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Abstract—This paper presents an optimization model for
energy management in smart buildings, when electrochemical
and thermal storage are considered as flexibilities to achieve
minimum operation costs. The optimization problem takes into
account the battery’s cycling cost and the possibility of storing
energy in the electric water heater. To deal with the cycling aging
process, the problem is decomposed into two subproblems that
are iteratively solved, in which a Particle Swarm Optimization
decides the battery’s State of Charge and then a day-ahead
dispatch takes place to determine the total operation cost. This
approach allows us to deal with the non-linearities of battery
aging in a simple an effective way. The results show that the
potential presence of both storage technologies has a positive
impact on the operation costs; they also show the impact on the
device settings when battery’s cycling aging cost is considered.
This methodology has been developed in the context of the
Horizon 2020 project SENSIBLE as part of the tasks related
to the use case, Flexibility and Demand Side Management in
Market Participation.

Index Terms—Smart buildings, Storage, Optimization, battery
cycling.

I. INTRODUCTION

In order to face the challenges raised by contemporary
power systems, new approaches featuring descentralized gen-
eration and coordination with demand side flexibility have
gained substantial attention in recent years. Some of these new
schemes are being developed in the medium and low voltage
grid, and most recently at building and home level, leading
to the development of concepts such as Smart Residential
Buildings (SRB) and Home Energy Management Systems
(HEMS) [1].

These possibilities, in a smartgrid context, make it possible
to exploit the flexibility capabilities provided by renewables,
storage technologies, demand response (DR) and interaction
with the grid [2]. In the concrete case of the present work, the
aim is to analyze the interaction between thermal and electric
storage in an SRB, considering battery aging.

In particular, the aging process of storage devices is com-
plex, and depends on internal chemical reactions with elec-
trode interfaces, and the degradation of active materials due
to cycling and aging of non-active components [3]. This degra-
dation process can be tracked and modeled by determining the

This work was carried out as part of the research and innovation project
SENSIBLE (Storage ENabled SustaInable energy for BuiLdings and com-
munitiEs - www.h2020-projectsensible.eu), which has received funding from
the European Union under the Horizon 2020 Framework Programme grant
agreement No 645963.

cycling patterns, the respective Depth of Discharge (DOD) and
the rate at which this process occurs [4].

To include this process in the operation of SRB, some
research has been published in recent years. For example, the
work presented in [5] evaluates the impacts of peak shaving
when DR potential is enhanced through different storage
technologies. To include cycling of storage devices, a set of
values of the energy that can be cycled are predefined and
analyzed.

Other models that consider predefined values or limits for
the total energy that can be cycled, in the form of equivalent
State of Charge (SOC) or DOD values, are presented in [6],
[7]. The research in [8] includes detailed behaviour of battery
voltages and currents due to operating DOD, with the aim of
managing resources in residential microgeneration systems.

Regarding management models for joint thermal and elec-
tric storage technologies at the residential level, approaches
include that presented in [9], which proposes a residential
microgrid in which thermal and electric storage make it
possible to shave the demand peak and enhance the system’s
self-sufficiency. The approach in [10] presents a methodology
for intraday management of PV and Electric Water Heaters
(EWH) in an LV network, with the EWH acting as a flexible
load in order to achieve minimum operation costs.

Reference [11] presents an optimization problem for day-
ahead market that minimizes retailer costs represented by
imports/exports and gas costs, along with expected balancing
costs in real time operation. The model includes thermal
load and also electro-thermal storage, which can generate or
consume power.

Sizing and operation of storage devices in smart buildings
is presented in [12], including electrical and thermal storage.
This study concludes that thermal storage is crucial to reduce
energy costs. However, it does not take into account cycling
aging and points out that batteries might not be economical
due to investment costs and short lifetime.

