explicit by listing the target
array element as the first one in the list.

Arrays have a dimension and a layout, set at declaration
time. The layout of multi-dimensional may be transposed,
i.e., the storage ordering of its elements in memory may
follow a permutation of its dimensions.

2.2 Memory Model and Types of Arrays
Arrays may follow a virtual and a physical memory ab-

straction. The virtual memory abstraction is a single mem-
ory block whereas the physical memory abstraction may take
the form of a collection of memory blocks distributed over
different NUMA nodes. Virtual arrays are abstract views of
physical arrays, derived from the latter through a specific
declaration construct.

Physical arrays match the row-major layout of C arrays.
Arrays of the source code processed by Pluto are mapped
to physical arrays when generating the intermediate lan-
guage from the Pluto output. Virtual arrays insert a layer
of abstraction before physical indexing. For example, they
may reorder the dimensions of the attached physical array
so that indexes in the virtual array may implicitly trans-
lated into transposed index of the underlying physical array.
The Pluto output is analyzed to detect all occurrences of
transposed data accesses, and virtual arrays abstracting the
associated dimension reorderings are declared accordingly.
For instance, a column-major traversal of the form A[j][i]
will lead, in Ivie, to the declaration of a virtual array A_v
associated with the physical array A, such that the subscript
expression A_v[i][j] will implicitly refer to A[j][i]. This
form of array layout virtualization, and the distributed and
replicated patterns over NUMA node, are both inspired from
the alignment constructs in High Performance Fortran [2].

2.3 Basic Physical Array Declaration
There are two basic constructs for declaring a physical

array:

• array(Nd, dtype, [size1, .., sizeNd]), where Nd
is the number of dimensions, dtype is the data type
and sizek is the size of dimension k;

• replicate(name), where name is that of the array that
must replicated. The array declared using this con-
struct inherits the number of dimensions, the data
type, the dimensions sizes and the data layout of the
original array.

# Default declaration mode
A1 = array(2, double, [N,N])

# Declaration via replication of existing array
A2 = replicate(A1)

When converting from Pluto generated code, we only use
the array() declaration. The replicate() construct is used
for meta-programming.

2.4 Data Layout Management
The only layout transformation currently supported is the

transposition. Transpositions can be performed using explic-
itly transposed copies or loop permutations. Loop permu-
tations can be mainly handled through interchanging with



〈iter type〉 ::= piter | siter | cpiter

〈phy array decl〉 ::= 〈identifier〉 = array( 〈integer〉 , 〈datatype〉 , [ 〈size〉 (, 〈size〉)* ])

| 〈identifier〉 = replicate( 〈identifier〉 )
| 〈identifier〉 = transpose( 〈identifier〉 , 〈integer〉 , 〈integer〉 )

〈virt array decl〉 ::= 〈identifier〉 = vtranspose( 〈identifier〉 , 〈integer〉 , 〈integer〉 )
| 〈identifier〉 = select([ 〈condition〉 , 〈identifier〉 ] (, [ 〈condition〉 , 〈identifier〉 ])* )

〈array elt〉 ::= 〈identifier〉 [ 〈subscript〉 ]([ 〈subscript〉 ])*

〈statement〉 ::= 〈array elt〉 = 〈func name〉 ( 〈array elt〉 (, 〈array elt〉)* )

〈compound〉 ::= with 〈iterator〉 as 〈iter type〉 : (〈compound〉 | 〈statement〉)

Figure 1: Ivie IL main syntax

constructs. In addition, we need other constructs to combine
them with the manipulation of access functions and perform
explicitly transposed copies.

To control which dimensions are the subject of a permu-
tation, array dimensions are ranked in a numerical order
with respect to their depth; an N -dimensional array has its
dimensions ranked from 1 to N from the outermost to the
innermost dimension. Based on this principle, there are two
types of transposition constructs for each type of array:

• transpose(name, rank1, rank2) for transposing a phys-
ical or virtual array into a physical array. This also
serves as a physical array declaration;

• vtranspose(name, rank1, rank2) for transposing a
physical or virtual array into a virtual array.

In both cases, name is the name of the array to be trans-
posed, and rank1 and rank2 are ranks denoting the dimen-
sions to be permuted.

Here is an example of the transposition of a 2-dimensional
array A into a physical array B:

# Transposition stored in a physical array
B = transpose(A, 1, 2)

We specify ranks 1 and 2 to indicate the corresponding di-
mensions to be permuted. The order of specification for
rank1 and rank2 is interchangeable, meaning that trans-
pose(name, rank1, rank2) is interpreted exactly the same
way as transpose(name, rank2, rank1).

