
HAL Id: hal-01526469
https://minesparis-psl.hal.science/hal-01526469

Submitted on 30 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Program Sequentially, Carefully, and Benefit from
Compiler Advances for Parallel Heterogeneous

Computing
Mehdi Amini, Corinne Ancourt, Béatrice Creusillet, François Irigoin, Ronan

Keryell

To cite this version:
Mehdi Amini, Corinne Ancourt, Béatrice Creusillet, François Irigoin, Ronan Keryell. Program Se-
quentially, Carefully, and Benefit from Compiler Advances for Parallel Heterogeneous Computing.
Magoulès Frédéric. Patterns for Parallel Programming on GPUs, 34, Saxe-Coburg Publications, pp.
149-169, 2012, 978-1-874672-57-9 �10.4203/csets.34.6�. �hal-01526469�

https://minesparis-psl.hal.science/hal-01526469
https://hal.archives-ouvertes.fr

Program Sequentially, Carefully, and Benefit from
Compiler Advances for Parallel Heterogeneous

Computing

Mehdi Amini1,2 Corinne Ancourt1 Béatrice Creusillet2

François Irigoin1

Ronan Keryell2

—

1MINES ParisTech/CRI, firstname.lastname @mines-paristech.fr
2SILKAN, firstname.lastname @silkan.com

September 26th 2012

Abstract

The current microarchitecture trend leads toward heterogeneity. This evolution
is driven by the end of Moore’s law and the frequency wall due to the power wall.
Moreover, with the spreading of smartphone, some constraints from the mobile world
drive the design of most new architectures. An immediate consequence is that an
application has to be executable on various targets.

Porting and maintaining multiple versions of the code base requires different
skills and the efforts required in the process as well as the increased complexity in
debugging and testing are time consuming, thus expensive.

Some solutions based on compilers emerge. They are based either on directives
added to C like in openhmpp or openacc or on automatic solution like pocc, Pluto,
ppcg, or Par4All. However compilers cannot retarget in an efficient way any pro-
gram written in a low-level language such as unconstrained C. Programmers should
follow good practices when writing code so that compilers have more room to perform
the transformations required for efficient execution on heterogeneous targets.

This chapter explores the impact of different patterns used by programmers, and
defines a set of good practices allowing a compiler to generate efficient code.

Contents

1 Introduction 2

1

2 Program Structure and Control Flow 4
2.1 Well-Formed Loops. 4
2.2 . . . and Loop Bodies . 5
2.3 Testing Error Conditions . 6
2.4 Declaration Scope . 7
2.5 Interprocedural Control Flow . 8

3 Data Structures and Types 9
3.1 Pointers . 9
3.2 Arrays . 11

3.2.1 Providing and Respecting Array Bounds 12
3.2.2 Linearization . 12
3.2.3 Successive Array Element References 12

3.3 Casts . 13

4 Directives and Pragma (OpenMP...) 14

5 Using Libraries 14
5.1 Relying on Efficient Libraries . 14
5.2 Quarantined Functions: Stubs . 15

6 Object Oriented Programming 17

7 Conclusion 18

8 Acknowledgments 20

Keywords: parallel programming, automatic parallelization, coding rules.

1 Introduction

As mono-core processor technology has reached its limits, and as our computing needs are
growing exponentially, we are facing an explosion of proposals in the current architectural
trends, with more arithmetic units usable at the same time, vector units to apply similar
operations on the elements of short vectors (such as sse, avx, neon...), several computing
cores in the same processor die, several processors sharing or not the same memory, up to
more heterogeneous architectures with hardware accelerators of specific functions, fpga
or massively parallel gpu.

As a consequence, an application has to be executable on various platforms, at a given
time as well as during its whole life cycle. This execution has to meet some efficiency
criteria, such as energy or computational efficiency, that may not be compatible. Thus the
development and maintenance costs become crucial issues, and automatic optimization and
parallelization techniques, whereas often considered as unrealistic silver bullets, are coming

2

back to the front stage as a partial solution to lower the development and maintenance
cost.

Of course, automatic parallelization cannot be expected to produce miracles, as the
problem is intractable in the general case. Reaching the highest possible performance
for a given application on a specific architecture will always require some kind of human
intervention, ending up sometimes with a complete rewrite from scratch.

However, and fortunately, sufficiently well-written sequential programs can expose
enough parallelism that automatic parallelizers can detect, and for which they can do
a sufficiently good job. In particular, we advocate that, before any attempt at manual or
automatic parallelization, programs should avoid sequential processor optimizations and
stick as much as possible to the high-level semantics of the algorithms. Thus, instead of
writing code for a specific class of architectures, programmers and more widely code gen-
erators must learn how to write sequential programs, efficiently targeting the current class
of advanced compilers, namely compilers with loop optimizers, vectorizers and automatic
parallelizers.

This document, based on the long experience of its authors in this area, mainly on
the pips [20, 1] and Par4All [2, 34] projects, details some good programming practices
for imperative languages that are compliant with the current capabilities of automatic
parallelizers, and more generally optimizers, to maximize the precision of analyses and thus
help the tools in generating efficient code. As a preliminary clue, and not surprisingly, let
us say that the more structured a program is, the easier it is to analyze.

Since parallelism is present at many levels in current architectures, even a program
executed on a single core can benefit from being well written, for example by allowing the
use of vector instruction sets or computing some parts at compile-time through partial
evaluation.

In the remainder of this document, we focus mainly on the C language, and we as-
sume that the reader is knowledgeable in the C99 programming language1. However, the
principles can be generalized for other languages.

In this chapter, we give in Section 2 some advice on program structure and control
flow. The Section 3 presents some points related to data structures and types. Then
the Section 4 introduces the concept of directives and pragmas to help the compiler in
its quest to efficient parallel code. Section 5 recalls the interest of already parallelized
libraries. Before concluding, Section 6 details some constraints related to object-oriented
languages.

This work has been done within the Opengpu project, where the authors have been
involved in developing compilers for gpu, mainly related to C and dsl to opencl transla-
tion.

1And more specifically the ISO/IEC 9899:TC3 WG14 standard the last public draft can be found here:
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf. We could focus on C11, but this
latest version is too recent to be widespread yet.

