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Abstract We pay attention not only to the time dependant film thickness of the liquid film (so-called
drainage) between a bubble and a free surface but also to the bubble and free surface shapes when
allowing different uniform surface tensions on these surfaces. This is achieved by extending the recent
boundary approach recently employed in [1] for surfaces having identical surface tension. Preliminary
numerical results clearly show the sensitivity of the drainage and time-dependent surfaces to the sur-
face tension ratio.3

1. Introduction

Interactions between bubbles and a free surface in a gravity field play a key role in many chemical
and geophysical applications. Indeed, as one bubble approaches a free surface, a complex interplay
arises between the squeezing of the liquid flow (and film) surrounded by the bubble and the free sur-
face, and the deformations of the aforementioned surfaces shapes. A recent numerical investigation
by Pigeonneau and Sellier [1] examined the sensitivity to Bond number (see definition in 2.1) of both
the time dependent free surface and bubble(s) shapes and the time dependent film thickness between
the free surface and the closest bubble. This was performed for axisymmetric free surface and bubble
having the same axis of revolution parallel with the applied gravity field and the same uniform surface
tension. However, as suggested by a recent paper [2] dealing with the surface tension interaction
at the glass-liquid-tin-gas phase interface, the obtained results are very likely to be modified if we
consider the case of a free surface and a bubble having different (uniform) surface tension γ0 > 0 and
γ1 > 0, respectively. In this work, we therefore extend the study achieved in [1] by considering the
case γ0 6= γ1 still resorting to a boundary-integral implementation.

2. Governing problem

2.1 Axisymmetric problem

As sketched in Fig. 1, we consider a bubble B1 immersed in a Newtonian Fluid with uniform
density ρ and viscosity µ bounded by a free surface subject to a uniform gravity g = −gez, with the
magnitude g. The ambient fluid above the free surface is a gas with a uniform pressure p0 and both
the temperature T1 and the pressure p1 inside the bubble are assumed uniform and constant in time.
The bubble surface S1(t) and the free surface S0(t) have uniform surface tension γ1 > 0 and γ0 > 0,
respectively. As buoyancy effects drive the bubble toward the free surface, the shape of each surface
evolves in time. At initial time, the bubble is taken spherical with radius a and the free surface is
the z = 0 plane. At any time t, the two deformed bubble surface S1(t) and free surface S0(t) are
axisymmetric having identical axis of revolution parallel with the gravity g, and the flow in the liquid
domain D(t) has pressure p + ρg.x and velocity u with typical magnitude U = ρga2/(3µ). All inertial
effect are neglected, i.e the Reynolds number Re obeys Re = ρUa/µ ≪ 1. Assuming quasi-steady
bubble and free surface deformations, the flow (u, p) then satisfies the following far-field behavior and
Stokes equations

µ∇
2u = grad[p] and ∇ · u = 0 in D(t), (u, p) → (0, 0) as |x| → ∞ (1)



where x = OM.
The flow (u, p) has stress tensor σ and, denoting (see Fig.1) by n the unit normal on S0∪S1 directed
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Figure 1: One bubble B1 ascending near a free surface S0(t).

into the liquid, one also requires the boundary conditions

σ · n = (ρg · x− pm + γm∇S · n)n on Sm for m = 0, 1 (2)

where [∇S · n]/2 = H is the local average curvature with [∇S · n], the surface divergence of the unit
normal n.
Moreover, there is no mass transfer accross the liquid boundary which implies that

V.n = u.n on Sm for m = 0, 1 (3)

with V the material velocity on each surface Sm. Finally, since the bubble volume is time-independent,
one also requires

∫

Sm

u · ndS = 0 for m=0,1. (4)

To summerize, we represent the time-dependent shape of the free surface and of the bubble by suc-
cessively running at each time t the following key steps:

i) First, from the knowledge of the surface traction σ · n computed using (2), we solve (1) in
conjonction with (4) to obtain the unique solution u on the surfaces S0 and S1.

ii) Then, one calculates the component V · n exploiting the relation (3) which allows us to move
the surfaces S1(t) and S0(t) between time t and time t + dt.

2.1 Relevant boundary-integral equations

By virtue of (1)-(2) and (4) the velocity field u may be computed at any point x0 located in
the liquid domain D(t) by solely appealing to two surface quantities u and σ · n on the entire liquid
boundary S = S0 ∪ S1. One requires the surface traction σ ·n given by the boundary condition (2) to
gain the unknown velocity u on S. This is achieved by letting x0 tend onto this surface S. Since pm

and γm are uniform on each surface Sm, the following boundary-integral equation for the unknown
velocity u on the liquid boundary is then expressed as

u(x0) −
1

4π
−

∫

S

u(x) ·T(x,x0) · n(x)dS =
1

4πµ

∫

S0

[(ρg · x + γ0∇S · n)n](x) · G(x,x0)dS

+
1

4πµ

∫

S1

[(ρg · x + γ1∇S · n)n](x) ·G(x,x0)dS for x0 on S (5)



where the symbol −
∫

means a weakly-singular integration in the principal value sense of Cauchy[3] and,
setting xi = x.ei and x0,i = x0.ei, the tensors G and T have Cartesian components given by

Gij(x,x0) =
δij

|x − x0|
+

(xi − x0,i)(xj − x0,j)

|x − x0|3
, (6)