This was trivial example. Now, let us assume that array A
is a 4-dimensional array for which we want to permute ranks
1 with 3 and 2 with 4. The principle remains the same but
requires successive calls to transpose() as in the following
sample:

# Permuting several dimensions of the same array
A2 = transpose(A, 1, 3)
B = transpose(A2, 2, 4)

Note that if we specify B = transpose(A, 2, 4) instead
of B = transpose(A2, 2, 4), the resulting array corresponds
to array A with only ranks 1 and 3 permuted. Therefore,
when permuting several dimensions of the same array, we
need to make sure that at each step, the array of origin stores
the latest accumulation of permutations. As memory man-
agement is made explicit, it is forbidden to encode such ac-
cumulation of permutations as B = transpose(transpose,
2, 4), 1, 3).

These principles also apply to vtranspose().
While their syntactic use is similar, using either trans-

pose() or vtranspose() have different impact on the gener-
ated code. Using transpose() generates an explicitly trans-
posed copy into a new array and its corresponding function
accesses are modified accordingly. Generated code for ac-
cumulated permutations is to be optimized and the loops
performing the copies should be properly scheduled. On the
other hand, as vtranspose() creates a virtual array that
will not appear in the generated code, using it allows us to
abstract and modify the access function of an array.

2.5 Data Placement for NUMA
We currently handle two types of placement policies: in-

terleaved allocation and allocation on a specific nodes. Data
placement can only be applied to physical arrays as they
are stored in the NUMA memory model. At this stage
of the language design, these directly correspond to their
respective Linux NUMA API functions [6] (numa_alloc_-
interleaved() and numa_alloc_onnode()).

2.5.1 Interleaving
Interleaved allocation of an array consists in mapping mem-

ory blocks of size Nb across a set of NUMA nodes in a
round-robin fashion. The numa_alloc_interleaved() func-
tion performs this on all nodes available using page sizes only
(4096 bytes). In addition, we would like to support any size
multiple1 of a page size as we consider implementing an ex-
tended version of numa_alloc_interleaved(). Therefore,
considering that the minimum block granularity required is
4096 bytes, we introduce:

• map_interleaved(granul), where granul > 0, so that
Nb = 4096 × granul. The following code sample is an
example:

# Distribution of each page
A.map_interleaved(1)

# Distribution by pairs of 2 pages
B.map_interleaved(2)

2.5.2 Allocation on Specific Node
Allocating a physical array on a specific node is done using

the construct:
1Data mapping in the memory necessarily involves page
sizes; even when wanting to map a single element (e.g, 8
bytes), the entire page size containing the element will be
mapped. Hence, we can only handle multiple of page sizes.



• map_onnode(id) where id is a node id, as shown in the
following sample:

# Allocation of A on node 1
A.map_onnode(1)

# Allocation of B on node 2
B.map_onnode(2)

2.5.3 Data Replication on Several Nodes
Data replication on several nodes requires (i) using repli-

cate() and onnode(), (ii) introducing as cpiter, a new
category of iterators and (iii) virtual arrays declared using
a special construct:

• select([cond1, name1], ..., [condN, nameN])

where [condx, namex] is a pair associating a condition condx
to an array namex. The number of arguments is equal to the
number of NUMA nodes considered. Conditions are speci-
fied with respect to the NUMA system’s topology and addi-
tional thread scheduling.

Supposing that we need to replicate array A on 2 NUMA
nodes, Listing 1 provides a full example of how to do so.
Listing 2 is an example of generated code.

This example shows the complementary usage of virtual
arrays besides abstracting function accesses. As one purpose
of replicating the same array on several node is to avoid
threads performing remote accesses, in a parallel loop, we
need to modify the control flow so that each thread accesses
the closest copy provided that thread migration is disabled.
Using select() allows us to concisely abstract such mod-
ification. In the condition, {it} denotes an iterator that
is the same across all conditions of the same select(). It
may also denote the retrieval of a thread ID using an API
function. In order to identify to which iterator {it} actu-
ally corresponds in the loop of interest, as cpiter is used.
Nevertheless, we look forward to provide a more robust ab-
straction than {it} to be able to handle a wider range of
applications. Several virtual arrays declared using select()
within the same statement must either have the same set of
conditions, or a least a subset of the greatest set of condi-
tions that exists.