A recent paper [13] presents a cooperative scheme of SRB
for optimal management of resources, considering batteries,
thermal storage and electrical vehicles. Although cycling is
not taken into account, this study constitutes an interesting
benchmark given that different network configurations are
presented, showing the importance of exploiting operational
flexibilities when different interactions are analyzed.

Although the above literature review is not exhaustive, it
represents the trends related to the topics in discussion and
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shows that the current literature leaves room for significant
development regarding the integration of storage technologies
in SRB including battery cycling.

For the present work, an SRB comprising 4 apartments is
presented as the testbed, in which one PV, one battery and
individual EWHs are considered to minimize the building’s
operation costs and determine the set points for the appropri-
ate devices. The work presented here was performed within
the EU Horizon 2020 project SENSIBLE (Storage Enabled
Sustainable Energy for Buildings and Communities), as a part
of the use case ”Flexibility and demand side management in
market participation”. This case assumes a retailer, or other
Energy Service company, aggregates a number of customers,
and participates in a market in order to optimize its electricity
costs and add value to the flexibilities that customers can offer.

To make a more realistic analysis, we forecasted the house-
holds’ load behavior using data from the residential energy
management equipment in SENSIBLE’s Evora demonstrator
[14].

The main contributions of this paper are the following: 1)
interactions of electrical and thermal storage are analyzed in
the context of SRB, and advantages of coordinated operation
are shown; 2) To complement these interactions, cycling aging
of the battery is included employing the RainFlow Counting
Algorithm to model the complex cycling behavior; and finally,
3) The resulting non-linear and non-analytic problem is solved
by the Particle Swarm Optimization, and as a result, two
simple subproblems can be solved iteratively to find good
quality solutions.

The present work is organized as follows: section II presents
the mathematical formulation of the SRB. Next, section III
sets out the solution algorithm used for the SRB energy
management. The results obtained are given in section IV and
finally, conclusions are drawn in section V.

II. SMART RESIDENTIAL BUILDING MATHEMATICAL
MODEL

The proposed smart building is composed of a solar panel,
a li-ion battery, a connection to the main grid, and a number
of households. Each household contains a total electrical base
load to be supplied and a thermal load that has to be met
by an EWH, which also has the possibility of storing thermal
energy.

In general, EWH input and electrical load during the 24h
period can be met by the main grid, the solar panel and
the injected power from the batteries. The idea is to achieve
a minimum operation cost by adjusting the setting of the
devices in order to optimally manage resources. The scheme
of the proposed SRB is shown in figure 1. As it can be
seen, the battery and the PV serve all households in the
building, whereas the thermal storage serves each apartment
independently.

One feature of the proposed SRB is the possibility to
independently control the Energy Storage System (ESS) and
the Thermal Energy Storage (TES). This means that the
secondary grid does not directly feed the thermostatic load.
In other words, this load is fed by the available stored energy
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Fig. 1. Schematic diagram of the proposed SRB

in the TES, and the input for the EWH is seen as a load from
the secondary network.

A. Electrical load forecast

The SENSIBLE project [15] explores integrating available
technologies into the local power grid through 3 European
demonstrators. The Evora demonstrator develops energy man-
agement applications and has therefore deployed smart-meters
in a localized neighborhood of the city of Evora, Portugal. This
smart meter roll-out features forecasting models developed to
predict the electrical load demand of individual households.

To predict the electrical demand of one household for the
next day, the model uses the demand during the previous week
and the outside temperature predicted for the next day. By
means of quantile smoothing spline fitting, it is possible to
predict day-ahead demand d̂t at instant t, as the sum of three
functions:

d̂t = f1(dt−24) + f2(d̄t) + f3(T̂t), (1)

where dt−24 is the demand 24 hours before the instant to be
predicted, d̄t the median demand of the previous week and T̂t
the predicted temperature. After quantile regression, a set of
forecast quantiles is obtained. Instead of a single-point value,
10%, 20%, . . . , 90% values are obtained and respectively as-
sociated with a 10%, 20%, . . . , 90% chance of measuring a
lower actual demand at the instant predicted. This probabilistic
forecasting of electrical demand is a point of interest in the
literature [16], [17]. In the present work, the 50% value is
taken for the electrical load input into the energy management
optimization model.

