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Abstract

This work presents a theoretical model to study the grawitat drainage of a vertical molten glass film. Surface
tension gradient due to the evaporation of sodium oxide fimninterfaces is taken into account using a simple model
with a surface tension function of the liquid film thicknegs.lubrication model is derived taking into account the
gradient of surface tension. The final system of equatiossri#ng the mass and the momentum conservations is
numerically solved by an implicit time solver using a finiiference method at a second order in time and space.
The numerical method is compared with a previous resul@indd without surface tension gradient. Afterward, the
numerical procedure is applied to study a film drainage oftemosilica-soda-lime glass. The effect of the surface
tension gradient is investigated: it is pointed that withrarease of).5 % of the surface tension over the spread of
the film which is order of few centimeters, the liquid film réas an equilibrium thickness in agreement with previous
experimental work.

1. Introduction tions produced by sulfate species, determined the foam-
ing temperature. Pilon (2002) developed a model to
Foam consists of bubbles entrapped in a liquid solution study the foam formation by bubbling and established
occurring in daily life of everybody as well as in many a relationship between foam layer and physical prop-
industrial processes. In most of cases, the stability of erties of liquid using a dimensional analysis. Kappel
foam is a required property. Today, many investigations et al. (1987) achieved an experimental study about film
are devoted to the creation of stable foams. Neverthe-drainage on molten glass. They found that the film
less, in glass melting process in particular, foam can bethickness decreases exponentially with time. They ob-
a nuisance. Most of glass furnaces are heated by a comserved a stabilization state for which the film thickness
bustion chamber above the glass bath. Consequently, ifvas around one hundred nanometers. Laimbdck (1998)
a large part of the bath surface is recovered of foam, heatdid a similar experiments using the electric resistivity of
transfer, mainly radiative decreases due to the insulator molten glass to determine the film thickness. He found
property of glass foam. that glass film can reach a stabilized thickness in the
Glass melting is a chemical process for which glass same order of magnitude found by Kappel et al. (1987).
is made in most of cases with silica, soda ash, and lime.Laimbdck proposed a model to explain the film stability
The raw materials are generally carbonaceous element§ased only on the static equilibrium. The purpose of this
giving a carbon dioxide release. The low solubility of Work is to carefully study the drainage of a vertical film.
CO, leads to a creation of large quantity of bubbles en- The mathematical model to describe the two-
trapped in the molten glass. To remove these gaseouglimensional draining film has been studied by different
inclusions, sulfate compounds are added to raw materi-authors as for instance Schwartz and Roy (1999). The
als. Gases liberated by sulfate decomposition lead to abehaviors of mobile and immobile soap films were in-
raising of bubble size. Due to buoyancy forces, bubblesVestigated. Howell (1996) presented a general method
can escape from bath surface, see Shelby (1997). to obtain lubrication model of thin film model in various
The onset of foaming has been studied by Kim and Situations. A work has been done by Braun et al. (1999,

Hrma (1992), who, from a knowledge of chemical reac- 2002) and Naire et al. (2000) for which the drainage of
vertical film has been studied taking into account the

1The typical value of temperature is the combustion chamser i Marangoni st_ress and the transport of surfactant agent.
greater thar2000 K. The role playing by thermal gradient on the surface ten-
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sion has been recently studied by Scheid et al. (2010),in the glass compositiony, the mass fraction of the ox-
they shown that it is possible to form a stable liquid film ide i and~; is a factor corresponding to the contribution
controlled by the thermal gradient. In this work, the pur- of the oxide: in the surface tension given in N/m.
pose is to present a lubrication model taking into account ~ Since the surface tension is determined from the bulk
the surface tension gradient according the prior develop-quantities and that N® evaporate, we consider the
ment of Howell (1996). volatilization of NgO to describe the change of surface
The second section is devoted to a model giving the tension. When the film is pulled out, the volatilization
behavior of the surface tension as a function of the film occurs leading to a decrease ofJ@aconcentration. To
thickness according the recent work of Pigeonneau et al.determine this quantity for a portion of film of volume
(2012). The lubrication model is presented in section 3. V and constant thickness the mass balance before and
The numerical development is given in 84. Results and after the evaporation is given by

discussion are developed in section 5 before to conclude.
dmNagO

2. Surface tension in molten glass and ds

variation with the film thickness in which pxa,0.0 is the mass concentration of Ma in

o ) ) the bulk andona,0 the mass concentration in the liquid
Laimbdck (1998) achieved an experimental work on a film, V the volume of the film and the area of each

drainage of molten glass film achieved by dropping and terface. Finallydma,,o/dS is the mass loss by unit
dipping a Platinum loop in a crucible. He observed that g rface. Since the ratio of overV is directly the film

after a fast drainage, the film thickness decreases verhicknessy, the last equation can be written as follows
slowly. He proposed an explanation of this phenomena