Remarks. In theory, any piter can be transformed into
a cpiter, meaning that any parallel dimension in the same
nested loop is eligible for such an iterator characterization.
Furthermore, due to the composability of array declarations,
an array associated to a condition can also be a virtual array
declared using select(). In practice, these would definitely
require optimizations but in the case of SCoPs, this is un-
likely to occur. Therefore, we omit the extended syntax that
allows us to match a cpiter to virtual array and we assume
only one cpiter per loop.

Preventing threads from performing remote accesses can
be done in different ways. We currently limit ourselves to
the method shown in Listing 2, despite not being the most
optimal. Other more efficient methods are considered as
future work.

2.6 Implementation and Code Generation
Ivie IL perfectly fits into the syntax of Python. Thus, it

is implemented similarly to a domain-specific language em-
bedded into Python for quick usage as a meta-programming
language. Even though our implementation is close to deep
embedding, as an intermediate language, we have a slightly
different approach.

A = array(2, double, [N,N])
A2 = replicate(A)

A.map_onnode(0)
A2.map_onnode(1)

a = select([({it} % 2) == 0, A], [({it} % 2) != 0, A2])

with i as cpiter:
with j as siter:

... = f(a[i][j])

Listing 1: Allocation of A and A2 respectively on node 0
and node 1 and consequence on the access function.

#pragma omp parallel for private(j) schedule(static,1)
for (i = 0; i < N; i++) {
if ((i % 2) == 0) {

for (j = 0; j < N; j++)
... = A[i][j];

}
if ((i % 2) != 0) {

for (j = 0; j < N; j++)
... = A2[i][j];

}
}

Listing 2: Example of code generated from the Ivie code in
Listing 1

We reuse the existing expression tree, that is, the C ab-
stract syntax tree (AST) already provided after parsing the
source code using pycparser [9]. More precisely, we parse
the Ivie program to generate its corresponding Python AST
using RedBaron [11], a parser and full syntax tree (FST)
generator for Python programs. This allows us to perform
automatic IL transformations in the near future. When the
Ivie program is transformed and ready for code generation,
its FST is analyzed for extracting any information concern-
ing arrays. Then, the C AST is modified with respect to the
extracted information. Finally, we generate the resulting
OpenMP C code.

Remark. As stated in Section 2.1, the order of appear-
ance of arguments corresponds to the order in which array
elements appear when traversing the C AST. In an induc-
tive definition, the target array is positioned as the first ar-
gument. Consequently, modifying an argument in Ivie code
results into the modification of the array element whose po-
sition matches in the C AST.

RedBaron’s functionalities ease our decoupling principle.
Indeed, we do not need to explicitly traverse the Python
AST to extract information; we can directly find different
categories of nodes using pattern matching. Thus, when
wanting to extract any information on array allocation, we
just need to find the list of nodes containing the string
“map ”. We then identify to which array name the alloca-
tion policy is associated and we store it in the data structure
corresponding to the concerned array.

3. A MODIFIED PLUTO TOOL FLOW
Our IL can be integrated into the flow of Pluto to en-

able NUMA-awareness and additional layout transforma-
tions. We simply need to generate an Ivie program from
a Pluto-generated code, exporting the relevant semantical
properties (starting with parallelism) from bands of per-



mutable dimensions exposed by the Pluto algorithm. To
simplify this process, we delimit array declarations and SCoPs
using pragmas. The tool flow is as follows (Pluto default
steps in italic):

1. Extract polyhedral representation using Clan.
2. Perform optimizations and parallelization.
3. Generate C code using CLooG.
4. Apply GCC preprocessing on the CLooG-generated code

to replace each #define by their actual statements.
5. Generate the Ivie program:

A. collect array declarations;
B. parse the preprocessed code;

and for each dimension in each band,

i. if the dimension is marked parallel, charac-
terize the Ivie iterator as piter,

ii. if not, characterize it as siter;

C. print output Ivie file.

6. [Currently handled by hand] Meta-program the desired
Ivie code transformation.

7. Parse the Ivie program and generate its Python AST
using RedBaron.

8. Parse the OpenMP C program and generate its C AST
using pycparser.

9. From the Python AST, collect all information concern-
ing arrays and store them in data structures, creating
sets of physical arrays and virtual arrays.

7. Proceed with C AST modification, using the Pluto-
generated code and the transformed Ivie meta-program.

8. Generate code from modified C AST.

We currently express Ivie code transformations through
manual (Ivie) meta-programming. This should be auto-
mated when the appropriate heuristics will be stabilized.
The present study can be seen as an important step towards
the design and implementation of such automated optimiza-
tions.

