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Abstract—We revisit the Wilson-Dirac operator, also referred
as Dslash, on NUMA manycore vector machines and thereby seek
an efficient supercomputing implementation. Quantum Chro-
moDynamics (QCD) is the theory of the strong nuclear force
and its discrete formalism is the so-called Lattice Quantum
ChromoDynamics (LQCD). Wilson-Dirac is the major com-
puting kernel in LQCD, where a special attention is paid to
large scale simulations. The corresponding computing demand
is tremendous at various levels from storage to floating-point
operations, thus the crucial need for powerful supercomputers.
Designing efficient LQCD codes on modern (mostly hybrid)
supercomputers requires to efficiently exploit all available levels
of parallelism including accelerators. Since Wilson-Dirac is a
coarse-grain stencil computation performed on a huge volume
of data, any performance and scalability related investigation
should skillfully address memory accesses and interprocessor
communication overheads. In order to lower the latter, explicit
shared memory implementations should be considered at the
level of a compute node, since this will lead to a less complex
data communication graph and thus (at least intuitively) reduce
the overall communication latency. We focus on this aspect and
propose a novel efficient NUMA-aware scheduling, together with
a combination of the major HPC strategies for large-scale LQCD.
We reach nearly optimal performances on a single core and
a significant scalability improvement on several NUMA nodes.
Then, using a classical domain decomposition approach, we
extend our scheduling to a large cluster of many-core nodes, thus
illustrating the global efficiency of our hybrid implementation.

I. INTRODUCTION

Quantum ChromoDynamics (QCD) [23], the theory of the
strong nuclear force which is responsible for the interactions of
nuclear particles, can be numerically simulated on massively
parallel supercomputers using the Monte Carlo paradigm and
the lattice gauge theory (LQCD) approach (see Vranas et al.
[22]).

A typical LQCD simulation workflow applies basic linear
algebra computations on a huge number of variables. The
major LQCD kernel is the inversion of the Dirac operator,
which is an important step during the synthesis of a statistical
gauge configuration sample. Indeed, in the Hybrid Monte
Carlo (HMC) algorithm [20], it appears in the expression of
the fermionic force, used to update the momenta associated
with the gauge fields along a trajectory. The Wilson-Dirac
matrix is sparse and implicit (i.e. not in the form (a;j)),
thus iterative solvers are the main option for its inversion. In
addition, some sensitive scenarios bring up almost null eigen-

values, which exacerbates numerical instability and pushes far
away the required number of iterations to reach convergence.
Moreover, such a numerical sensitivity justifies the importance
of a double precision computation. Some authors consider so-
called mixed-precision [5], which sacrifices the precision of
the core computation, while keeping double precision for the
convergence criterion. In the presence of very small eigenval-
ues, thus a ill-conditioned Wilson-Dirac matrix, the iteration
process will be likely to diverge or the way to convergence will
be noticeably longer (too many iterations). Mixed precision is
mainly motivated by the desire to use single precision, which
yields the best performances with GPUs, and also with CPU
through larger vector registers and lower memory bandwidth.
However, the penalty from the loss of numerical robustness
might not be affordable when its comes to sensitive LQCD
scenarios like the ones related to very small pion masses. For
all the aforementioned reasons, the need for efficient high-
precision implementations of the Dirac operator is on the
spotlight of both the HPC and the LQCD communities.

A common way to parallelize LQCD applications is to
follow the domain decomposition paradigm, which means
to partition the lattice into sublattices and then assign each
sublattice to a computing node (see [5], [14]). This yields a
standard SPMD model, which is then mapped onto a given
parallel machine. Thus, providing an efficient single node
implementation of kernel computations in LQCD is a valuable
contribution. In case of multicore or manycore nodes, the
impact of optimizing the computation following a shared
memory approach is that the communication graph related to
data exchanges (mostly through MPI) will be smaller with less
connections. Thereby, the interprocessor communication over-
head should be significantly lowered. This is very important
for large scale LQCD on supercomputers, where each node has
to communicate with its 8 “neighbors” (stencil computation),
thus the unacceptable communication overhead usually ob-
served in that context. Number of authors have studied LQCD
implementation on various kinds of supercomputer [22], [4],
[18]. However, the efficiency of LQCD frameworks on large
clusters is likely to be mixed, sometimes unacceptable. The
main reason is that, current and future supercomputers are
potentially powerful, but all levels of parallelism need to be
skillfully harnessed in order to harvest a significant fraction
of this noticeable potential. In addition, memory accesses



and data exchanges, never counted on the theoretical peak
performance, are dominant in LQCD computations.

For the critical case of solving Wilson-Dirac system, a
domain decomposition approach associated with the deflation
technique (related to small eigenvalues) is studied by Luscher
in [14]. A mixed-precision solution accelerated with GPUs
is proposed by Clark et al. [5]. A hybrid threaded-MPI
approach is presented in [18] by Smelyanskiy et al. QCD
implementations on the IBM-CELL are reported and discussed
in [3], [9], [19], an a dedicated cluster of CELLs is presented
in [15] by Pleiter. An implementation on Intel Xeon Phi by Joo
et al. can be found in [10]. This panorama will be extended
and detailed in the related work section.