B. Mathematical model

The model presented minimizes building operational costs
by scheduling the battery power charge and discharge, and
the power injected into the EWH. The proposed optimization
model is shown and described in equations (2)-(13) and aims
to minimize day-ahead operation cost for the smart building
portfolio manager. The objective function considers the import
energy cost and the cycling aging cost of the battery (second
term in eq. 2).

Equation (3) expresses the power balance, where electrical
base load and thermal load have to be supplied by the available
resources and the purchased power in the wholesale market.
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Equations (4) and (5) describe the energy state for the battery
and the EWH, respectively. In these constraints, the energy
stored in time period t + 1 is determined by the previous
state of charge and the charge/discharge of the device in time
period t with the corresponding efficiency. It is important to
mention that the term including R and C (thermal resistance
and capacitance, respectively) in equation (5), represents the
energy dissipation in the EWH as a measure of energy loss,
as proposed in [11].

min
T∑
t=1

CtimP
t
im + Ccyc(DOD) (2)

s.t.

P tim =
J∑
j=1

P t,jL + P tCh − P tDCh − P tS +
J∑
j=1

P t,jH (3)

SOCt+1 = SOCt + ηcP tCh −
P t

DCh

ηd
(4)

TSOCt+1,j = TSOCt,j + P t,jH −
TSOCt,j

RjCj − P t,jLH (5)
SOC1 = SOCT (6)

SOCmin ≤ SOCt ≤ SOCmax (7)
TSOCjmin ≤ TSOCt,j ≤ TSOCjmax (8)

0 ≤ P tCh ≤ PmaxCh (9)
0 ≤ P tDCh ≤ PmaxDCh (10)
0 ≤ P tim ≤ Pmaxim (11)

0 ≤ P t,jH ≤ P
j
Hmax (12)

t : {1, ..., T} and j : {1, ..., J} (13)

where
t,j Index time step and household respectively
Ctim Spot price at time t
ηc Efficiency of battery charging
ηd Efficiency of battery discharging
P tS Power generated by the solar panels at time t
P tL Electrical base load at time t
P t,jLH Thermal load at time t and EWH j
SOCt Battery state of charge at time t with lower and upper

bounds SOCmin and SOCmax, respectively
TSOCt,j State of charge at time t and EWH j with

lower and upper bounds TSOCjmin and TSOCjmax,
respectively

P tCh Power charged in battery at time t with upper bound
PmaxCh

P tDCh Power discharged in battery at time t with upper
bound PmaxDCh

P tim Power supplied from distribution grid at time t
P t,jH Power injected to the EWH j at time t with upper

bound P jHmax
In order to maintain a constant operation feature of the

battery, the accumulated energy at the end of the day must
remain the same as it was at the beginning of the day (Eq 6).
All variable limits are shown in constraints (7)-(12).

Function Ccyc(DOD) is non analytic, given that the battery
aging can only be calculated after ascertaining the SOC, and
then determining the DOD at which each equivalent cycle
occurs. Hence it is difficult to analytically model and express
this phenomenon.

In order to overcome this difficulty, the problem formulated
in (2)-(13) is solved with Particle Swarm Optimization (PSO),
in which the decision variable is the battery’s SOC. If SOCs
are generated using this metaheuristic logic, the problem can
be decomposed into two subproblems: one of them analyzes
battery SOC proposals and calculates the corresponding cy-
cling aging equivalent cost; the second subproblem calculates
the day-ahead cost and the settings for the remaining building
resources. Once the two subproblems are solved, the total cost
can be obtained by simply adding both results (day-ahead
and cycling cost). Details of these two subproblems will be
explained in the next subsections.