3

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf

int kernel(int n, int m) {

int a[n][m], b[n][m];

#pragma acc kernels

{

int i=0;

while(i<n) {

for (int j=0; j<m; j++) {

a[i][j]=i+j;

i f (i==j)
a[i][j]=i-j;

b[i][j]=a[i][j];

}

i++;

}

}

}

Figure 1: OpenACC example with a while loop. The PGI compiler is able to parallelize
this loop nest and schedule it on GPU.

2 Program Structure and Control Flow

Most optimizers rely on the good properties of the program control flow to generate efficient
results. Thereby, a program with poorly structured computational parts (which contains
goto, break, continue, exit(), multiple returns. . .) prevent further code transformations
and automatic optimizations. Of course some tools such as pips [20, 1] or the pgi Compiler
have some restructuring capabilities, as shown in the listing from Figure 1, but they have
their limitations. So a good practice is to adopt a well-structured programming style, or
at least to restrict the use of poorly structured code to inherently sequential parts. More
generally well-structured programming has to be used in parallel parts, and if not, other
way to express parallelism has to be used, for example by relying on hand-coded libraries
as shown in Section 5 or by hiding messy code as in Section 2.3.

2.1 Well-Formed Loops. . .

Many advanced optimization techniques, such as automatic parallelization, traditionally
focus on loops — which are usually the most intensive parts of the programs — and more
specifically on for loops with good properties, namely loops which are similar to Fortran
do loops: the loop index is an integer, initialized before the first iteration, and its value is
incremented by a constant value and compared to loop-invariant values at each iteration,
and not changed by the loop body itself. The number of iterations is known before the
loop is entered. Note that language extensions such as openmp [28], openacc [26] and

4

hmpp [8] provide parallel constructs for do and such well-formed for loops, but not for
general for or while loops.

Tools based on the Polyhedral model [12, 22, 4, 30, 9] have long been historically very
strict, by also enforcing that the initial value, the lower and the upper bounds be affine
integer expressions of the surrounding loop indices and loop-invariant values, as well as if
conditions and array indices. This is also a requirement of several compilers such as Cetus
or the R-Stream compiler [33].

The polyhedral model has been extended to lift some of these conditions, and these
extensions are available in loopo [15] and pocc [6, 30]. It must also be noted that applying
a series of pre-processing transformations – such as constant propagation or induction
variable substitution — can raise the number of good candidates [5]. However, this is
quite undesirable in source-to-source compilers.

So, even when these conditions are not compulsory, they are greatly encouraged, as
most tools take advantage of them to detect parallelism and/or generate more efficient
code. For instance, the following manually optimized piece of code

double a[n][m][l];

double * p = &a[0][0][0];

for (int i = 0; i < n*m*l; i++)

p[i] = ...;

can be parallelized by Par4All openmp compiler [34], but the communications cannot
be generated accurately in the gpu version because of the non-linear loop upper bound.

In most tools [29, 9, 32, 31, 33], loop transformations only target well-formed for loops,
while other compilers also deal with while loops [15, 6]. In between, pips tries to detect
for and while loops which are equivalent to well-formed loops. For that purpose, it is
important to write these loops in such a way that they can be detected as Fortran-like do

loops. In particular, this implies using simple comparison and increment expressions, and
avoiding putting the for body code inside the increment expression as in:

for (i=0; i<n; a[i] = i, i++);

Also, incrementing an integer index should be preferred to directly incrementing a pointer:

for (p=a; p<a+n; p++)

*p = ...;

should be replaced by:

for (int i = 0; i<n; i++)

a[i] = ...;

p = &a[n]; // i f t h e v a l u e o f p i s r e q u i r e d l a t e r

2.2 . . . and Loop Bodies

The conditions on the loop bodies characteristics depend on the tools capabilities. For
instance the pgi Compiler used to not parallelize loops containing if conditions [36] in

5

previous versions. Tools relying on fully polyhedral techniques historically require that
internal if conditions be affine integer expressions [12, 22], but this restriction has been
recently lifted [6, 30]. The R-Stream compiler lies somewhere in between, allowing some
non-affine condition expressions. pips allows any internal control flow by using approxi-
mation techniques [10], provided that there is no jumping construct from and to the loop
body. However, it must be kept in mind that, in most cases, the more information is
available to the optimizer, the more efficient it can be2.

Most tools offer no or very limited interprocedural capabilities. For instance, rose and
pgi Compilers [32, 29] do not parallelize loops with inner function calls, but this can be
by-passed in pgi compiler with the -Mconcur=cncall option that specifies that all loops
containing calls can be safely parallelized, or by activating automatic inlining. The R-
Stream compiler [33] assumes by default that functions have no side-effects, which may
lead to incorrect code; but it provides a mechanism — called image function — for the
user to describe the side-effects of library functions using stub functions.

On the contrary, pips has been designed from the very beginning as an interprocedural
parallelizer [37, 20], and uses interprocedural summarizing techniques to take into account
memory accesses hidden in function calls. Cetus [31] also has some simple interprocedural
capabilities, which allows to parallelize some loops with function calls.

2.3 Testing Error Conditions

It is generally not possible to safely change the execution order of statements in a group
involving calls to exit() or assert(): hence compilers do not even try to optimize or
parallelize the surrounding loops. So a good idea is to avoid these calls inside portions
of code which are good candidates for optimization. However, it may not be desirable
in all cases, in particular during the development phase of the sequential version of the
application.

In particular, asserts are very useful for debugging the sequential version, but they
can be easily removed by passing the -DNDEBUG option to the pre-processor, even if some
compilers such as pips can take into account some of the information they carry as shown
on Figure 2. So it is important to test the bounds of the entry parameters and the data not
only to prevent some errors but also because it may give clues to prove that some pieces
of code are indeed parallel. So instead of simply removing the asserts, they should be at
least be replaced by some code that test some conditions of soundness.