The main argument of this paper is that, the way to get the
maximum efficiency of a supercomputer is to seriously focus
on the compute node and harness all performance related units
and mechanisms. In addition to lower data communication
overhead because of less complex interprocessor exchanges,
data redundancy is also reduced by an explicit shared memory
implementation on local nodes. This is the basis of our main
contribution from this work, where we provide efficient strate-
gies for memory and data management, vector computing, and
multithreading, all illustrated by very promising experimental
results. Then, we propose a novel efficient NUMA-aware
scheduling in order to improve the scalability on NUMA
systems. We focus on a single evaluation of the Wilson-Dirac
operator, also called Dslah. Since Wilson-Dirac inversion is
exclusively done through iterative approaches, making each
iteration faster should certainly improve the overall perfor-
mance, beside those approaches which try to reduce the
number of iterations through purely numerical techniques (not
our concern here). In addition to our factual achievements, this
paper aims at providing a pedagogical and instructive HPC
material related to high performance LQCD.

The rest of the paper is organized as follows. The next
section provides fundamental LQCD background and com-
puting considerations. Sections III discusses basic computing
considerations, followed by key HPC facts related to large-
scale LQCD in section IV. Related works are presented in
section V. Our methodology and implementation efforts, to-
gether with performance results, are presented in section VI
for the basic vector multithreaded implementation, in section
VII for NUMA-aware scheduling, and in section VIII for
MPI extension. Experimental results on a supercomputer are
provided in section IX. Section X outlines some future works
and concludes the paper.

II. LQCD BACKGROUND AND COMPUTATION

LQCD models the time-space universe as a four dimen-
sional grid. In practice, a regular bounded grid is consid-
ered through a subset of N%, which can be represented as
{0,1,---,L;—1}x{0,1,--- , L, —1}x{0,1,--- , L, —1} x
{0,1,---,L,—1}, where Ly, Ly, L,, and L, are the length of
each dimension respectively. The size of the lattice for a given
scenario, commonly written in the form L; X Ly X Ly x L, is
somehow correlated with the underlying space density. That

is why large-scale LQCD is a serious target for cutting-edge
investigations in particle physics. Each point x of the lattice,
commonly referred as a site, is connected to its eight neighbors
rte;,1=1,2 3,4, where e; are the vector of the canonical
basis of N*, and each +e; operation is performed modulo L;
on the i*" component. This yields a regular symmetric graph.

Five 4 x 4 special matrices, called Dirac ~y-matrices, are
defined below
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The Wilson-Dirac operator can be expressed as follow:

Dip(z) = Ap(z) —

3
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where

e I, is the identity matrix of order n,

e ¢, is the pu'" vector of the canonical basis of {0, 1}4,

e Aisa 12 x 12 complex matrix of the form al12+ (v ®
vs5), where «, 3 are complex coefficients and v a 3 x 3
complex matrix,

e x is a given point of the lattice (a site), which is a finite
subset of N4,

1 is an array over the lattice (called quark field or Wilson
vector), and for each site x, 1(x) is a 12-components
complex vector (called spinor) ,

o Ug, is a3 x 3 complex matrix (called gluon field matrix,
gauge matrix, or SU3 matrix), which is associated to the
link (z,z +e,), and also to the reverse link (z + e, z),

e ® is the matrix tensor product

o AT = AT (ie. transpose of the conjugate matrix)

For a given quark field 1, D1 is obtained by computing
Di(z) for all sites of the lattice, and the result is also a
quark field of the same length. Equation (4) shows that D (x)
is a linear combination of the components of ¢ (z). Thus,
it is consistent to see Dy as a matrix-vector product, and
thereby consider D as an implicit square matrix (the Wilson-
Dirac matrix). This matrix-product, sometimes referred in
the literature as Wilson Dslash operation (WD), is the most
time consuming kernel, as it involves a significant amount of
floating point operations on large lattices and is performed
very frequently.



Solving a linear system, whose the principal matrix is the
Wilson-Dirac matrix is an important LQCD operation that is
performed several times along a trajectory. Since the Wilson-
Dirac matrix is implicit and sparse from its specification,
iterative solvers are so far the only considered approaches to
solve the corresponding linear system, called the Wilson-Dirac
equation. In addition, for some specific but important physics
parameters, the matrix is ill-conditioned, which severely in-
creases the number of iterations to reach an acceptable level of
convergence. This noticeable repetition of the Dslash operation
clearly justifies the need for very fast implementations.

III. BASIC AND TYPICAL COMPUTING CONSIDERATIONS

There are number of fundamentals to know or consider
when it comes to LQCD programs. We describe some of them.

A. Data complexity

All data structures are based on the type complex, which
means a structure composed with two floating point numbers.
Then, all arithmetic operations follow their corresponding
specifications on complex numbers. The update of one spinor
involves eight input spinors and the eight SU(3) matrices of
the corresponding links. This yields, for the computation of
one spinor, a volume of data (in bytes) given by

8(12x2xp+9x2xp)=336p, (5)

where p is the size of the actual floating point number, which
is typically 4 bytes (resp. 8 bytes) for single (resp. double)
precision, 2 X p stands for the derived complex type. We will
later see that the choice between single precision and double
precision is not only a matter of volume. For a given lattice
of size L = L; x L, x Ly, x L, we see that 336 x L x p
bytes of data will be moving within the computing system. The
PetaQCD project [1], for instance, was targeting 256 x 1283
double precision simulations, which means 336 x 256 x 1283 %8
bytes = 1.45 x 10'2 bytes = 1.45 Terabytes of effective data
transfer at various levels. This aspect sometimes appears as the
main reason for using large clusters, since the aggregation of
available (distributed) memories should be sufficient to house
all working data.