PNa,0,0V = pNa,oV + 2 S, (2

based on the change of the surface tension as a function dMNa,0

of the film thickness. Using XPS measurement, Laim- PNay0,0h = PNas0h + 22— ®)
bdck (1998) observed that the glass composition through

the film thickness changes significantly: the,Keacon- This equation is similar in appearance to the one used to

tent increases strongly at the liquid/air interface while describe the soap films just after the pulling out but with
the SiQ, content decreases. He proposed a simple modeMdifferent physics (de Gennes 2001). To close this equa-
to describe the N# content in the film using a mass tion, we assume that the loss of mass is proportional to
balance assuming NG adsorption_ PNasO inside the portion of film of thicknegsand to the
More recently, Pigeonneau et al. (2012) achieved theSized over which the volatilization occurs as proposed
same kind of experiments but observed a decrease of" (Pigeonneau et al. 2012):
sodium oxide close to the interfaces. Recall that®&s J
known to be a volatile species (Sanders and Haller 1977; ¢MNayO
Beerkens 2001). The evaporation of J@aleads to a ds
modification pf the glas_,s composition at. the interface. Tpis assumption is similar to the Langmuir isotherm
The evaporation of N is generally explained by ahet-  ;sed by Ruckenstein and Jain (1974) to study the rupture
erogeneous chemical reaction between water vapor and thin liquid film with a soluble surface active agents.
sodium oxide giving sodium hydroxide, NaOH. Conse- Remark that Laimbéck (1998) took the same approxi-
quently, it is expected to observe a positive gradient of mation assuming the sodium oxide is adsorbed whereas
Na over the depth of the film meaning a volatilization e argue that the sodium oxide is evaporated. By com-
as it is measured in our chemical analysis (Pigeonneauoining Egs. (3) and (4), the mass concentration of®la

= 0PNaz0- 4)

etal. 2012). . _ o in a portion of film of thickness is given by
The full problem involves transient diffusion process
with a mass transfer coefficient between the film and the ONas© = PNay0,0 (5)
a0 —

atmosphere difficult to evaluate. So, the aim of this sec- 1+4+26/h°

tion is to provide a simple model to describe the varia- _ ) ) )
tion of the surface tension as a function of film thickness. SO this phenomenological relationship leads to a closed

According to an additivity principle, Scholze (1990) equation to describe the mass concentration giNas

writes the surface tension of glass as follows: a function of the film thicknes;s. Fi_naIIy, th(_e difference
of mass concentration of N® in a film of thickness:
N and the bulk that will be used to describe the change of
v = Z%yi, (1)  surface tension, is given by
=1
. o . _ — __PNa00 (6)
wherey is the surface tensioy is the number of oxides PNazO = PNaz0,0 = =77+ h/(28)
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This last equation can be used to evaluate the feature
of surface tension as a function of film thickness. In-
deed, if we assume that the surface tension changes only
due to the mass concentration ofJ0y SiO, and CaO
which are the main oxides in the glass, the difference
between the surface tension for a very thin fitm and
a surface tension of bulk glasg,, is given according to

(1) by
Y =7 = a0 (YNas0 — YNay0,0) + V8102 (¥sio, —

YSi04,0) + YCa0 (YCa0 — Yca0,0)- (7)

By assuming that the decrease of the concentration of
Na; O is compensated by the increase of S#nd CaO
proportionally to their mutual initial weight ratio, the
surface tension becomes

v =" +07fy(h/2), 8)

whered~ is given by

Liquid pool

Figure 1: Liquid film draining under the gravity force.
YSi02,0 i i
5y = <75102 10, + YCa0 Figure is not on scale.
YSi02,0 T YCa0,0
YCca0,0

—_— 'YNago) YNas0,0; 9 vertical film is attached to a wire in = 0 wherex rep-
YSi02,0 T YCa0,0

resents the longitudinal direction of the film whijeis
andf,(x), wherey € [~h/2;h/2], is an even function the transversal coordinate. Under the gravity force di-

given by rected alonge, the film thicknessh, changes with the
B 1 10 time ¢t and depends also an The film has a height
F+(x) = 14 |x]/6° (10) equal toL and falls in a liquid pool. In the following,

the film thicknessHy onz = 0 is assumed to be very
small compare to the heiglit Moreover, the film stays
symmetric following they coordinate.