4. EXPERIMENTAL RESULTS
The purpose of this section is to present the effects of addi-

tional NUMA allocation and transposition in different appli-
cation scenarios. There is a clear separation between the op-
timizations handled by Pluto and those handled by Ivie IL.
Pluto is in charge of all control flow optimizations and par-
allelism extraction, whereas our post-pass implements data
placement on NUMA systems as well as the actual trans-
positions. Pluto outputs may be complex; hence we handle
affordable cases. The automated search for optimal solutions
involving, for instance, the time spent in any additional data
copying, or coupling NUMA decisions which additional run-
time specifications such as thread binding, is part of future
work.

We present case studies of several PolyBench [8] programs:
Gemver, Gesummv, Gemm and Covariance. The minimal
set of Pluto options are tiling for L1 cache, parallelism and
vectorization. All programs are compiled with gcc -O3 -
march=native which enables vectorization by default. We
execute them on a 2 sockets NUMA system with 36 Intel
Xeon cores E5-2697 v4 (Broadwell) at 2.30 GHz distributed
across 4 nodes (9 cores per node, L1 cache: 32K).

NUMA optimizations involve interleaved allocation and
data replications. We use simple guidelines to decide which
policy to choose:

• An array is replicated on all nodes if each thread per-
form read-only accesses on the entire array. As repli-
cating written arrays would require additional heuris-
tics to ensure data coherence, we do not yet handle
such cases.
• The remainder may be interleaved on all nodes, espe-

cially multi-dimensional arrays, to reduce traffic con-
tention.

Following this rule, Gemver appears to be the only program
in which we apply additional data replications.

Transpositions are performed at initialization time using
indexes permutation only. Although our framework sup-
ports transpositions at well-defined points in the control
flow, no such additional data copying was attempted in the
current set of experiments.

Some examples of meta-programs are provided in Ap-
pendix.

Gemver. We compare different Pluto-generated versions
of Gemver:

• The default output of Pluto;
• The addition of NUMA placement only, using replica-

tion and interleaved allocation;
• The addition of transpositions only;
• The addition of combined NUMA placement and trans-

position.

Moreover, we consider two Pluto outputs as our baselines:
the first is generated using the no fuse heuristic and the
second, the smart fuse heuristic. We do not consider the max
fuse option as it is not suitable for Gemver. Figure 2 shows
the speedup of each program with respect to the default
Pluto output considered.

The smart fuse version scales better that the no fuse ver-
sion. Indeed, the fusion of the two first loops favours cache
reuse. However, compared with a naive parallel version of
Gemver, the two Pluto outputs fare no better, meaning that
optimizing temporal locality only is not sufficient. As 10
cores is the threshold from which NUMA effects appear, we
can also see in Figure 2 that they poorly scale with 16 and
36 cores.

According to the aforementioned guidelines, we applied
the exact same NUMA placement in both outputs. While
this solution improves both, no fuse provides the best per-
formance with 36 cores. When using interleaved allocation
for an array, the different threads accessing it must perform
row-major accesses to preserve node locality as much as pos-
sible. This is the case with no fuse. With smart fuse, the
first loop is permuted in order to perform the fusion legally.
Despite enhancing cache reuse, as column-major accesses are
still performed, some node locality is lost.

Thread binding using OMP_PROC_BIND seem not to signifi-
cantly improve performance. It may even lower the speedup.
We noticed that when performing the same experiments
with NUMA placement based on replications only, the pos-
itive effects of thread binding were much more noticeable
despite less absolute speedup. Interleaved allocation there-
fore seem to inhibit the effects of thread binding as it may
reduce node locality per threads; in this case, thread migra-
tion may operate as a counterbalance.

On the other hand, layout transformations are better suited
to smart fuse as data reuse is much more enhanced. Fur-
thermore, this allows threads to perform row-major accesses
with respect to interleaved mapping. Yet such a systematic
transformation does not align well with the schedule of the



no fuse version, hence the degraded performance. Therefore,
at this level of optimizations, the best version of Gemver
appears to involve smart fuse, NUMA placement and trans-
position.

Additional data replications using memcpy add 0.3 ms to
all execution instances of versions with NUMA placement.
They therefore have a negligible impact on the performance
observed.

Figure 2: Speedups for different versions of Gemver. Exe-
cution instances with thread binding marked with [b]

.