B. Organization of the Computation

Computing Wilson-Dslash is typically done by visiting the
whole lattice while updating the corresponding spinor at each
site. This yields one dependence-free main loop, whose the
body implements equation (4). The effective scheduling of
this main loop, if different from the natural 4D lexicographic
order, should be managed with the aim of addressing explicit
data reuse or content sharing among the caches, following a
skillful analysis of the data dependence graph. Unfortunately,
the coarse granularity of the computation makes the potential
of this effort rather marginal in practice, unless it goes along
with an explicit mechanism that implements a specific data
management strategy [18].

Concerning the calculation of Di)(x) following equation (4),
some factorizations should be applied in order to put in

common the major floating point operations. Indeed, let first
observe that a relation of the form v = (I, —sv,,)u, where u, v
are two 4-components complex vectors and s = £1, can be

computed as follows (for s = 1, the case s = —1 is similar):

pn=0 w=1

U1:U1+U3 1}1:U1+iU4

V2 = U + Uy U2:U2+iU3

U3 =0 U3 = —1iUo

Vg4 = V2 Vg4 = —1U1 (6)
=2 w=3

V1 = U] + Ug U1 = uq + tus

Vg = U2 — U3 UQZUQ—iU4

V3 = —Vg V3 = 71"01

Vg4 =V Vg = 1V

We see from (6) that only the first two components v; and
ve need to be computed, and afterwards the remaining two
components vs and v, are derived by considering a factor
in {1,—1,7,—4}. This saving is the major computing benefit
of scheme (6), especially when a matrix-vector product is
involved in between as we are going to illustrate in our
main calculation. Considering the so-called normal factors
decomposition of the tensor product and the associated com-
mutativity [21], we get

Iy — s7,) @U ((Is=sv) @ L) La@U) (1)
= (I4@U)((Is —syu) @13) (8)

In (4), each term of the form [(Iy — s7,) ® U]y (x) becomes

[(Is —sv,) QU (z) = (Ia@U) (Is — s74) @ I3)(z) 9)

By (virtually) block partitioning the 12-components vector
Y(x) (we use ¢ for simplicity) into 3-components vectors
(sometimes referred as su3 vectors) ’(/J(k) = (Vs Vt1, Yrt2),
for k = 1,---,4, we get a 4-components block vector
expressed by ¢ = (1,2 ) ) Using this block
representation, we get (14 — s7,) @ I3)Y = (I4 — 57,)0,
which can then be calculated using (6), provided we replace
uy, by ¥, Having thereby evaluated w = (Iy — 57,,)1, we
finally have to compute ¢ = (I4 ® U)w, which is equivalent
to (1, 0@, @ W) = (Uw®, Uw® Uw®) Uw®).

C. Even-odd Partitioning

Noticing that the update of a given site (¢, z,y, z) involves
eight sites (¢, x,y,2) +e;, i =0,1,2,3, we see that summing
up all the components of two dependent sites respectively
yields a difference of 1. Therefore, we might think of partition-
ing the lattice into two subsets, based on the parity of the sum
of their components, thus the odd (resp. even) sublattice. The
main advantage of this partitioning is that data dependencies
are only between the odd sublattice and the even sublattice,
with the gauge matrices seated on the corresponding links.
This organization simplifies the macroscopic data exchanges
and improves read/write data locality. There is less attention
in the literature for gauge matrices sharing, we address this in
our work as we will see.



D. Gauge Matrices Storage and Management

There is one gauge matrix per link in the lattice, thus 4L
gauge matrices for a lattice of length L, since each site has
8 neighbors and the graph is symmetric. This yields a huge
amount of data that need to be stored and managed efficiently
since there is poor reuse of gauge matrices. Indeed, each
of them is used only two times (one time in some cases),
whereas each spinor is used eight times. Thus, gauge matrices
are serious source of (compulsory) cache misses, waste of
memory bandwidth and cache pollution. The later is due to
the fact a gauge matrix, whose size is 9 x 2 x {4, 8}, does
not fully covers typical 64-bits cache lines. In order to reduce
the impact of this, and maybe to simplify the indexing, the so-
called gauge copy is applied. The idea is to store contiguously
the 8 gauge matrices of each site, which explicitly doubles the
volume of data but yields a significant (memory) performance
improvement. Moreover, since memory accesses are dominant
in any case, the so-called SU(3)-reconstruct or 2-rows gauge
field compression [5] might be considered. Indeed, the third
row of a SU(3) matrix can be reconstructed (on the fly) by
taking the complex conjugate of the cross product of the first
two rows (i.e. us = ui A us).

E. Important Numerical Aspects

High-precision LQCD simulations require a special atten-
tion regarding numerical issues, we point out two of them.
First, the reversibility property, which can be seen as a kind of
numerical determinism, aims at ensuring that the calculations
made along a trajectory are predictable, and the consistency
of the computed results remains whether flowing forward or
backward. Thus, every computation scheme should preserve
this reversibility, which restriction might prevent from consid-
ering whatever efficient but too specific or “black-box”-like
subroutines.