Exits are often used when testing error conditions, such as system calls return values.
But since these tests do not affect the program semantics when there is a correct execution,
a good pratice would be to wrap system calls in dedicated macros or functions which would
receive a simpler and non-blocking definition for the parallelizer, different from the real
implementation that can be more complex, as discussed later in Section 5.2. Figure 3 gives
an exemple for the malloc() function.

2Sometimes large constant values may lead to information loss because of overflow errors in the ab-
stractions used to represent the programs internally. Symbolic bounds can be useful, even when they are

6

#include <assert.h>

int f(int m, int n) {

int k = 0;

assert(m >= 1 && n >= 1);

/∗ From th e p r e v i o u s a s s e r t ,
PIPS i n f e r s t h a t m >= 1 and n >= 1 ∗/

for (int i = 0; i < m; i++)

for (int j = 0; j < n; j++)

k++;

/∗ From th e p r e v i o u s p r e c o n d i t i o n a f t e r t h e a s s e r t ,
PIPS i n f e r s t h a t k >= 1 a t t h e f u n c t i o n e x i t ∗/

return k;

}

Figure 2: Example of assert giving some semantics information in pips and Par4All.

Another solution is to wrap error code between #ifdef ERROR_CONTROL ... #endif
pairs to be able to remove such code on demand.

More generally, packaging this kind of complex i/o code into libraries that can also be
parallelized by some specialists is a solution, as explained in Section 5.1.

2.4 Declaration Scope

Even in interprocedural optimizers which can deal with parameter passing through global
variables such as common in Fortran, or with static local variables, global declarations
may induce memory dependencies which prevent parallelization. Removing these depen-
dencies requires interprocedural program transformations which are not always possible
nor available. They consist in cloning a whole program sub-tree and adding the global
variable as parameters to all functions and function calls in the cloned sub-tree, resulting
in more expensive analysis and transformation cost.

Hence, global (and Fortran common) or static local variables must be avoided at least in
program parts which are good candidates for parallelization, and, preferably, in the whole
application since program analyses and transformations more and more tend to take the
whole program behavior into account.

C99 offers the possibility of declaring data almost anywhere in the code. Parallelizers
are unequally ready to accept this feature, which means that you may have to gather
all data declarations at the beginning of a statement block. This is nevertheless a good
practice to avoid declarations intermingled with jumping constructs, as this may render
code restructuring and maintenance more difficult.

actually constant.

7

// ma l l o c wrapper w i t h e r r o r t e s t i n g
void * my_malloc(size_t size , int err_code ,

const char * restrict err_mess)

{

void * res = malloc(size);

i f (res == NULL) {

/∗ This IO i s an i s s u e s i n c e i t p r e v e n t s
p a r a l l e l i z a t i o n : ∗/

fputs(err_mess , stderr);

/∗ This g l o b a l e x i t l e a d s t o an un s t r u c t u r e d c o n t r o l
graph , r e du c i n g o p t im i z a t i o n o p p o r t u n i t i e s . . . ∗/

exit(err_code);

}

return(res);

}

/∗ Wrapper p r o v i d e d t o t h e p a r a l l e l i z e r .
Note t h a t in ca s e o f a source−to−s ou r c e p a r a l l e l i z e r ,
y e t ano the r v e r s i o n may be g i v e n to t h e back−end
comp i l e r t o t a k e i n t o account t h e t a r g e t e d
a r c h i t e c t u r e c h a r a c t e r i s t i c s . ∗/

void * my_malloc(size_t size , int err_code ,

const char * restrict err_mess)

{

// No more IO or e x i t () !
void * res = malloc(size);

return(res);

}

Figure 3: Wrapping system calls.

2.5 Interprocedural Control Flow

Automatic code generation tools more and more include more or less advanced interpro-
cedural capabilities, such as the propagation of constant values, summaries of scalar or
arrays read and written by function calls (Cetus and pips, and even mixes of structures
and arrays for pips). This greatly enhances their parallelizing capabilities.

A common restriction in parallelizing compilers and standard such as hmpp [8] or
openacc [26] is that recursive functions are forbidden. The iterative version is then to be
preferred, and, in some cases, this may even expose some intra-procedural instruction par-
allelism which could not be exploited with the recursive version because such optimization
does not cross function calls.

8

3 Data Structures and Types

The C language provides several basic data structures, which can be combined to create
more complicated ones. Traditionally, parallelizing compilers have focused their efforts on
arrays, and this is still their preferred target. However, some are broadening their range
of action to deal with mixes of structures and arrays, pointers. . . But it must be born in
mind that aggregating data may reduce the optimization opportunities or their efficiency.

For instance, grouping the application infrastructure values inside a structure may be
practical to avoid passing several parameters to functions, but it may prevent the compiler
from using them when testing memory dependencies without data transformations.

Dealing with arrays of structures is similarly not practical, and dependency analysis
can be easily extended to deal with them. However, generating communications for het-
erogeneous target is more difficult. Depending on the size of the structures, on the fields
actually accessed during the exported computation, and on the communication costs, it
may be more advisable to transfer a whole sub-part of the array, or to pack/unpack the
desired fields to reduce the communication costs.

Notice also that unions are difficult to handle precisely. They create a discrepancy
between memory usage and the actual semantics of the program since the same mem-
ory locations may be used to store completely unrelated objects. For safety reasons, the
compiler must assume the dependencies, whereas the computations may be semantically
independent. So unions, if needed, are to be kept in some purely sequential parts.

Finally, pointers are unequally handled. Analyzing and optimizing code using recursive
data structures, such as linked lists or trees, is also still an active research area, for example
with shape analysis. It may be useful to convert a linked list into an array if the processing
cost is large enough. Another possibility for the compiler is to make use of speculative
techniques to parallelize such codes.

The remainder of the section gives more specific advice to maximize the optimization
opportunities for applications using pointers and arrays.

