
HAL Id: hal-01526607
https://minesparis-psl.hal.science/hal-01526607v1

Submitted on 23 May 2017 (v1), last revised 7 Feb 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impulse-Response and CAD-Model-Based Physical
Modeling in FAUST

Pierre-Amaury Grumiaux, Romain Michon, Emilio Jesús Gallego Arias, Pierre
Jouvelot

To cite this version:
Pierre-Amaury Grumiaux, Romain Michon, Emilio Jesús Gallego Arias, Pierre Jouvelot. Impulse-
Response and CAD-Model-Based Physical Modeling in FAUST. Linux Audio Conférence 2017, May
2017, Saint Etienne, France. �hal-01526607v1�

https://minesparis-psl.hal.science/hal-01526607v1
https://hal.archives-ouvertes.fr


IMPULSE-RESPONSE AND
CAD-MODEL-BASED PHYSICAL MODELING

IN FAUST
P.-A. GRUMIAUX, R. MICHON, E. GALLEGO ARIAS AND P. JOUVELOT

pierreamaury.grumiaux@gmail.com, rmichon@ccrma.stanford.edu,

{emilio.gallego_arias,pierre.jouvelot}@mines-paristech.fr

CONTEXT
The FAUST programming language [4] has proven to be well suited to
implement physical models of music instruments using waveguides
and model synthesis [1][2][3]. We developed two tools allowing to
easily generate FAUST modal physical models:

1. ir2dsp.py takes the audio file of an impulse response and con-
verts it into a FAUST program implementing the corresponding
modal physical model;

2. mesh2dsp.py outputs the same type of model from a .stl file
specifying a 3D object.

FAUST MODAL PHYSICAL MODEL
Linear percussion instruments can be implemented using banks of
resonant bandpass filters [2]. Each filter implements one mode of the
system and is configured with 3 parameters : the frequency of the
mode, its gain and its resonance duration (t60). Its FAUST version,
modeFilter below, uses a biquad filter (tf2) and computes its
poles and zeroes for a given frequency and t60.

modeFilter(f,t60) = tf2(b0,b1,b2,a1,a2)
with{

b0 = 1;
b1 = 0;
b2 = -1;
w = 2*PI*f/SR;
r = pow(0.001,1/float(t60*SR));
a1 = -2*r*cos(w);
a2 = rˆ2;

};
mode(f,t60,gain) = modeFilter(f,t60)*gain;

Modal physical models are implemented using multiple parallel
(par in FAUST) instances of mode calls. The FAUST-generated block
diagram corresponding to such an implementation is presented be-
low (we used arbitrary parameters here).

mode(100)(0.9f)(0.9f)

mode(200)(0.8f)(0.9f)

mode(300)(0.6f)(0.5f)

mode(400)(0.5f)(0.6f)

process

Such a model can be excited by a filtered noise impulse.

White Noise Lowpass Highpass Envelope To Model

IR2DSP.PY AND MESH2FAUST
ir2dsp.py takes an audio file and extracts modal physical model-
based information for each mode: frequency and gain, by carrying
out peak detection; t60, by measuring bandwidth at -3 dB. A FAUST
file is then generated. With this tool, one can strike any object, record
the resulting sound and turn it into a playable digital instrument.

mesh2dsp.py gives the same output, using a .stl file (describing a
3D object) as input, as follows:

• conversion of the input object to a mesh;

• Finite Element Analysis (FEA) using the Elmer package, with
the Young modulus, Poisson coefficient and density of the ma-
terial as parameters:

• frequency and gain computation from eigenvalues and mass
participation for each mode;

• t60 values input (these values cannot be computed by this
method unfortunately, so they are user-provided parameters).

EVALUATION
Spectrograms of (a) the recording of the IR of a can and (b) its
ir2dsp.py-generated modal physical model:

(a)

(b)

The original and synthesized sound representations are relatively
close (but see Future Directions).

FUTURE DIRECTIONS
We plan to improve ir2dsp.py by using a better t60 measurement
algorithm. For now, the calculation is done by measuring the band-
width for each peak, while it would be a better approach to extract it
from a time-frequency representation of the signal.

Regarding mesh2dsp.py, we would like to try other open-source
packages than Elmer to carry out FEA.

REFERENCES

[1] R. Michon, J. O. Smith. Faust-STK: a set of linear and nonlinear physical models for the
Faust programming language. In Proceedings of the DAFx-11 Conference, 2011

[2] J. O. Smith. Physical Audio Signal Processing for Virtual Musical Instruments and Dig-
ital Audio Effects. W3K Publishing, 2010

[3] J.-M. Adrien. The Missing Link: Modal Synthesis. In "Representations of Musical
Signals", MIT Press, 1991

[4] Y. Orlarey, D. Fober, S. Letz. Syntactical and Semantical Aspects of Faust. Soft Com-
puting, 2004

Project funded by ANR FEEVER. Linux Audio Conf., St-Etienne, May 18-21, 2017.

ARTIFACTS
Source code available at: https://github.com/rmichon/pmFaust/