For several reasons including the reversibility and the quality
of the results for better estimates of the targeted physical
quantities, the need for highly accurate calculations is relevant,
thus the use of double precision computations, which is strictly
the case for our investigations in this paper. The temptation
of single precision looks strong, as it reduces (by half) the
volume of data and leads to higher processor performance as
we will detailed later. A mixed precision [5] approach might
be an acceptable compromise.

As previously mentioned, for some particular physics parame-
ters, the Wilson-Dirac matrix is known to have almost null
eigenvalues, which seriously complicates its inversion. The
case would be certainly worst with single or mixed precision.
Thus, using double precision (or higher if possible), even if
more computationally challenging, is the price for robustness,
accuracy and stability.

IV. KEY HPC FACTS RELATED TO LARGE-SCALE LQCD

Here we point out a number of important facts that should be
carefully considered in order to harvest an increasing fraction
of the available computing power.

Let start by pointing this performance of 0.5 GFlops/core

reported by G. Grosdidier [8] when running tmLQCD [11]
on 10,000 cores of the CURIE-FAT machine [7]. The machine
is based on Xeon X7560 8C 2.26GHz processor, thus a peak
of 9 GFlops per core. We then see that each core is running at
5% if its theoretical peak performance, which is unacceptable.
Among the reasons why large-scale LQCD might show
some inefficiencies with standard codes, first there is a lack
of low-level parallelism, which thereby reduces the theoretical
performance expectation by a factor 4, since most of modern
processors now have at least 256-bit vector registers (4 double
precision components).
Memory performance is also a bottleneck. Indeed, as we
have previously explained, computing Wilson Dslash implies
a noticeable memory activity with lot of redundant accesses
and waste of memory bandwidth. Indeed, the volume of a
single spinor (resp. SU(3) matrix) is 192 bytes (resp. 144
bytes). Thus, regarding the L1 cache with its typical 64-bytes
cache line, there is no waste coming from spinors use since
each of them perfectly fits into 3 cache lines, whereas for
SU(3) matrices there is a waste of 192 — 144 = 48 bytes per
access (unless we are in the gauge copy mode). Considering
other levels of the cache, which implies wider cache lines
for some architectures, the situation gets worse. We later
explain how our data packing, primarily designed for vector
computing, also improves the memory efficiency. Another
memory issue is cache pollution. Indeed, SU(3) matrices,
which are heavily loaded during the computation, have a poor
or no reuse. This is not the case, at least by specification, for
the spinors, since each of them is used to compute 8 spinors.
The benefit from this spinor reuse is likely to be hampered by
the aforementioned SU(3) pollution.
Another important source of performance penalty is the in-
terprocessor communication overhead when running on dis-
tributed memory parallel machines. Indeed, in addition to the
natural cost of data transfers, there is a strong gap between
the ideal 8D-torus topology required for LQCD computations
and the physical topology of existing supercomputers. More-
over, most of the time, there is less attention in providing
a suitable virtual topology that will reduce this gap. Hybrid
implementations are certainly a relevant approach to reduce
the need for explicit data exchanges, but this requires to have
an efficient intranode implementation, which is the essence
of this paper. With the advent of multi-socket processors, thus
with a significant number of cores, designing efficient scalable
LQCD code is challenging because of NUMA side effects,
whose illustrative case studies can be found in [12], [13].

V. RELATED WORK

LQCD is a major in both QCD and HPC communities. For
the reasons previously explained, LQCD simulations can be
computationally challenging for some interesting scenarios.
Thus, this hot topic is so far being investigated in various
directions.

The basis of LQCD computation are explained by Luscher
in [14]. The paper also discussed the so-called delfation
technique, whose main aim is to overcome the hindering



numerical impact of almost null eigenvalues. Urbach describes
in [20] the hybrid Monte-Carlo algorithm with multiple time
scale integration and mass preconditioning.

General implementations and experimentations on large
computing clusters are discussed by Vranas in [22], and also
by Grosdidier [8] within the scope of the PETAQCD project
[1]. In [15], Pleiter presents the QPACE cluster based on IBM
PowerXCell 8i and dedicated to LQCD. A hybrid threaded-
MPI approach on multi-core based parallel systems is studied
by Smelyanskiy et al. in [18]. On-chip multiprocessing for
LQCD is studied by Bilardi et al. in [4].

Accelerators-based solutions are provided for the IBM
CELL by Belletti et al. [3], Ibrahim and Bodin [9], and
Tadonki et al. [19]. The case of GPUs is studied by Clark et
al. in [5], where a mixed precision is considered and analyzed.

A complete and operational LQCD framework named
tmLQCD is provided by Urbach in [11]. Since LQCD compu-
tation kernels are built up from basic linear algebra routines
with special data structures, dedicated computing libraries are
released for generic use like QDP++ [16], which provides
a data-parallel programming environment suitable for Lattice
QCD, and Chroma [6], an open source LQCD toolbox.

A systematic DSL code generation approach is provided by
Barthou et al. in [2]. The corresponding framework, named
QIRAL, provides a high level language for LQCD code
generation together with the associated engine.

In this work, we explore all levels of parallelism in order to
derive an efficient high-performance implementation for large-
scale LQCD scenarios. The major novelty of our intranode
parallelisation is a NUMA aware scheduling, which yields a
significant impact on scalability across several nodes. We now
describe the main steps of our achievement.