3.1 Pointers

Pointers allow to designate a single memory location using several names, or may designate
several memory locations throughout its lifetime: this is called dynamic aliasing. However
practical it may be, it makes subsequent program analyses more complicated, as compilers
must safely assume that two pointers are aliased whenever they cannot prove the contrary.
Some compilers provide ways to turn off this behavior when the user is sure that there is no
pointer aliasing. For instance, Par4All provides a --no-pointer-aliasing command-
line option. Other compilers such as the one from pgi requires the user to declare pointers
with the C standard restrict qualifier. Basically, when using this qualifier, the program-
mer asserts that for the pointer lifetime, the pointed memory area is only accessed using
this pointer. The compiler use this information when optimizing code since no memory
access using another pointer will generate a dependence with the accesses using the re-
stricted pointer. For example the openacc code on Figure 4 can be parallelized by the

9

void kernel(int n,

f l oa t * restrict a,

f l oa t * restrict r) {

#pragma acc region

{

for (int i = 0; i < n; ++i)

r[i] = a[i]*2.0f;

}

}

Figure 4: OpenACC example with the restrict qualifier required to allow parallelization.

pgi compiler only because the pointers are declared restricted.
Here are some pieces of advice to maximize the benefits of using source-to-source com-

pilers allowing the use of pointers:

• Always use the same expression to refer to a memory location inside a function; for
instance, avoid the following kind of code:

my_parts = syst ->domain[i]->parts;

my_parts[j] = ...;

since syst->domain[i]->parts is designated by 2 different expressions:
syst->domain[i]->parts of course and my_parts, which may confuse the
compiler tracking the memory use.

• Do not assign two different memory locations to a pointer (that means that a pointer
should be considered rather as a single assignment variable). For example in the code

i f (cond ())

p = &a[f()];

e l se
p = &b[g()];

*p = h();

it is difficult for the compiler (and also a human being. . .) to figure out which element
of which array is really written.

• Do not use pointer arithmetic, or solely with great care. In particular do not use it
if it leads to pointer aliasing (avoid p = p+i or p++ if p is a pointer). Note that this
is a particular case of the previous point.

For example avoid using pointers to perform a strength reduction on array accesses
such as:

10

double a[N], b[N];

double *s = a, *d = b;

while(s<&a[N])
*(d++) = *(s++);

but prefer the following clearer version that reflects the original algorithm and exposes
some trivial parallelism:

double a[N], b[N];

for (int i = 0; i < N; i++)

b[i] = a[i];

• Reserve the use of pointers for the sole dynamic allocation of arrays and to function
parameter passing (in C, to emulate the C++ reference concept). In C++, use
references instead of pointers, when possible.

Note that you can have variable size arrays in C99 (as available in Fortran for
decades), such as:

int n = f();

int m = g();

double a[3*n][m+7];

which can spare you the trouble of explicitly allocating and freeing pointers, or playing
with alloca().

• Avoid function pointers because, even when they are legal, they prevent precise
interprocedural analyses and optimizations since it may be difficult to figure out
which function is eventually called. This is also the case with virtual function in
C++: the underlying implementation involves a table of function pointers.

• Do not use recursive data structures such as linked lists, trees. . . since it is often
difficult to figure out what object is really pointed to, as explained previously in the
introduction of the section.

• Be aware of the C standard constraints on pointer expressions, pointer differences,
and more generally on pointer arithmetic.

3.2 Arrays

As array manipulations are often the source of massive parallelism, parallelizers often
concentrate their efforts on them. However, their task can be made easier by following a
number of coding guidelines which are detailed below.

11

3.2.1 Providing and Respecting Array Bounds

Parallelizing compilers often make the assumption that the program is correct, and in
particular that array bounds are not violated. Otherwise, the behavior of the program
may be undefined. This (bad) programming style is often used as array reshaping to
iterate in a big global loop ranging all the elements normally visited by a loop nest on all
dimension of an array, as shown in the next section. Modern compiler may figure out loop
nest coalescing automatically to get maximum sequential performance anyway.

The bound should be provided

3.2.2 Linearization

In many automatic parallelizers, array references are represented using the integer polyhe-
dron lattice; array reference indices must be affine integer expressions for the compiler to
be able to study inter-iteration independencies, to propagate information over the program
representation, and/or to generate communications.

For example a[2*i-3+m][3*i-j+6*n] is an affine array reference but
a[2*i*j][m*n-i+j] is not (it is a polynomial of several variables).

This explains why you should not use array linearization to emulate accesses to multi-
dimensional arrays with one-dimensional arrays, as in:

double a[n][m][l];

double * p = a;

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

for (int k = 0; k < l; k++)

p[m*l*i + l*j + k] = ...;

The cleaner understandable following version should be used instead:

double a[n][m][l];

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++)

for (int k = 0; k < l; k++)

a[i][j][k] = ...;

In the first cluttered version, the polynomial array index expression cannot be represented
in a linear algebra framework; this kind of loop is usually not parallelized, and communi-
cations on gpu cannot be generated.

Some compilers (see [25, 13]) try to delinearize this kind of array accesses. But this
transformation is not always successful.

3.2.3 Successive Array Element References

To reduce the analysis complexity, some compilers compute summaries of array element
accesses in sets. For instance, pips array region analyses [11, 2] gather array elements in

12

/∗ In t h e f o l l o w i n g s t a t emen t s e qu en c e s and e x p r e s s i o n ,
a l l r e f e r e n c e t o a and b are made in a f o l l o w i n g way .
So f i r s t t h e r e g i o n w i t h a [i −1] and a [i] i s b u i l t ,
which i s compact , and t h e a [i +1] r e f e r e n c e i s added ,

l e a d i n g s t i l l t o a compact r e g i o n . ∗/
tmp = a[i-1] + a[i] + a[i+1];

b[i-1] = ...;

b[i] = ...;

b[i+1] = ...;

Figure 5: Consecutive array accesses.

/∗ The array r e g i o n a c c e s s i s f i r s t computed from a [i −1]
and a [i +1] which i s non compact and then t h e a [i]
e l emen t i s added ∗/

tmp = a[i-1] + a[i+1] + a[i];

/∗ The same f o r b ∗/
b[i] = ...;

b[i+1] = ...;

b[i-1] = ...;

Figure 6: Disjoint array accesses leading to imprecise array region analysis in pips and
Par4All.

sets represented by convex polyhedra. This means that non-convex sets of array elements
are approximated by sets that contain elements which do not belong to the actual set,
and are thus imprecise. Of course, further analyses and transformations are more likely to
succeed and produce efficient code if array region analyses are more precise. So, in case of
successive accesses to array elements, it is recommended to group them as much as possible
so that two consecutive accesses in the program flow can be represented by a convex set.
As an example, the version of Figure 5 is preferable to the version of Figure 6.