Note that in a first reading, this section can be dropped

wt % of NaO and 15 wt % of CaO¢~ is a posi- dth d direct o the beginni f secti
tive quantity meaning that the surface tension given by and the reader can directly go to the beginning of section
4 where the lubrication model is summed-up.

(8) increases when the film thickness decreases. While
the scale,, over which the sodium oxide evaporates
depends on temperature (Pigeonneau et al. 2012), the3.1. Problem statement
guantity 4 is only a function of the glass nature. Its
value is equal ta.2 - 10~2 N/m whilst the surface ten-
siony is equal t03.2 - 10~ N/m for the largest tem-
peraturel’ = 1400°C. According to this modeling, the
relative increase of surface tension is at the maximum
equal to1.5% for h — 0 and of the order 06.5% for

h ~ 54. This last value seems appropriate for quantify-
ing the Marangoni stress due to evaporation for thin film

From the factorsysio,. vcao and yna,0 provided
in Scholze (1990) and Rubenstein (1964) and with the
glass composition composed by 70 wt % of $iQ5

The purpose of this section is to determine the equations
of the motion using the lubrication theory. In order to
do that we start from the general equations of the fluid
dynamics written in the Cartesian reference frame. The
liquid is assumed incompressible and the dynamic vis-
cosity is taken constant. The continuity and momentum
equations are written as follows:

whose thickness ~ 100 nm and whose N#D variation Uy +vy, =0, (11)
is observed over a depth equal26 nm (Pigeonneau P, ’ '
etal. 2012). Up + Ul g +VUy = ——= +V (Uga + Uyy) + 9, (12)
P
o o Py
3. Lubrication model of 2D-Cartesian film Vit F UV +ovy = vy + v (Vaz + 0,yy) 5 (13)

This section is devoted to the derivation of the lubrica- whereu andv are the velocity components overand
tion film equations in the Cartesian framework. The sit- y respectively and® the pressure. The quantity, is
uation addressed in this work is shown in Fig. 1. A the kinematic viscosity defined hy/p wherep is the
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density. In the last equations, the Jacobian notation is Close to the liquid pool, the film behaves as a static

used to represented the partial derivative aveand y meniscus: the force balance is achieved between the sur-

whereu , is equal tadu/dz for instance. face tension and gravity forces. This equilibrium can be
These equations must be completed by boundary conwritten as follows, (Naire et al. 2000)

ditions. Onz = 0, the no-slip condition is used:

he = (23)
u(0,y,t) = v(0,y,t) = 0. (14) c
) ] ~ wherel, is the capillary length defined by
On the free surface representing the frontiers of the film,
two kinds of boundary conditions are used: the first is a vy
: . o ‘ le=,/—. (24)
kinematic condition given by P9
1 oh Eq. (23) will be used in the following to specify the

v(x,th/2,t) = = Oh + u(x,:l:h/Q,t)8

5 | ot oz (15) boundary conditions i = L.

The system of equations written above is used to es-
written in+//2 where the upper sign is usedjn= h,/2 tablish the lubrication equations. In order to do that, the
and the lower sign iy = —h/2. problem must be normalized which is done in the next

The second condition is obtained from the momentum Subsection.
balance written at the interface between two fluids. This
last one is decomposed in two following relationships: 3.2. Scaling and dimensionless

equations
n-oc-nmn = -k, (16)
t-o-n = grady-t, (17) Since_the Igngth of the liquid film i&, the longitudinal
coordinate is normalized as follows
where~ is the surface tensiom, the unit normal vector z= % (25)
to the interfacet the unit tangential vector andis the L

average curvature. Following the development given in

o . ) For they coordinate, the typical scale is given By so
§2, the surface tension is a functionofmeaning that the 4 yp g B

e put

partial derivative ovey is equal to zero. The quantities _ oy 26
n, t andx are given by V= (26)
The film thickness is written as follows
1 h .
n = —— —T’emiey ,  (18) B n
1 hg _ .
t = T & 56, (19) The ratioe = £2 is assumed smaller than one. From
V L+ h% /4 this statement, the two dimensionless velocity compo-
- nents are written as follows
o U=, (28)
Uo
From these definitions of geometrical quantities, Egs. g2 (29)
(16) and (17) become eUy’