Gesummv. Gesummv with no fuse and max fuse are our
Pluto baselines2. Results are depicted in Figure 3. Similarly
to the case of Gemver, optimized temporal locality alone
does not provide better performance than the naive parallel
version for Pluto-generated codes. These also scale poorly
without NUMA-aware placement. We applied interleaved
allocation, which brings a 3× speedup on 16 cores and 4×
speedup on all 36 cores. As we observed that thread binding
may not match with interleaved allocations, we consider ex-
ploring the effects of changing the granularity of interleaving
for further improvements.

Covariance. In this case, Pluto delivers much better
performance than the naive parallel version. We compare
versions with NUMA placement only (interleaved data al-
location), transposition as shown in Figure 4, and both to-
gether. Figure 5 shows that the main improvement on the
naive parallel version results from the transposition. How-
ever, applying the same transposition to the Pluto output
considerably hurt the program’s performance, similarly to
what we observe for Gemver with no fuse. NUMA alloca-
tions have little positive impact on the naive version and
none on the Pluto output, given that temporal locality al-
ready optimizes cache usage.

2No fuse and smart fuse heuristics result into the same gen-
erated code.

Figure 3: Speedups for different versions of Gesummv

// Initializing the transposition
for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

data[j][i] = ((DATA_TYPE) i*j) / M;

// Computation
#pragma omp parallel for private(i)
for (j = 0; j < _PB_M; j++) {
mean[j] = SCALAR_VAL(0.0);
for (i = 0; i < _PB_N; i++)

mean[j] += data[j][i];
mean[j] /= float_n;

}
#pragma omp parallel for private(j)
for (i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_M; j++)

data[i][j] -= mean[i];

#pragma omp parallel for private(j,k)
for (i = 0; i < _PB_M; i++)
for (j = i; j < _PB_M; j++) {

cov[i][j] = SCALAR_VAL(0.0);
for (k = 0; k < _PB_N; k++)
cov[i][j] += data[i][k] * data[j][k];

cov[i][j] /= (float_n - SCALAR_VAL(1.0));
cov[j][i] = cov[i][j];

}

Figure 4: Covariance with transposition of array data

Figure 5: Speedups for different versions of Covariance

Gemm. As shown in Figure 6, all versions scale very
well, but additional locality optimization and vectorization
in Pluto-based outputs considerably improve performance.
We measure the execution time of multiple untiled paral-
lel versions including two methods for eliminating column-
major accesses. The first version eliminates such accesses



Figure 6: Speedups for different versions of Gemm

through data transposition, and the second version is ob-
tained through loop interchange (ikj). Loop interchange is
also the transformation that Pluto performs, in addition to
tiling. On this machine, loop interchange seems more appro-
priate than data transposition on the naive parallel version.
We reproduced these experiments on two other machines:
a 4 core Intel Core i7-4910MQ CPU (Haswell) at 2.90GHz
and a 16 core Intel Xeon CPU E5-2660 (Sandy Bridge) at
2.20GHz. While we observed the same tendency on the
Haswell with or without the -O3 option, we noticed the op-
posite on the Sandybridge when disabling this option. This
is probably due to the lower AVX computation throughput
compared to memory bandwidth: the program (with these
optimizations) is definitely compute-bound on Sandybridge
and NUMA optimizations have little impact.

These results show that, on one hand, bandwidth-bound
programs that cannot be improved using Pluto’s default
heuristics (Gemver and Gesummv) do benefit from heuris-
tics on NUMA placement and transpositions. On the other
hand, programs already benefiting a lot from Pluto’s heuris-
tics do not require additional NUMA placement as most data
accesses hit the cache. Moreover, in some cases and depend-
ing on the machine, it seems wiser to rely on loop scheduling
transformations rather than data layout transformations.

These case studies show the advantages of complementing
polyhedral tools with placement heuristics on NUMA nodes
and transposition. NUMA placement tend to improve a pro-
gram’s scalability, especially from the threshold from which
the NUMA effect appears. On the other hand, transpo-
sition helps improving the absolute speed-up. Combining
both is an interesting alternative provided that further opti-
mizations are performed. Indeed, control flow modifications
introduced to incorporate more optimizations opened the
door for additional loop optimizations that we were not yet
able to implement.

Introducing Ivie IL in Pluto allows widening the range
of options for optimizing SCoPs, especially on NUMA sys-
tems. Through static analyses, optimization decisions could
be automatically provided. For NUMA optimizations, this
could reduce the need to handle all heuristics at execution
time.

5. FUTURE WORK
Our first experiments call for deeper investigation of the

interplay of data layout and schedule transformations, and
for the design and implementation of the associated heuris-
tics.