3.3 Casts

Casts are somewhat tricky to analyze because they induce translating a data memory
layout into another one, and this maybe very difficult in the general case, especially for
source-to-source tools which try to preserve the initial aspect of the program, and as the
memory layout maybe architecture-dependent.

Hence the effects of the cast operator on the analyses may lead to a loss of precision: it
is recommended to use it sparingly, out of the hot spots, and only when it does not impact
the memory layout.

13

4 Directives and Pragma (OpenMP...)

Fashionable extensions to sequential languages are hints expressed as pragma or directives
hidden into comments in the source code to inform the compiler that some parts can be
executed in parallel, offloaded to an accelerator or with data and computation distributed
on a distributed-memory massively parallel computer. The extensions we are interested in
here are those which do not modify the sequential semantics of a program. For example,
expressing that a sequential part is parallel does not change the semantics of the sequential
part and this extension can be ignored by a compiler and the program remains correct3.

openmp [27, 28] and hpf [17, 18] are old standards based on this principle, but with
different targets and paradigms. openmp targets shared-memory multiprocessors whereas
hpf is more ambitiously oriented towards distributed-memory massively parallel machines
with deeper compiler support. Unfortunately, only openmp has been successful in its
achievements, even if hpf had some impact on the development of parallel models and
languages [21]. Figure 7 shows an example of openmp.

More modern extensions such as hmpp [8] or openacc [26] are developed for C, C++
and Fortran to extend these concepts to other domains, such as heterogeneous computing
or even to embedded systems with smec [3]. An example of openacc Fortran program is
found in Figure 8.

The interesting aspect is that even if the compiler dealing with this extension is not
or no longer available, the sequential program remains and is not lost. It can still be
optimized and parallelized later, manually or automatically with other tools.

It is an interesting path toward incremental manual parallelization without loosing the
investments in the source code that remains sequential. But the sequential sources need to
be reorganized to express parallelism exploitable by the tools. Thus this extensions take
advantage of the good practices described in this chapter.

5 Using Libraries

5.1 Relying on Efficient Libraries

An easy way to parallelize part of the execution in a sequential program is to use some
libraries that are already parallelized, such as linear algebra libraries (mkl, blas, lapack,
petsc. . .) or other mathematical libraries (fftw [14] to compute various fast Fourier’s
transforms. . .).

Even i/o operations exists as parallel libraries, which is of great importance since com-
puter performance increase quicker that i/o latency reduction and bandwidth improve-
ment.

In this way, a programmer can benefit from highly parallelized and optimized expertise
packaged in libraries (Scalapack, plasma, magma, Cublas, petsc. . .) without having

3Actually the fine operational semantics may change because for example of the non-associativity of
floating-point computations or some signed integer operations due to various rounding.

14

/∗ This i s e x e c u t e d by s e v e r a l t h r e a d s c o n c u r r e n t l y ∗/
#pragma omp parallel for

for (i = 0; i < n; i++)

// I t e r a t i o n s are d i s t r i b u t e d be tween t h e t h r e a d s
x[i] += y[i];

// Im p l i c i t s y n c h r o n i z a t i o n here

// Launch a l l t h e t h r e a d s
#pragma omp parallel

{

/∗ But t h e f o l l o w i n g i s run on on l y one thread ,
w i t h i t s own copy o f p ∗/

#pragma omp single private (p)
{

// I t e r a t e on t h e e l emen t s o f a l i s t from th e head
p = listhead;

while (p) {

/∗ While t h e r e i s s t i l l an e lement , l aunch a new
t a s k a s yn ch r onou s l y t o p r o c e s s i t in p a r a l l e l ∗/

#pragma omp task

{

process (p);

}

// Look a t ne x t e l emen t
p = next(p);

}

}

}

Figure 7: Small example of C language with openmp extension.

to invest time in the parallelization phase.
Unfortunately, not all the parts of an application exists as libraries, and if so, may

not be combined. Furthermore, they may not be directly usable with some automatic
parallelizer, as explained in the following section.

5.2 Quarantined Functions: Stubs

Using complex functions can stress too much some compilers or sometimes, parallelizing
a program globally need the whole program source but the source of the libraries is not
available or definitely too complex or irrelevant to be retargetable.

In this case, two different compilers may be needed: one to do the automatic par-

15

! Exp l a i n t h a t Anew i s t o be a l l o c a t e d t o t h e a c c e l e r a t o r .
! A has a copy a l s o a l l o c a t e d t o t h e a c c e l e r a t o r and
! i s i n i t i a l i z e d w i t h t h e v a l u e o f A from th e h o s t :

! $acc da ta copy in (A) , c r e a t e (Anew)
iter = 0

do while (err .gt. tol .and. iter .gt. iter_max)

iter = iter + 1

err = 0.0

! The f o l l o w i n g l o op n e s t i s p a r a l l e l and to be o u t l i n e d
! f o r e x e c u t i o n on t h e a c c e l e r a t o r w i t h some s c h e d u l i n g
! paramete r s .
! I n s t r u c t a l s o t h e comp i l e r t h e r e i s a r e d u c t i o n done
! on t h e e r r v a r i a b l e

! $acc k e r n e l s l o o p r e d u c t i o n (max : e r r) , gang (32) , worker (8)
do j=1,m

do i=1,n

Anew(i,j) = 0.25 * (A(i+1,j) + A(i-1,j) &

A(i, j-1) + A(i, j+1))

err = max(err , abs(Anew(i,j) - A(i,j)))

end do
end do

! $acc end k e r n e l s l o o p
i f (mod(iter , 100) .eq. 0) print *, iter , err
! This a f f e c t a t i o n can be done in p a r a l l e l ,
! as w i t h HPF work l oad :

! $acc p a r a l l e l
A = Anew

! $acc end p a r a l l e l
end do
! $acc end da ta

Figure 8: Example of openacc with Fortran 90 commented after [16].

allelization on a code with some functions hidden from it and another more robust non
parallelizing compiler to compile the problematic functions. Afterwards, the two programs
are linked together to produce a global program.