1) Cycling Aging Cost Subproblem: Battery life in general
can be expressed in terms of the actual lifespan of the
device (calendar life) or the number of achievable charge
and discharge cycles (cycle life) [4]. As already mentioned,
the aging process is complex and depends on the cycling
patterns, rates of charging/discharging, and consequent chem-
ical reactions resulting in an accumulated history of voltages,
currents and temperatures [3], and detailed analysis of this
set of interactions is beyond the scope of this paper. The
approach used in this work is based on the cycle life concept.
In general, the maximum number of charge/discharge cycles
for a battery at a certain value d of DOD, is given by the
following expression [18]:

nd = n100d
−kp (14)

where kp is a constant that depends on the life cycle - DOD
curve given by the manufacturer, and can be extracted from
the curve fitting. The quantity n100 is the equivalent number
of cycles before failure for d = 100%.

Cycle counting for a specific DOD is identified from local
extreme points based on the SOC curve, and equivalent half
or full cycles are defined. This is carried out following the
logic of the Rainflow Counting Algorithm (RCA), which is
explained in detail in [19].

In the present work, a filtering process of the SOC is carried
out before the RCA. This filtering considers two stages: first,
adjacent local max/min points below a threshold (< 1Wh)
are disregarded, i.e. the battery is in an idle state; second,
intermediate points between local max/min are eliminated,
which leads to a stricter calculation of equivalent cycling.

Once the number of cycles and their DODs for the 24h
period have been calculated, an equivalent cycling cost is
obtained according to the following expression:

Ccyc =
∑
j∈Ω

Lj
Cini
n100

d
kp
j (15)

where Ω is the set of DODs for the analyzed period, and Cini
is the initial cost of the battery. The information of full or
half cycles for each dj is given by Lj , taking values of 1 or
0.5 respectively. The obtained Ccyc for a specific SOC is the
equivalent cost due to the battery’s aging process, and should
be added to the total dispatch cost.

2) Day-ahead Thermal Subproblem: When the SOC for the
battery is determined with the PSO, the problem in equations
(2)-(13) has to be reformulated. This subproblem is called
Thermal Subproblem, given that once an SOC is known, the
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remaining set points that need to be determined are those
associated with the EWH.

First, PCh and PDCh can be easily determined by applying
the following rule:

P tCh =

{
(SOCt − SOCt−1)/ηc, if SOCt − SOCt−1 > 0

0, otherwise
(16)

P tDCh =

{
(SOCt−1 − SOCt)ηd, if SOCt−1 − SOCt ≥ 0

0, otherwise
(17)

It is worth noting that constraint (6) implies that both PCh and
PDCh have to be zero for the first time frame (t = 1) in order
to match the SOC for the last time frame of the previous day.
Thus, equations (16) and (17) are valid for t : {2, ..., T}.

Once PCh and PDCh have been ascertained, a verification
of these values is needed to determine whether they are higher
than the nominal power. If so, the analyzed SOC is infeasible
and a penalization of this proposal is needed. This penalization
is calculated as follows:

Y t = 1−H(PmaxCh − P tCh)−H(PmaxDCh − P tDCh) (18)

where H(·) denotes the Heaviside step function. From (18),
whenever P tCh or P tDCh are outside the boundaries, Y t takes
the value of 1; and if feasible operation is achieved, then Y t =
0.

Once the value of Y has been obtained, the model (2)-(13)
can be rewritten in the following way as a linear programming
problem:

min v =
T∑
t=1

CtimP
t
im + βY t (19)

s.t.

P tim −
J∑
j=1

P t,jH = αt (20)

TSOCt+1,j = TSOCt,j + P t,jH −
TSOCt,j

RjCj − P t,jLH(21)

TSOCjmin ≤ TSOCt,j ≤ TSOCjmax (22)
0 ≤ P tim ≤ P tL (23)

0 ≤ P t,jH ≤ P
j
Hmax (24)

t : {1, ..., T} and j : {1, ..., J} (25)

where αt = P tL + P tCh − P tDCh − P tS is now a known value.
In addition, β is a penalization factor when PCh or PDCh are
outside the boundaries.