VI. OPTIMAL MULTITHREAD VECTOR IMPLEMENTATION

In this section, we provide a synthetic view of the main
techniques that we used to design our basic implementation
on a multicore vector machine. Most of these techniques are
mentioned in the (general HPC of specific) literature, our merit
here is to have skillfully combined them into an efficient single
implementation, then illustrate and discuss their effects.

A. Gauge Matrices Management

We consider the gauge copy organization together with
the 2-row gauge field compression, thus our data structure
for SU(3) matrices does no longer include the third row,
which is then reconstructed on the fly whenever needed.
While the first strategy helps for data alignment, the second
saves memory bandwidth and reduces cache pollution. Indeed,
there is no data reuse with the SU(3) matrices in the gauge
copy configuration, so the less we load the best. In addition,
contention on memory buses is also thereby reduced, which
acts in favor of a better performance scalability.

B. Dynamic AoS to SoA for Efficient Vectorization

Ao0S-SoA is a well-know data layout transformation aiming
at creating regular data accesses depending on the target and

the computation paradigm. Vector computing is the typical
beneficiary for this approach, since data to be processed should
be prepared accordingly for vector accesses. In our case,
considering double precision and 256-bit-wide vector registers,
we just replace the original complex data type

typedef struct { double re, im; } complex;

by

typedef struct { __m256d re, im; } complex_simd;

within all of our original data structures. This is followed by
a vector implementation (using AVX intrinsics) of our linear
algebra kernels. Now comes the explicit data shuffling that is
needed in order to have the vector operands ready for the com-
putation. For instance, if we consider four spinor structures
s = [sgj),séj), -++], § =1,2,3,4, the corresponding vector
structure would be s = [sgl)s?)sgg’)sg@, 551)552)523)524)7 e
The spinors s\7) are not required to be consecutive in memory,
thus one might expect a penalty from the extra memory cost
due to this dynamic packing (at load time) and unpacking
(at store time). The stencil nature of LQCD computation
exacerbates this fear. Since SU(3) matrices are constant, they
are packed once before the computation, thus no extra cost
should be considered at runtime. For the spinors, there is no
choice other than doing it on the fly.

C. Threads Design and Management

The way the threads are managed is very important in a
context where they are potentially numerous. Common issues
will act on scalability or global performance degradation due
to the cumulative overhead of boarding effects. In order to
preclude some of the predictable hindering effects, we apply
the following on our Pthread implementation:

o Pool of tasks: Instead of a static distribution, we create

a pool of tasks and let the threads dynamically provi-
sion themselves according to their respective throughput.
There are several reasons which can create execution
time unbalance among threads, especially when there
are several of them operating on the same arrays with
interleaved data dependencies. Cutting the main loop
into a large number of small chunks (tasks) restores a
reasonable balance, hence improves scalability. Our set of
threads is grouped following the even-odd partitioning,
each group is assigned to a partition and has its own
mutual exclusion mechanism. This prevents unnecessary
interference among groups, since the partitions are com-
putationally independent.

o Active threads: Since Wilson-Dirac is repetitively com-
puted within an iterative process, it sounds better to create
the working threads once just let them idle between two
consecutive Wilson-Dirac computation requests. We do
this by means of synchronization mechanisms (signaling
mechanism could be used too). In any case, we get ride of
the overhead of threads creation and destruction, which
is significant in a performance sensitive context like ours.

o Explicit threads binding and hyperthreading: Al-
though the operating system has its standard and likely
satisfactory way of managing the allocation of threads



into the CPU-cores, which is not always a one-to-one
correspondence and might trigger some dynamic thread
migrations, explicit threads binding is required when
a specific scheduling applies. This combines well with
the pool of tasks organization in order to yield a rel-
atively good load balance among the CPU-cores. This
is noticeably crucial in a NUMA-aware context as we
will see. Still considering thread binding, we choose to
allocate two threads on each CPU-core, in the sole intent
of getting some benefit from hyperthreading. We use
the explicit allocation routines provided by the Pthread
library.

o Tasks assignment: Each thread is assigned to a fixed set
of the even-odd partition, then it uses the corresponding
id to select associated tasks from the main pool. So, a
given thread gets executed on a fix CPU-core and operates
on a fix set of the even-odd partitioning. Once again,
this strategy will be much important in the NUMA-aware
context. In this case, the main benefit is a good high-level
cache sharing regarding the inputs (only spinors).

We now show and discuss our performance results at the
current stage on a NUMA manycore machine.

D. Basic Vector-Multithread Performance Results

We consider the recently released Intel Broadwell-based
configuration described in figure Fig. 1.

Hardware
CPU Name: Intel Xeon E5-2699 v4
CPU Characteristics:  Intel Turbo Boost Technology up to 3.60 GHz
CPU MHz: 2200
FPU: Integrated
CPU(s) enabled: 44 cores, 2 chips, 22 cores/chip, 2 threads/core
CPU(s) orderable: 1,2 chip
Primary Cache: 32 KB 1+32 KB D on chip per core
Secondary Cache: 256 KB I+D on chip per core
L3 Cache: 55 MB I+D on chip per chip
Other Cache: None
Memory: 256 GB (16 x 16 GB 2Rx4 PC4-2400T)
Disk Subsystem: 1 x SATA, 500 GB, 7200 RPM
Other Hardware: None

Fig. 1. Our Intel Broadwell Charateristics

Considering the available 256-bit-wide vector registers and
the corresponding vector processing capability using AVX2,
we obtain a peak performance of 2.2 x 4 = 8.8 GFlops/core
in double precision, which might be higher with the Turbo
Boost. We do not count FMA or double FPU, as any of these
two features are considered in our implementation.