But there may be still an issue: if the parallelization is performed by program com-
prehension, for example by using some abstract interpretation like in pips, the whole
program source has to be analyzed, with all the library functions which are unfortunately
unavailable. A description of the behaviors of these functions is needed for automatic
parallelization.

This can be provided by some external ways such as a contract description in an xml

16

files such as with spear tools [23], by using some #pragma in hmpp [8] or openacc [26],
directives or attributes such as in Fortran (intent(in), intent(out) or intent(inout)

specifying some arguments are read or/and written by a function).
Another way is to provide the parallelizer with a stub function that mimic the behavior

needed by the parallelizer to know what is needed for a parallelism analysis. For example
in Par4All, which is based on pips, the memory accesses to the memory are analyzed to
know if there are conflicts or not between pieces of code, scalar variable values are tracked
by semantic analysis for improving dependency test and applying various optimizations,
input/output effects are tracked to avoid unfortunate parallelism of input/output and so
on. So for Par4All, stub functions with these effects are needed.

The advantage of this last solution is that no language extension or #pragma is
needed. The drawback is that some simple functions have to be written instead and the
global compilation flow has to be adapted to provide the stub functions to the parallelizer
and to substitute afterwards in the final executable the real functions.

6 Object Oriented Programming

Although we focus in this article on the C and Fortran languages, object-oriented pro-
gramming gain momentum even in high-performance computing, with C++ which is an
object-oriented extension of the C language, or even more logically Fortran 2003 and 2008
versions that include directly object-oriented concepts.

Object-oriented languages have some interesting high-level aspects allowing conciseness
and abstraction with the drawback that it may difficult to understand what is really ex-
ecuted on the target, by comparison with simpler languages as C, closer to a high-level
macro-assembler.

As for languages that are not object-oriented , a simple general rule is to avoid using
constructs that leads to unstructured code (such as exceptions and object creation/dele-
tion) and unpredictable code (such as virtual functions) in compute intensive parts with
some parallel potential such as heavy loop nests.

Using virtual functions in C++ means that the choice of the real function to be used
is only made at execution time, which is costly (equivalent to using a function pointer in
C) and difficult to analyze by a parallelizer compiler.

When possible, using advanced templates (which can be seen as a kind of high-level C
preprocessor) replaces virtual functions by compile-time specialization with simpler func-
tion overloading which are plain function calls. They can even be in-lined.

Furthermore, using C++ well-known templates, for example from the stl or boost
libraries, may be recognized by the compiler. For example, by understanding its semantics,
a loop iterating on a std::vector is replaced by some parallel constructs [24]. There are
even some direct implementations of the algorithms from stl that are directly parallel,
such as the mcstl [35] or stapl [7], or variations with some specialized parallel template
libraries such as tbb [19].

Pointers used in C to pass arguments in functions can be replaced by reference (&)

17

in C++ to precise the programmer intentions and to let the parallelizer be able to find
parallelism.

Working with expressions on objects in C++ is quite powerful but may create a lot of
temporary objects with a lot of time spent in object creation and deletion, content copy.
This may spoil memory bandwidth and electrical power, but also have some side effect
preventing the parallelization. A nice feature from C++11 is that there are some move
constructors that may avoid some useless object copy or creation with their side effects.

Exceptions (or arbitrary jump) are another side effect to avoid in the parallel sections
of a program. Even if they are caught locally, it is equivalent to unstructured control
flow that may impair the parallelism. More generalized use of exceptions that may be
caught interprocedurally for example can be seen as non-local goto4 which is inherently
challenging but question the parallelism itself: what is the semantics of a parallel loop with
an exception in an iteration? Do we rollback all the loop in a transaction way? Do we
execute all the iterations but not the trouble-making one? Do we execute all the iteration
up to the exception-throwing one to emulate a sequential semantics?

7 Conclusion

Agent Smith:

Never send a human to do a machine’s job.

In Matrix (Andy & Larry Wachowski, 1999).

Because of the current and foreseeing technological constraints, parallelism is the only
way to go for speed and energy efficiency. Unfortunately, parallel programming has been
a real challenge for more than 50 years now.

Parallelizing compilers are promising tools to generate code for a variety of architec-
tures. Of course, the generated code is often not as efficient as hand-programming by
specialists, neither as clean as a new development in a pure parallel programming lan-
guage, but is an interesting trade-off relative to the time-to-market advantage for legacy
code.

Automatic parallelization is no magic and has been a research area for 40 years. Unfor-
tunately it has not became mainstream, perhaps because of too high expectations. Paral-
lelization is an intractable issue in general and one cannot expect an automatic tool to solve
better intractable problems. Fortunately, providing some rules are obeyed when writing an
application, parallelism becomes easier to detect by parallelizing compilers. Low hanging
fruits must be picked first.

Even if the rules presented here have been devised based upon experience with pips and
Par4All, they are far more general and even applicable to modern compilers targeting
sequential targets that have more and more parallelism anyway, such as simd instruction
sets.

4Like setjmp() and longjmp() in C.

18

Basically, the application code should be as structured as possible. At least the un-
structured parts should be segregated into some parts not to be parallelized, to keep the
time-consuming parallelized parts large enough.

Easy parallelized parts often use regular for loops like Fortran do loops, preferably to
while loops. Loop nest candidates for parallelization should not contain i/o or debug or
error control code, or there would be an easy way to switch them off.

Automatic parallelization implies some kind of program comprehension and everything
that uselessly obfuscates the program design is to be banned. Using clear data types,
without type casts, local declaration instead of long-life data structures, explicit argument
passing instead of global variable side effects are some of the basic rules to follow.

Since pointers are often not well managed by a compiler because of the difficulty to
track what is really pointed to, pointer use has to be minimized as the use of recursive
data structures, function pointers or virtual function in object-oriented languages. As a
particular case, avoid array linearization and casting, but prefer using the data as they are
declared. Modern compilers do no longer need these kind of manual optimization to get
good sequential performance, so good sequential programming does not impact execution
times usually.