For each specific SOC, the corresponding fitness function
is calculated by:

f(SOC) = v + Ccyc (26)

where v is obtained after solving the model (19)-(25) and Ccyc
from (15). In order to find an SOC that returns the minimum
cost, the PSO metaheuristic is used, because it is capable of
handling real variables and makes it east to integrate the two
subproblems described in the previous paragraphs.

III. SOLUTION METHODOLOGY

PSO algorithm is a metaheuristic optimization technique
based on population behaviour, first proposed in 1995 [20].
The algorithm assumes the existence of S particles. These
particles move iteratively in an N-dimensional search space,
where the i-th particle can be represented by a vector xi =
(xi1, ..., xiN ). The velocity of each particle is denoted by
vi = (Vi1, ..., ViN ). In addition, information is kept for the
best individual position for particle i: pbest = (pi1, ..., piN ),
and also for the best global solution (gbest) found. The particle
velocity and its position for iteration k + 1 are updated
according to (27) and (28):

Vij(k+1) = wVij(t)+c1r1(pbest−xij(t))+c2r2(gbest−xij(t))
(27)

xij(k + 1) = xij(t) + Vij(k + 1) (28)

where i is the particle index for i = 1, ..., S, j is an specific
dimension for j = 1, ..., N , w is the inertia, r1 and r2 are two
random numbers with uniform distribution in the range (0,1),
c1 and c2 are the cognitive and social parameters.

When a minimization problem is considered, the best in-
dividual position is updated according to equation (29) and
f(·) is the objective function or the equivalent fitness function.
Finally, the best particle in the swarm is updated with equation
(30):

pbesti(k + 1) =

{
pbesti(k), if f(pbesti(k)) ≤ f(xi(k))

xi(k), if f(pbesti(k)) > f(xi(k))
(29)

gbest(k + 1) = arg min p∈pbesti
f(p(k + 1)) (30)

The algorithm ends when at least one of the following
criteria is met: 1) a maximum number of iterations is achieved,
or 2) a maximum number of iterations without improving the
fitness function is achieved.

To adapt the optimization problem described in II to be
solved by the PSO, the codification of the particles should be
determined. In this case, each particle i refers to a SOC for
the battery, which is composed of 24 elements (N ), associated
with the 24 time steps for the day-ahead dispatch. Each particle
should be assigned with a fitness function according to the
equation (26). This means that for each particle in the swarm,
the cycling and thermal subproblems described in subsections
II-B1 and II-B2 need to be solved.

The initialization of the swarm is performed by randomly
assigning SOC values to each specific time frame. The stop
criterion used in this work is related to consecutive cycles
without improving the fitness function.

The complete outline of the proposed algorithm is shown
in 2.

IV. RESULTS

The proposed algorithm is coded in Python environment.
The electric base load is generated using the logic explained
in section II-A, for a selected set of 4 households in the
Evora demonstrator on a typical day in November 2015. The
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Fig. 2. Flowchart of the used PSO algorithm

4 households form the building to be analyzed. A normalized
thermal load pattern is taken from [21], and its maximum level
is adjusted to 25% of that of the electrical load, in order to
reflect a more realistic behavior.

Electricity prices are those of a typical day in November
2015 for the French market and taken from the EPEX-
European Power Exchange database [22].

The battery’s maximum and minimum energy capacities are
80% and 20%, respectively, based on reference [23]. Charging
and discharging efficiency is assumed to be 95%, and nominal
power and capacity are 5 kW and 10 kWh, respectively; the
size of the PV is 25 kWp. The cycling behavior is based on
the li-ion battery information available in the market, and the
curve fitting values to obtain the relation of cycle life versus
DOD are taken from its technical sheet [24]. The coefficients
obtained are n100 = 5135.7 and kp = 1.759.