Tijk(x,x0) = −6
(xi − x0,i)(xj − x0,j)(xk − x0,k)

|x − x0|5.
(7)

with δij the Kronecker symbol. Since we restrict the analysis to the axisymmetric configuration

depicted in Fig.1, we adopt cylindrical coordinates (r, φ, z) with r =
√

x2 + y2, z = x3 and φ the
azimuthal angle in the range [0, 2π]. Setting u = urer + uzez = uαeα (with α = r, z) and n =
nre+ nzez = nαeα on the entire contour L = L0 ∪L1, with Lm the trace of the surface Sm integrated
over φ, then makes it possible to transform (5) as

4πuα(x0) −−

∫

L

Cαβ(x,x0)uβ(x)dl = −
1

µ

∫

L0

Bαβ(x,x0)[−ρgz + γ0∇S · n]nβ(x)dl

−
1

µ

∫

L1

Bαβ(x,x0)[−ρgz + γ1∇S · n]nβ(x)dl for x0 on L (8)

with β = r or β = z, the differential arc length dl in the φ = 0 plane and the so-called single-layer
and double-layer 2 × 2 square matrices Bαβ(x,x0) and Cαβ(x,x0) given in Pozrikidis [4].

3. Numerical method

In this section, we will briefly introduce the numerical procedure based on a collocation method
and a discrete Wiedlandt deflation technique and direct for further details the reader to [1].
The boundary-integral equation (8) is numerically inverted by appealing to the following key steps:

(i) First, a T truncated free surface contour and the bubble contour are divided into Ne curved
boundary elements with the preserved x → −x symmetry. Each boundary element has Nc collocation
points spread by a Gauss or a uniform distribution. The associated velocity u and the surface traction
f = σ ·n are then approximated on each element using a isoparammetric interpolation. By introducing
the components f .eα and u.eα at our NeNc nodal points, we end up with two given 2NeNc stress vector
F and unknown 2NeNc velocity vector U. Discretizing the boundary-integral equation (8) then shows
that these vectors satisfy the 2NeNc-equation linear system

U − C.U = B.F. (9)

The two matrices B and C are related to the quantities Bαβ and Cαβ introduced in 2.2 which are
integrated on each boundary element by regularizing the weakly-singular terms of Bαα when the node
x0 belongs to the selected boundary element.

(ii) By combining (8) and (5), one finds a unique solution U. This solution is here obtained by
performing a so-called Wiedlandt’s deflation technique to solve (9).

(iii) Note that the major issue for the present work is to precisely calculate the quantity ∇S ·n on
each discretized surface Sm. An adequate approximation of this quantity indeed dictates the accuracy
of the velocity u calculated through (2) on the fluid boundary. This is achieved by putting enough
nodes on each boundary element.

(iv) The shape of each surface Sm is tracked in time using the boundary condition (3) and solving
the equation dx/dt = u(x, t) for each nodal point. A Runge-Kutta-Fehlberg method performs this



task using a time-step selected by controlling the errors for the second and third-order schemes. Fur-
thermore, as one shape Sm become nearly time-independent, the adjusted time step is then very small
and the computations is stopped.

4. Numerical results

This section presents numerical results for one bubble acsending toward a free surface. First, we
look at the dependence of the film thickness h on the z-axis and its sensitivity to the surface tension
ratio r = γ0/γ1 for a given Bond number Bo = ρga2/3γ1 based on the bubble surface tension. At initial
time, the bubble is spherical with radius a and the distance between its center and the flat z = 0 free
surface is equal to 3a. Adopting 2a as the length scale, the normalized distance between the bubble
surface and the free surface is therefore hN = h/2a. Henceforth, t denotes the time normalized by
6µ/ρga. The numerical implementation is performed taking 45 boundary elements uniformaly spread
on the entire contour L1 ∪ T and computations are run using 1000 iterations in time. Calculations
are stopped whenever the time step selected as explained in section 3. becomes too small.
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Figure 2: hN versus t at (a) Bo = 0.3 and (b) Bo = 1 for different values of the surface tension ratio
r = γ0/γ1.

In order to illustrate the film thickness sensitivity to the surface tension ratio, we plot the evolution
in time of the film thickness hN , for a large range of surface tension ratio γ0/γ1 and a given Bond
number. As seen in Fig. 2, the film thickness exhibits an exponential decay as time increases whatever



the ratio r = γ0/γ1. Observe that at Bo = 0.3 the drainage is significantly enhanced (when compared
to the case γ0 = γ1) while γ0 > γ1 or reduced while γ0 < γ1. In contrast, at Bo = 1 the drainage is
less sensitive to γ0/γ1.
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Figure 3: Bubble and free surface shape at Bo = 1 for (a) γ0/γ1 = 1, (b) γ0/γ1 = 2, (c) γ0/γ1 = 0.5
and (d) γ0/γ1 = 0.2. Dashed lines indicate the bubble and free surface shapes for t = 0.59 while
t = 1.746 at finale stage.

Fig. 3 depicts the time-dependent bubble and free surface shapes sensitivity to the surface tension
ratio. Note that the free surface is slightly less deformed when γ0/γ1 = 2 (Fig. 3 (b)) than when
γ0 = γ1 (Fig. 3 (a)). This explains why, in Fig. 2 the drainage is indeed enhanced for γ0/γ1 > 1.
When γ0 < γ1, though the drainage observed in Fig. 2 (b) are closely identical for γ0/γ1 = 0.5 and
γ0/γ1 = 0.2, the final free surface shapes shown Fig. 3 (c) and Fig. 3 (d) are slightly different.

5. Conclusions

Our investigations reveal that both the drainage and the time-dependent shapes of the bubble and
free surface depend upon the surface tension ratio γ0/γ1. Additional numerical results will be reported
and discussed at the oral presentation. Finally, one should note that the proposed boundary-integral



approache is also able to deal with several bubbles.
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