Control flow optimizations. For the moment, all con-
trol flow optimizations are left to Pluto. For greater impact,
we need to integrate complementary control flow optimiza-
tions on the IL itself. This has several advantages:

• Performing layout transformations may open the door
for further loop transformation such as fusion. On the
other hand, data replications as currently performed
definitely require some form of hoisting. More gen-
erally, the methods for handling replicated data may
generate as many loops as there are replicated arrays
and assign each loop to a thread group. Being able to
manipulate the control flow will allow us to generate
more efficient programs.

• Concerning replications again, the method involving
complementary hoisting may only be implemented in
a polyhedral framework if the condition is affine. Yet
replication conditions may depend on a built-in func-
tion (e.g., to retrieve the thread id, using a parallel
programming API). Such transformations are out of
the model’s scope, and are typically not supported by
compilers either. Thanks to the semantics of our IL,
we will be able to handle such optimizations.

More expressiveness for loop iterators. At this stage
of design, we distinguish iterators that are used in a parallel
or a sequential loop. Such distinction is based on explicit
parallelism exposed in the source code (with pragmas for
instance). However, when dealing with Pluto’s own internal
tree representation(s), some dimensions may be parallel yet
not exploited as a parallel loop, and some bands of dimen-
sions may carry permutability properties. We need to carry
these properties along the IL, to preserve the capability to
implement loop permutations or any other loop transforma-
tions.

Implementation. For more complex code transforma-
tions, a deeper embedding into Python may be considered,
instead of directly patching the existing AST. Indeed, mod-
ifications such as generating multiple loops, each one as-
signed to a thread group, may motivate the reconstruction
of a complete tree. Maintenance and greater flexibility of
the design are other motivations for such a refactoring.

Optimizations. Another aspect that must be taken into
account is the time spent in data copying when replicating
over several nodes. This depends on the machine and on
the way arrays are allocated. The same applies to explicit
transposition. We need to make sure that this does not
overshadow the program’s performance, and a model must
be developed to better assess the profitability of replication
and transposition. Polyhedral analyses may be leveraged to
do so. Provided a known number of threads and a static
thread scheduling, we can determine the set of elements ac-
cessed per thread, using the size of their loop chunk. Then,



we can choose which NUMA policy can be applied, for in-
stance, according to the guidelines listed at the beginning of
Section 4. If interleaved allocation is chosen, such informa-
tion can also help determining the interleaving granularity.
As for transpositions, we can determine different possible
schedules for explicit transpositions and their possible trans-
formation into implicit ones. Finally, using iterative compi-
lation and auto-tuning, we may determine the appropriate
choices for a given architecture.

6. RELATED WORK
Data placement using parallel languages. Optimiza-

tions for NUMA systems is a broad research topic. We there-
fore limit ourselves to closerly related work in programming
language design and implementation. One motivation for
handling NUMA placement in an intermediate language is
the lack of such support in existing parallel programming
languages. HPF, X10 or Chapel provide constructs for data
distribution across processes. Chapel also includes prelimi-
nary support for NUMA in its locale models; OpenMP only
provides the OMP_PROC_BIND environment variable to disable
thread migration; both mechanisms take action at execution
time only. One exception is GNU UPC [1], a toolset provid-
ing a compilation and NUMA-aware execution environment
for programs written in UPC. Very few languages allow data
distribution on NUMA nodes. This task is generally per-
formed with third party tools such as libnuma [6] or hwloc
[3]. Some attempts to fill this gap have been proposed for
OpenMP [17, 25, 33] and Intel TBB [32]. Yet none of these
have been integrated into the official language specifications.

Languages and efficient code generation. Ivie is not
to be considered, strictly speaking, as a new programming
language. Nevertheless, being implemented as meta-language
to model optimizations, it presents some similarity with sev-
eral other languages summarized in Table 1. Most of the pre-
sented languages target GPUs, except Halide [38] and Poly-
Mage [34] but these do not provide explicit constructs for
NUMA placement. Vobla [15] and Loo.py [30] appear to be
the only languages that provide explicit constructs for per-
forming layout transformations. However Loo.py provides
additional layout transformation such as padding. Ivie is
the only language that is used post-polyhedral techniques;
besides the non polyhedral Halide, PolyMage and Xfor are
fully polyhedral-based and Loo.py has access to polyhedral
optimization by means of the islpy library. As for Vobla
and Pencil, the latter implements domain-specific trans-
formations and compiles to the latter, Pencil serving as an
intermediate language for Vobla to generate high perfor-
mance GPU code using PPCG [39]. Other non polyhedral-
related solutions have been proposed to take into account
data layout transformations, such as Raja [10] and Kokkos
[5]. These tools target both CPUs and GPUs, and the ability
to apply specific layouts to both architectures is crucial. Fur-
thermore, Kokkos proposes an interface with hwloc, mostly
for retrieving information on the topology and performing
thread binding.