The battery cost is EUR 500 e /kWh, according to the
latest IRENA information on residential storage systems for
European countries [25].

The rated power/energy for the EWH, according to commer-
cially available devices, is 6 kW/15.3 kWh respectively [26],
and thermal resistance/capacitance are 568 (◦C/kW)/0.3483
(kWh/◦C) according to [11].

A. Coordinated versus uncoordinated storage without cycling
aging

A first test is carried out to determine the impacts of
having only the flexibiliy given by the battery (uncoordinated
scheme), versus the possibility of coordinated control for both
battery and thermal storage. This test does not take into
account cycling aging.

When no thermal storage is integrated into the building
management system, the total operation cost is 15.11 e . If
coordinated control of both flexibilities is allowed, a lower
cost is achieved: 13.54 e . In addition, the SOC of the battery

changes depending on the scheme. Figure 3 shows deeper cy-
cling when only battery storage is considered, which will lead
to a higher DOD and consequently a higher equivalent cycling
aging cost. If equation (15) is used offline (after the scheduling
of the resources) to determine this cost, associated values of
1.21 and 0.79 e are found for uncoordinated and coordinated
approaches, respectively. This shows that integrating thermal
storage not only reduces operation costs, but also indirectly
extends the battery life, at least for the proposed testbed. The
disaggregated TSOC for each EWH is shown in figure 3.

When the cycling cost for the coordinated approach ( in
fig. 3) is added offline to the day-ahead cost, a total of 14.33
e is obtained. This would be the real cost of managing the
SRB resources when cycling effects are not taken into account
in the optimization process. The next section will explore the
impact of integrated cycling on costs and equipment settings.
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Fig. 3. Battery SOC for uncoordinated ( ) and coordinated ( )
management. TSOC for EWH in household 1 ( ), 2 ( ), 3 ( ), 4
( )

B. Management of coordinated resources considering cycling
aging

To determine how the cycling aging cost impacts on the
management of resources, the methodology described in fig-
ure 2 is used. After several performance tests, the selected
parameters for the PSO are S = 100, w = 0.9 c1 = 2 and
c2 = 2.

When the proposed algorithm is implemented, the schedul-
ing leads to a cost of 13.94 e , with the SOC shown in figure 4
( ). As it can be seen, the pattern changes in such a way that
the battery is subject to less stress. In this case, the battery is
cycled with maximum depths of 26.5%, and the associated cost
is already taken into account during the optimization process.
It is also important to mention that initial (t = 1) and final
(t = 24) SOC increase to 5.95 kW, also helping to reduce the
cycle depths.

This dispatch scheme, which represents a 2.72% cost
reduction, is also important to overcome fluctuations in
loads/renewable energy, given the presence of a margin of
flexibility, which does not exist when storage devices are
operating at their maximum or minimum values.

According to the EWH setting obtained, it can be seen from
figures 3 and 4 that the stored energy changes in the first hours
for heaters 1 and 4, and also for heaters 2, 3 and 4 around
noon. Figure 5, shows that the proposed approach reduces
the dependency of the main grid, by decreasing the power
exchanged during the hours 9 to 13.
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Fig. 5. Power fed by the main grid for the coordinated scheme with aging
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V. CONCLUSIONS

A methodology for management of resources in SRB is
proposed, where the coordination of thermal and electrical
storage shows that reduced operation costs can be achieved.
In addition, when considering the cycling aging cost there is
a change in the device settings to avoid deeper and frequent
cycling, while maintaining operation at a minimum cost.

The proposed scheme, which can also be used to analyze
other sources of flexibilities and building configurations, shows
that taking cycling into account also avoids operating batteries
close to the max/min values, which can lead to employing
flexibility to match variations in the load or available resources
in real time operation.

The results presented could be further explored by diver-
sifying the type of load that conforms the building, and also
by creating an SRB network and analyzing different network
topologies.
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