The numactl --hardware command gives the informa-
tion displayed in figure Fig. 2.
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node @ cpus: @ 123456728910
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node 11 12 13 14 15 16 17 18 19 20 21
node 32768 MB

node free: 21098 MB

node 2 cpus: 22 23 24 25 26 27 28 29 30 31 32

0
0 free:
1
1
1
2
node 2 size: 32768 MB
2
3
3
3
d

cpus:
size:

node free: 24365 MB
node cpus:
node size:

33 34 35 36 37 38 39 40 41 42 43
32768 MB
node free: 20300 MB
node distances:
node 0 1 2 3
9: 10 11 21 21
1: 11 10 21 21
2: 21 21 10 11
3: 21 21 11 10

Fig. 2. NUMA Specifications of our Machine

From this NUMA configuration overview, we see that we
have 4 NUMA nodes grouped into 2 sockets. Considering a
32 x 162 lattice (thus numbers of cores that are multiple of
8), we obtain the performances displayed in table TABLE I
We remind the reader that each CPU-core runs 2 threads as
previously explained and we use up to 8 cores within a NUMA
node.

#cores || #threads t(s) | GFlops | Speedup

1 2 | 0.02552 9.98 1

2 4 1 0.01301 19.59 1.96

4 8 | 0.00679 37.50 3.76

8 16 | 0.00475 53.60 5.37

(2 nodes) 16 32 | 0.00476 53.53 5.36
(4 nodes) 32 64 | 0.00507 50.25 5.03

TABLE 1

NUMA-UNAWARE VECTOR MULTITHREADED PERFORMANCES

We clearly see an optimal performance on a single core and
a good scalability within one NUMA node (up to 8 cores).
However, we can also observe a clear cut with the relative
performances on several NUMA nodes. Indeed, the penalty
of NUMA-unaware accesses, which are noticeably interleaved
with Wilson-Dirac, are so important that it compensates the
good performances on a single node. This yields a perfor-
mance stagnation as we can see from the last two rows of
table TABLE 1. We now explain our method to overcome this
severe scalability issue.

VII. NUMA-AWARE SCHEDULING AND IMPLEMENTATION

The first thought that comes in mind to address NUMA
caprices is to replicate the inputs in all NUMA nodes. In
our case, whatever it is implemented, the cost of the repli-
cation, even strictly restricted to the necessary data, appears
to cost more time than the full execution of the NUMA-
unaware implementation. So, this should be simply forgotten.
Interleaved memory allocations is also a reasonable approach,
but it efficiency heavily relies on favourable statistics. We
now describe our explicitly NUMA-aware allocation strategy
and explain how it clearly addresses contention and remote
accesses in an efficient way.



A. NUMA-aware Allocation and Scheduling

We start by the following notation related to the even-odd
partitioning.

P.={(t,z,y,2) : (t+x+y+2z)mod2=Fk}.  (10)

Let first consider the case with 2 NUMA nodes. Since the de-
pendence vectors are (£+1,0,0,0), (0,+£1,0,0), (0,0,+1,0),
and (0,0,0,=£1), it follows that Py (resp. P;) is computed
using P, (resp. P»). Therefore, we propose the data and tasks
allocation illustrated in figure Fig. 3.

NUMA node 0

Hosts and Computes P1

NUMA node 1
Hosts and Computes PO

Loutputg. -+
AY

\
1
I

1

Hosts input PO}

4
_input ¢

Hosts input P1
~input

+1: dependencies 1+ 1 (modulo 2)

Fig. 3. NUMA-aware Scheduling with 2 Nodes

We obtain a configuration where there is no (compulsory)
remote access. Now let take the case with 4 NUMA nodes. Our
idea is to consider an extension of the even-odd partitioning
to a 4-sets partition, so

Pe={(t,z,y,2): (t+a+y+z)modd=4k}. (11

From the +1 dependencies, we get that Py requires P,
k=0,1,2,3 (1 is performed modulo 4). So, Py requires P,
and P3; P requires P» and Py; P, requires Ps and Pj; Ps
requires Py and P». Therefore, we propose the data and tasks
allocation illustrated in figure Fig. 4.

/NUMA node 0\ /NUMA node 1 \

Hosts and Computes P1| | Hosts and Computes P3

o output v,

[ ~ 4 \
1 . he S : ]
v HostsinputP2  _-T's, HostsinputP0 ¢

\ AR gy

/NUMA node 3
Hosts and Computes P2

1 SR, +

4

NUMA node 2
Hosts and Computes PO

g,
1 \\\ l’ \
\  Hosts input P1 T+ Hosts input P3 ]

+1: dependencies 7 + 1 (modulo 4)
-1: dependencies 1 - 1 (modulo 4)