The approach of combining the polyhedral representation
with another intermediate representation has also been ap-
plied in the CHiLL compiler targeting both GPUs and mul-
ticore. Indeed, Zhang et al. [41] compose AST transforma-
tions to polyhedral transformation for optimizations such as
loop unrolling or partial sum for higher-order stencils.

Parallel optimizations in the polyhedral model. Be-
ing able to handle parallel programs within the polyhedral

model has been the subject of several investigations. Ba-
sically, three main approaches have been used. The first
approach is to use the model as is; Basupalli et al [14]
consider the parallel construct omp for as a program trans-
formation that assigns new time-stamps to instances of the
program and Darte et al. [23] propose a method for live-
ness analysis where conflicting variables are computed based
on the notion of partial order and the happens-before rela-
tionship that can be computed with the ISCC calculator.
The second approach is characterizing an analyzable sub-
set for a specific parallel language; indeed, Yuki et al [40],
Pellegrini et al. [35] and Cohen et al [22] respectively de-
fined polyhedral subsets of X10, MPI and OpenStream [37].
The last approach is extending the model, which has been
proposed by Chatarasi et al [20].

Parallel intermediate languages. Despite being cou-
pled with the polyhedral model in this paper, we are not
working towards a polyhedral-specific intermediate language.
We rather aim at general-purpose compilation of parallel
languages, following the steps of INSPIRE [26] or SPIRE-
d [28]. INSPIRE is the intermediate representation of the
Insieme compiler [4] and SPIRE is a methodology for in-
troducing the semantics of parallel programs in existing in-
termediate representations; proofs of concepts for these have
been demonstrated for compilers such as PIPS [27] or LLVM
[29]. Such intermediate representations abstract the seman-
tics of parallel programs, i.e. parallel constructs, barriers or
communications, but none of them handle data placement
or layout transformation.

Memory optimizations. As for optimizations targeting
memory, tools such as Bee+Cl@k [12] or SMO [16] tackle
the reduction of memory footprint through intra- or even
inter-array memory reuse. Clauss and Meister [21] also
perform layout transformation to enhance spatial locality
but our work is much more similar to that of Lu et al. [31];
it focuses on layout transformations for locality on NUCA
(Non-Uniform Cache Access) multiprocessors. In this work,
the polyhedral model is first used to analyze indexes and
array reference functions, then layout optimizations are ap-
plied.

7. CONCLUSION
We highlighted the benefit of introducing NUMA-awareness

and additional layout transformations to a state-of-the-art
polyhedral flow. In particular, we demonstrated the feasi-
bility of a static placement heuristic matching the NUMA
topology. We illustrated these results on a modified version
of the automatic parallelizer and locality optimizer Pluto,
integrating it with Ivie, a specifically-designed parallel inter-
mediate language to model such layout and mapping trans-
formations. In Ivie, arrays are first-class data structures on
which operations such as data placement or transposition
can be performed. Future work involves being able to inte-
grate more closely with control flow optimizations, adding
expressiveness for further abstracting a diverse range of loop
iterators, and a designing a more robust implementation of
the code generator supporting complex compositions of op-
timizations.
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APPENDIX
A. GEMVER SMART/NO FUSE WITH NUMA

PLACEMENT AND TRANSPOSITION
The following is Gemver smart fuse with NUMA place-

ment and transposition meta-programmed in Ivie.

# Default declarations
A = array(2, DATA_TYPE, [n, n])
u1 = array(1, DATA_TYPE, [n])
v1 = array(1, DATA_TYPE, [n])
u2 = array(1, DATA_TYPE, [n])
v2 = array(1, DATA_TYPE, [n])
w = array(1, DATA_TYPE, [n])
x = array(1, DATA_TYPE, [n])
y = array(1, DATA_TYPE, [n])
z = array(1, DATA_TYPE, [n])

# Meta-programmed declarations
A_v = vtranspose(A, 1, 2)
u1_1 = replicate(u1)
u1_2 = replicate(u1)
u1_3 = replicate(u1)
u2_1 = replicate(u2)
u2_2 = replicate(u2)
u2_3 = replicate(u2)