If some of these recommendations cannot be applied, then try to group the non-
compliant code outside of loop nests which are good candidates for parallelization or,
more generally speaking outside of the most computational-intensive parts of the program.
This is a good practice, for instance, for heap allocations.

In some case, the programmer has some knowledge on the program that is difficult
to figure out automatically. Attributes in some languages, decoration or pragmas can be
used to help the compiler to parallelize the code. When these pragma do not change the
sequential semantics as with openmp, openhmpp or openacc, this is an efficient pragmatic
attitude to go further into a parallel execution without losing the sequential program, and
thus without having to maintain different program versions alive.

But before launching heavy parallel developments, relying on some libraries already
parallelized by some experts for a large range of platform is definitely the way to begin
with. Unfortunately the original application may not be structured to use an existing
library but this restructuring should be worth the investment.

Actually, most of the previous rules are some common sense rules that are more and
more common with the development of recent new languages or even with recent versions of
existing languages, such as C++11 or Fortran 2008. So good programming for parallelism
begins with good sequential programming.

Even if these programming rules seem constraining, they are often considered as sound
programming rules even for classical sequential programming. That means that (re)writing
application to ease parallelization can be a good opportunity for code cleaning and mod-
ernization by reengineering.

From a higher point of view, program parallelization implies some language and tool
choices. Since the program sources are the real value of the applications, one should use
standard approaches, if possible Open Source, to be more confident in the life duration of
the environment and to not being hijacked by some companies and be bound to their future.

19

When parallelizing a program, the entry cost is often important, because the program has
to be fitted into some new constructs, may be rewritten in a new language with a new
high-level architecture. But if some of the tool used disappear for some reason, the exit
cost may be quite worse, because reverse engineering the optimizations that have been
made to fit the former environment before even thinking to port the all application to a
new environment can be a nightmare.

For these reasons, a milder approach involving some coding rules and automatic par-
allelization, with some optional pragmas or directives and some use of parallel libraries,
seems a good compromise between efficiency, time-to-market and technology continuity.

8 Acknowledgments

This work is supported by the Opengpu project with funding from the French systém@tic
Research Cluster.

We would like to thanks all the pips and Par4All team, mainly at mines ParisTech
and silkan, and all the members of the Opengpu project for their fruitful discussions and
comments.

References

[1] M. Amini, C. Ancourt, F. Coelho, B. Creusillet, S. Guelton, F. Irigoin, P. Jouvelot,
R. Keryell, P. Villalon, “PIPS Is not (just) Polyhedral Software”, in First Interna-
tional Workshop on Polyhedral Compilation Techniques (IMPACT 2011). Chamonix,
France, Apr. 2011, http://perso.ens-lyon.fr/christophe.alias/impact2011/

impact-09.pdf.

[2] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guelton, J.O. McMahon,
F.X. Pasquier, G. Péan, P. Villalon, “Par4All: From Convex Array Regions to Het-
erogeneous Computing”, in 2nd International Workshop on Polyhedral Compilation
Techniques (IMPACT 2012). Paris, France, Jan. 2012.

[3] R. Barrère, M. Beemster, R. Keryell, “SME-C — C99 with pragma and API for
parallel execution, streaming, processor mapping and communication generation”,
Technical report, SMECY Project, 2012.

[4] M.M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev,
P. Sadayappan, “A compiler framework for optimization of affine loop nests for GPG-
PUs”, in Proceedings of the 22nd annual international conference on Supercomputing,
ICS, pages 225–234. ACM, New York, NY, USA, 2008, ISBN 978-1-60558-158-3.

[5] C. Bastoul, Improving Data Locality in Static Control Programs, PhD thesis, Univer-
sité Paris VI, Dec. 2004.

20

http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-09.pdf
http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-09.pdf

[6] M.W. Benabderrahmane, L.N. Pouchet, A. Cohen, C. Bastoul, “The polyhedral model
is more widely applicable than you think”, in Proceedings of the 19th joint European
conference on Theory and Practice of Software, international conference on Compiler
Construction, CC’10/ETAPS’10, pages 283–303. Springer-Verlag, Berlin, Heidelberg,
2010, ISBN 3-642-11969-7, 978-3-642-11969-9, URL http://dx.doi.org/10.1007/

978-3-642-11970-5_16.

[7] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, G. Tanase, N. Thomas,
X. Xu, M. Bianco, N.M. Amato, L. Rauchwerger, “STAPL: standard template adap-
tive parallel library”, in Proceedings of the 3rd Annual Haifa Experimental Systems
Conference, SYSTOR ’10, pages 14:1–14:10. ACM, New York, NY, USA, 2010, ISBN
978-1-60558-908-4, URL http://doi.acm.org/10.1145/1815695.1815713.

[8] CAPS Entreprise, “HMPP Workbench”, http://www.caps-entreprise.com, 2010.

[9] C. Chen, J. Chame, M. Hall, “CHiLL: A framework for composing high-level loop
transformations”, Technical Report 08-897, University of Southern California, June
2008.

[10] B. Creusillet, Array Region Analyses and Applications, PhD thesis, École des Mines
de Paris, Dec. 1996, Available at http://www.cri.ensmp.fr/doc/A-295.ps.gz.

[11] B. Creusillet, F. Irigoin, “Interprocedural analyses of Fortran programs”, Par-
allel Computing, 24(3–4): 629–648, 1998, URL http://citeseer.ist.psu.edu/

creusillet97interprocedural.html.

[12] P. Feautrier, “Dataflow Analysis of Array and Scalar References”, International
Journal of Parallel Programming, 20(1): 23–53, Sept. 1991.

[13] B. Franke, M. O’Boyle, “Array recovery and high-level transformations for DSP
applications”, ACM Trans. Embed. Comput. Syst., 2(2): 132–162, May 2003, ISSN
1539-9087, URL http://doi.acm.org/10.1145/643470.643472.

[14] M. Frigo, S.G. Johnson, “The Design and Implementation of FFTW3”, Proceedings of
the IEEE, 93(2): 216–231, 2005, Special issue on “Program Generation, Optimization,
and Platform Adaptation”.