Fig. 4. NUMA-aware Scheduling with 4 Nodes

While all write accesses are local in any case of our
allocation strategy, we now have half of the read accesses
that are remote. For instance, NUMA node 0, which hosts
and computes P1 needs P2 (local access) and PO (remote
access from NUMA node 1). However, figure Fig. 4 reveals
that local and remote accesses could overlap in theory, thus
yield a contention-free configuration related to memory buses.
In order to force this to happen, we split the computation
in two phases: the first one with +1 dependencies only and
then the one with —1 dependencies. The first phase stores its
results, which are afterwards loaded by the second phase to
update for the final results. Figure Fig. 5 illustrates our node
splitting transformation.

for (whole iteration space) {
(+1,0,0,0)
(0,+1,0,0)
(0,0,+1,0)
(0,0,0, +1)

 Partial results (WRITE) &,
A Y

Intermediate writes/reads

. T

for (whole iteration space) {
/
| Partial resuts (READ)

-1,0,0,0
1,0,
-1

)
)
)
)

Fig. 5. Node Splitting in the Main Loop

The main concern that comes in mind about node splitting
of figure Fig. 5 is that the cost of the intermediate writes/reads
might hide the benefit of less memory contention. We now
check this fact on our experimental results, while appreciating
the impact of our NUMA-aware strategy.

B. NUMA-aware Vector-Multithread Performance Results

Using the same data and parameters on the same machine,
we show our performance results without node splitting in
table TABLE II.

#cores || #threads t(s) | GFlops | Speedup

1 2 | 0.02566 9.93 1

2 4 | 0.01313 19.40 1.95

4 8 | 0.00692 36.83 3.71

8 16 | 0.00443 57.48 5.79

(2 nodes) 16 32 | 0.00293 86.97 8.76
(4 nodes) 32 64 | 0.00248 | 102.79 10.35

TABLE II

NUMA-AWARE WITHOUT NODE SPLITTING

We clearly see a noticeable performance and scalability
improvement when using several NUMA nodes (we use up



to 8 on each NUMA node). Table TABLE III displays the
results with node splitting.

#cores || #threads t(s) | GFlops | Speedup

1 2 | 0.03025 8.42 1

2 4 | 0.01547 16.47 1.95

4 8 | 0.00825 30.87 3.66

8 16 | 0.00502 50.72 6.02

(2 nodes) 16 32 | 0.00305 83.65 9.33
(4 nodes) 32 64 | 0.00209 | 121.74 15.43

TABLE III

NUMA-AWARE WITH NODE SPLITTING

We see a 20% improvement when using the 4 NUMA nodes.
Since node splitting was proposed to improve the scheduling
on 4 NUMA nodes, it is useless to consider it for the other
cases. It is interesting to note that the intermediate writes/loads
is not hindering as it could be. This is probably due to the fact
that each loop operates on a small chunk of the spinors array,
thus the aforementioned writes/reads (Fig. 5) are performed on
a higher level cache instead of main memory. This is another
benefit of using a pool of (small) tasks. We now provide two
other illustrative performance results.

#cores || #threads t(s) | GFlops | Speedup

1 2 | 0.22265 7.17 1

2 4 1 0.11390 17.90 1.95

4 8 | 0.05948 34.27 3.74

8 16 | 0.04009 50.84 5.55

(2 nodes) 16 32 | 0.02365 86.18 941

(4 nodes) 32 64 | 0.01629 | 125.10 13.66
TABLE 1V

PERFORMANCES WITH A 32 x 323 LATTICE

#cores || #threads t(s) | GFlops | Speedup

1 2 | 0.44756 9.11 1

2 4 | 0.22849 17.84 1.96

4 8 | 0.12016 33.93 3.72

8 16 | 0.08219 49.60 5.45

(2 nodes) 16 32 | 0.04648 87.70 9.63

(4 nodes) 32 64 | 0.03667 | 111.18 12.21
TABLE V

PERFORMANCES WITH A 64 x 323 LATTICE

Reaching such noticeable performances on a highly chal-
lenging case like the Wilson-Dirac is very encouraging. We
need to stress the fact our computations are fully performed in
double precision. In [10] for instance, where single precision
is considered, a global performance of 250 GFlops on an
Intel Xeon Phi 5110P is reported , whose peak performance
is 1.053 x 16 x 2 x 60 = 2021.66 GFlops in single precision,
thus a sustained efficiency of nearly 12% (25% if FMA is
not considered). Taking into account the fact that upscaling

this to double precision corresponds to at least factor 0.5
reduction (certainly more severe in practice because memory
is highly dominant in Wilson-Dirac), and that Xeon Phi 5110P
has bigger caches, more threads/core and does not suffer from
NUMA effects, we see that our performance is better. As
stated previously, most authors consider single precision, as
this reduces memory bandwidth and increases the potential
of vectorization, among other reasons. Showing good and
scalable performances in double precision is thus a valuable
achievement. Now, we describe our distributed memory exten-
sion.