A.map_interleaved(1)
w.map_interleaved(1)
x.map_interleaved(1)
z.map_interleaved(1)
u1.map_onnode(0)
u1_1.map_onnode(1)
u1_2.map_onnode(2)
u1_3.map_onnode(3)
u2.map_onnode(0)
u2_1.map_onnode(1)
u2_2.map_onnode(2)
u2_3.map_onnode(3)

# {it} denotes here the retrieval of thread IDs
u1_s = select([0 <= {it} <= 8, u1],

[9 <= {it} <= 17, u1_1],
[18 <= {it} <= 26, u1_2],
[27 <= {it} <= 35, u1_3])

u2_s = select([0 <= {it} <= 8, u2],
[9 <= {it} <= 17, u2_1],
[18 <= {it} <= 26, u2_2],
[27 <= {it} <= 35, u2_3])

# Transposed initialization of A using A_v
with i as siter:
with j as siter:

A_v[i][j] = init()



# ... other initializations

# Tile dimension with t2 for t5
# Tile dimension with t3 for t4
with t2 as cpiter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

A[t4][t5] = f3(A[t4][t5], u1_s[t4], v1[t5],
u2_s[t4], v2[t5])

x[t5] = f3(x[t5], A[t4][t5], y[t4])

with t2 as piter:
with t3 as siter:

x[t3] = f5(x[t3], z[t3])

with t2 as piter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

w[t4] = f9(w[t4], A[t4][t5], x[t5])

Gemver no fuse with NUMA placement and transposi-
tion is almost the same code. The following code shows the
differences.

# Tile dimension with t2 for t4
# Tile dimension with t3 for t5
with t2 as cpiter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

A[t4][t5] = f3(A[t4][t5], u1_s[t4], v1[t5],
u2_s[t4], v2[t5])

# Tile dimension with t2 for t5
# Tile dimension with t3 for t4
with t2 as piter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

x[t5] = f7(x[t5], A[t4][t5], y[t4])

B. GESUMMV MAX/NO FUSE WITH NUMA
PLACEMENT

The following is the no fuse version.

# Default declarations
A = array(2, DATA_TYPE, [n, n])
B = array(2, DATA_TYPE, [n, n])
tmp = array(1, DATA_TYPE, [n])
x = array(1, DATA_TYPE, [n])
y = array(1, DATA_TYPE, [n])

# Meta-programmed mapping
A.map_interleaved(1)
B.map_interleaved(1)

with t2 as piter:
with t3 as siter:

y[t3] = f1()

with t2 as piter:
with t3 as siter:

with t4 as siter:
with t5 as siter:

y[t4] = f5(B[t4][t5], x[t5], y[t4])

with t2 as piter:
with t3 as siter:

tmp[t3] = f7()

with t2 as piter:

with t3 as siter:
with t4 as siter:
with t5 as siter:
tmp[t4] = f11(A[t4][t5], x[t5], tmp[t4])

with t2 as piter:
with t3 as siter:

y[t3] = f13(tmp[t3], y[t3])

The max fuse version has the same NUMA mapping but
fuses all loops as follows:

with t1 as piter:
with t4 as siter:

y[t4] = f1()

with t3 as siter:
with t4 as siter:
with t6 as siter:
y[t4] = f4(B[t4][t6], x[t6], y[t4])

with t4 as siter:
tmp[t4] = f5()

with t3 as siter:
with t4 as siter:
with t6 as siter:
tmp[t4] = f8(A[t4][t6], x[t6], tmp[t4])

with t4 as siter:
y[t4] = f9(tmp[t4], y[t4])

C. PLUTO-GENERATED GEMM WITH TRANS-
POSITION

# Default declarations
C = array(2, DATA_TYPE, [ni, nj])
A = array(2, DATA_TYPE, [ni, nk])
B = array(2, DATA_TYPE, [nk, nj])

# Meta-programmed declaration
B_v = vtranspose(B, 1, 2)

# Initializations
with i as siter:
with j as siter:

B_v[i][j] = init()
# ... other initializations

with t2 as piter:
with t3 as siter:

with t4 as siter:
with t5 as siter:
C[t4][t5] = f3()

with t2 as piter:
with t3 as siter:

with t4 as siter:
with t5 as siter:
with t7 as siter: # t7 is interchanged with t6

with t6 as siter:
C[t5][t6] = f9(C[t5][t6], A[t5][t7],

B[t6][t7])