[15] M. Griebl, The mechanical parallelization of loop nests containing while loops, PhD
thesis, Passau, Passau, 1997.

[16] M. Harris, “An OpenACC Example (Part 2)”, http://developer.nvidia.com/

cuda/openacc-example-part-2, 2012.

[17] High Performance Fortran Forum, “High Performance Fortran Language Specifica-
tion”, Version 1.0 CRPC-TR 92225, Center for Research on Parallel Computation,
Rice University, Houston, USA, May 1993, http://hpff.rice.edu/versions/hpf1.

21

http://www.caps-entreprise.com
http://developer.nvidia.com/cuda/openacc-example-part-2
http://developer.nvidia.com/cuda/openacc-example-part-2
http://hpff.rice.edu/versions/hpf1

[18] High Performance Fortran Forum, “High Performance Fortran Language Specifica-
tion”, Version 2.0, Center for Research on Parallel Computation, Rice University,
Houston, USA, Jan. 1997, http://hpff.rice.edu/versions/hpf2.

[19] Intel, “Intel Threading Building Blocks for Open Source (Intel TBB)”, http://

threadingbuildingblocks.org, 2012.

[20] F. Irigoin, P. Jouvelot, R. Triolet, “Semantical Interprocedural Parallelization: An
Overview of the PIPS project”, in International Conference on Supercomputing, pages
144–151, June 1991.

[21] K. Kennedy, C. Koelbel, H. Zima, “The rise and fall of high performance Fortran”,
Communications of the ACM, 54(11): 74–82, Nov. 2011, ISSN 0001-0782, URL
http://doi.acm.org/10.1145/2018396.2018415.

[22] C. Lengauer, “Loop Parallelization in the Polytope Model”, in Proceedings of the
4th International Conference on Concurrency Theory, CONCUR ’93, pages 398–416.
Springer-Verlag, London, UK, UK, 1993.

[23] E. Lenormand, G. Édelin, “An industrial perspective: A pragmatic high-end signal
processing design environment at THALES”, in International Conference on Embed-
ded Computer Systems: Architectures, MOdeling and Simulation (SAMOS), 2003.

[24] C. Liao, D.J. Quinlan, J.J. Willcock, T. Panas, “Extending Automatic Paralleliza-
tion to Optimize High-Level Abstractions for Multicore”, in Proceedings of the 5th
International Workshop on OpenMP: Evolving OpenMP in an Age of Extreme Par-
allelism, IWOMP ’09, pages 28–41. Springer-Verlag, Berlin, Heidelberg, 2009, ISBN
978-3-642-02284-5, URL http://dx.doi.org/10.1007/978-3-642-02303-3_3.

[25] V. Maslov, “Delinearization: an efficient way to break multiloop dependence equa-
tions”, SIGPLAN Not., 27(7): 152–161, July 1992, ISSN 0362-1340, URL
http://doi.acm.org/10.1145/143103.143130.

[26] O. Members, “The OpenACCTM Application Programming Interface”, Version 1.0,
OpenACC Members, Nov. 2011, http://www.openacc-standard.org.

[27] OpenMP Architecture Review Board, OpenMP Standard, 1.0, Oct. 1997, http:

//www.openmp.org.

[28] OpenMP Architecture Review Board, OpenMP Standard, 3.1, July 2011, http:

//www.openmp.org.

[29] The Portland Group, PGI Compiler User’s Guide, 2012.

[30] L.N. Pouchet, PoCC: the Polyhedral Compiler Collection Package, 2012, http://

www.cse.ohio-state.edu/~pouchet/software/pocc/doc/pocc.pdf.

22

http://hpff.rice.edu/versions/hpf2
http://threadingbuildingblocks.org
http://threadingbuildingblocks.org
http://www.openacc-standard.org
http://www.openmp.org
http://www.openmp.org
http://www.openmp.org
http://www.openmp.org
http://www.cse.ohio-state.edu/~pouchet/software/pocc/doc/pocc.pdf
http://www.cse.ohio-state.edu/~pouchet/software/pocc/doc/pocc.pdf

[31] Purdue University, The CETUS Compiler Manual, 2011, URL http://cetus.ecn.

purdue.edu/Documentation/manual.

[32] D. Quinlan, C. Liao, T. Panas, R. Matzke, M. Schordan, R. Vuduc, Q. Yi, ROSE
User Manual: A Tool for Building Source-to-Source Translators, Draft User Manual,
Lawrence Livermore National Laboratory, June 2012.

[33] Reservoir Labs, Inc., R-Stream Parallelizing C Compiler, Power User Guide, 2012.

[34] SILKAN, “Par4All — Single Source, Multiple Targets”, 2012, http://par4all.org.

[35] J. Singler, P. Sanders, F. Putze, “MCSTL: The Multi-core Standard Template Li-
brary”, in A.M. Kermarrec, L. Bougé, T. Priol (Editors), Euro-Par 2007 Par-
allel Processing, Volume 4641 of Lecture Notes in Computer Science, pages 682–
694. Springer Berlin / Heidelberg, 2007, ISBN 978-3-540-74465-8, URL http:

//dx.doi.org/10.1007/978-3-540-74466-5_72.

[36] E. Stoltz, “Effective Compiler Utilization”, in Linux Supercluster User’s Conference,
Sept. 2000.

[37] R. Triolet, P. Feautrier, F. Irigoin, “Direct Parallelization of Call Statements”, in
ACM SIGPLAN Symposium on Compiler Construction, pages 176–185, 1986.

23

http://par4all.org

	Introduction
	Program Structure and Control Flow
	Well-Formed Loops…
	…and Loop Bodies
	Testing Error Conditions
	Declaration Scope
	Interprocedural Control Flow

	Data Structures and Types
	Pointers
	Arrays
	Providing and Respecting Array Bounds
	Linearization
	Successive Array Element References

	Casts

	Directives and Pragma (OpenMP...)
	Using Libraries
	Relying on Efficient Libraries
	Quarantined Functions: Stubs

	Object Oriented Programming
	Conclusion
	Acknowledgments