VIII. MPI SCHEDULING AND IMPLEMENTATION

Assuming that our 4 NUMA nodes processor is now a
single compute node in a distributed memory parallel machine
(typical supercomputer), we propose to use our previously
described implementation enhanced with an appropriate MPI
communication mechanism. An overview of our MPI design
at the manycore node level is displayed in figure Fig. 6.
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Fig. 6. MPI Layout on a Manycore Node

We recall that our threads are organized into groups, and
each group is assigned one set of the (extended) even-odd
partition. Within each group, only one thread will be in
charge of MPI actions, thus sending and bringing data for the
whole group. Note that we just need to exchange the surface
(called halo) of the sublattices (classical in parallel domain
decomposition). Thus, by first computing the inner part and
then the halo, we get an opportunity to overlap communication
and computation. Within a group, the first thread which picks
up a task within their subpool (thus hold the mutex) issues
MPI calls at that time. For the asynchronous case, MPI_Isend
is issued for sending data. Then, later on, the thread which is
the first to pick up a halo task issues an MPI_Recv. This blocks
the thread and also the group because it holds the mutex. Note
that this strategy requires to put the tasks related to the surface
at the end of the queue (pool) (see figure Fig. 7).
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Fig. 7. Asynchronous MPI Organization

Figure Fig. 6 shows the case with 4 NUMA nodes, where
each group of the threads runs on its exclusive NUMA nodes.
Thus, even when we use 1 or 2 NUMA nodes only, we
automatically get a similar organization. Consequently, when
several MPI processes are assigned to a single cluster node,
each of them will exclusively run on one NUMA node,
assuming the number of processes is lower than the number
of NUMA nodes. This is achieved from our thread binding
mechanism by shifting the starting CPU-core to the first
one within the target NUMA node. Such a flexible hybrid
scheduling allows to efficiently consider the MPI granularity
either at the level of the full NUMA cluster or at the level
of the NUMA node. We now check the quality of our hybrid
scheduling on the four NUMA nodes of our Broadwell cluster.
Table TABLE. VI shows the results with our 64 x 32 scenario.

#MPI || #cores/MPI t(s) | GFlops || Speedup

1 32 | 0.03942 | 103.42 x 1

2 16 | 0.05786 70.46 x 0.68

4 8 | 0.06533 62.41 x 0.60
TABLE VI

INTRANODE HYBRID WITH A 64 X 323 LATTICE

We clearly see that the overall performance decreases as
the number of MPI tasks increases. Thus, our pure NUMA-
aware multithreaded implementation (#MPI=1) is the way to
go within a NUMA cluster. However, even with MPI, we still
outperform the NUMA-unaware multithreaded version. The
the impact of our contribution is thus twofold. We now present
and discuss our experimental results on a supercomputer.

IX. PERFORMANCE RESULTS ON A SUPERCOMPUTER

We consider a supercomputer composed of 256 SMP nodes
(IBM x3750-M4) interconnected by a high-speed InfiniBand
network. Each IBM x3750-M4 compute node is a quadri-
socket node of 4 Intel Sandy Bridge E5-4650, thus 4 x8-core
processors at 2.7 GHz. See [17] for more details about the
supercomputer. The numactl --hardware command on one
compute node gives the information displayed in figure Fig.
8.

available: 4 nodes (0-3)
node @ cpus: © 123 456 7 32 33 34 35 36 37 38 39
node @ size: 32614 MB
node @ free: 30015 MB
node 1 cpus: 8 9 10 11 12 13 14 15 40 41 42 43 44 45 46 47
node 1 size: 32768 MB
node 1 free: 26171 MB
node 2 cpus: 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55
node 2 size: 32768 MB
node 2 free:
node 3 cpus: 24 25 26 27 28 29 30 31 56 57 58 59 60 61 62 63
node 3 size: 32768 MB
node 3 free: 32078 MB
node distances:
node @ 1 2 3
9: 10 11 11 12
1: 11 10 12 11
2: 11 12 10 11
3: 12 11 11 1@

31951 MB

Fig. 8. NUMA configuration of one node of the supercomputer

Each compute node is thus a manycore with 8 x4 = 32 cores
equally distributed over 4 NUMA nodes. Thus, our NUMA-
aware scheduling fully applies here. Table TABLE. VII shows
the results with a 256 x 643 scenario. We start with 16 compute
nodes for the baseline because of the large amount of memory
needed to process our big 256 x 643 lattice.

#nodes || #cores t(s) | TFlops | GFLOPS Sp
per core
16 512 | 0.1047 1.25 | 243 x 1
32 1024 | 0.0674 1.94 | 1.89 x 1.56
64 2048 | 0.0465 2.81 | 1.37 x 2.25
TABLE VII

SUPERCOMPUTING PERFORMANCE RESULTS

We see that our implementation delivers a good absolute
performance and scales well on large numbers of cores.
The slight performance per core degradation is due to data
communication and processes management. Every effort to
reduce the data exchanges overhead is worth considering. We
now conclude the paper.

X. CONCLUSION

We have presented our analyses, solutions and implementa-
tion efforts related to the Wilson-Dirac operator on a manycore
processor and describe an efficient extension to a distributed
memory supercomputer. Considering the challenging double
precision case, we have been able to get a high fraction
of the overall peak performance on a single core of the 4
NUMA nodes INTEL BROADWELL (based on Intel Xheon ES-
2699 processors) and keep a good scalability on the overall
processor when considering all available cores. Our NUMA-
aware scheduling for the Wilson-Dirac operator is a novel
and genuine contribution, which we think can be applied to
similar stencil computation schemes like those related to image
procesing and partial differential equations. Still concerning
Wilson-Dirac, we think that memory accesses remain dom-
inant, thus the need for further investigations, which could
include considering more aggressive compression techniques
similar to the 2-rows gauge fields compression. Interprocessor
communication also deserves a close inspection in order to
reach a nearly perfect overlap with computations.
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