9 whereU) is a characteristic velocity determined from
—P+ ———— | ug +v,F the equilibrium of longitudinal viscous stress and the
L4+ hZ /4| 4 gravity force given by

h vh

N N _ ,TT 21 L2

2 (U,y + v, ):| 2(1 + h,z/4)3/27 ( ) UO _ % (30)
2
pha(vy —ug)+pu ( - T””) The pressure and time are respectively normalized by

- p
— P = —— 31
(ty +v2) = Yoy /1 +h2 /4, (22) YA (31)

- tU,

iny = +h(z,t)/2. E= = (32)



According to (8), the surface tension is written like this

¥ = +67fy(h/2),

wheref., (x) is a dimensionless even function defined in
82, Eq. (10).

By dividing by ~y, the dimensionless surface tension
becomes

(33)

5 =147/, (h/2), (34)
with
=2 (35)
Yo

In the following, the quantity~ is assumed sufficiently
small to takey equal to one.
The nondimensional equations of motion and bound-

ary conditions, dropping the bar over the dimensionless

variables, are

Uz + vy =0, (36)
—6231 + 62u7m +

U yy + €2, (37)

Re (vt +uvy +v0y) = =Py + €0 40 + 0.4y, (38)

2 Re (Ut + uu g + vuy)

in the liquid film whereRe is the Reynolds number equal

to
. onL

Re (39)
7
The kinematic conditions are
1 [0h Oh
v(z,xth/2,t) = i§ [E + u(x,ih/2,t)% (40)
in +h/2 and the jump stress conditions are
2 ezh?z hx
Pt Ty |TE e e Ty (et
1 h TT
621)71)] = — 8, (41)

Bo 2(1 + €2h , /4)3/2"

2
1—62h—’$

62h,1(117y —uy) £ < 1

) (u’y + 621},1) =

df hs
iMaEQdi;?1 1+ €22, /4, (42)
with
pgL?
Bo = , 43
YoHo (43)
oy
Ma = —. 44
o (44)

The quantityBo is a Bond number ankila a Marangoni
number.
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3.3. Lubrication model

From the previous developments, the equations depends
on a small paramete?. The lubrication model consists
to expand each unknown in a poweredfas for instance

“(%ya t; 62) = ’U/O(xvya t) + E2“’1 (:Ea yvt) +oee (45)

If the equations of motion in the liquid film, Eqgs. (36-
38), are easy to expand as a functior®fthe boundary
conditions are more difficult to develop. This is due to
that the boundary conditions are appliedbh/2 where

h must be also expanded as a functionedf Conse-
quently, the boundary conditions must be projected on
the film thickness at zeroth ordeg whereh is expanded
like

h(z,t;€%) = ho(x,t) + €hy(z,t) +--- .  (46)

In the following, we sum up the determination of the
lubrication model without giving all details.

3.3.1. Equations at the zeroth order

At the zeroth order, the equations of motion are

uO,w + UO,y 07 (47)
Uo,yy 07 (48)
—PO.,y + ’Uo_ryy = O (49)
The boundary conditions iftho /2 are:
1 [0h
vl ho/2,1) = 5 % + uo(x, £ho/2,t)
Oho
—-— 50
5| (650)
_ 0,xx
—Py+ 2vg,y = 580’ (51)
U,y = 0. (52)

Itis easy to see that, depend only ox andt as well
as the pressure which can be given by

h'O Tx
Py(z,t) = —2ug o, — —=—. 53
O(Ia ) Uo, 2Bo ( )

Moreover,y, can be written as follows
vo(2,y,1) = —yuo,e- (54)

Using the kinematic conditions, Eq. (50), the continuity
equation
Oho
ot
is established.
Nevertheless, the velocity component(z,t) is un-
known requiring another equation obtained from the first
order solution.

Jd(houo)
ox

0, (55)
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3.3.2. Equations at the first order under dimensionless form. The two-coupled equations

. . to solve are recalled here:
To find a supplementary equation, we use the method

described in (Howell 1996) where the momentum equa- oh  O(hu) 0 60
tion overx coordinate is written. From the expansion ot oz o (60)
as a function o2, the momentum equation alongis ou O(huy)  hh gze
given by: Reh (— + uum) = 4 9 + 5Bo +
d,
u1yy = Re (UO,t + UOUO,z) — 3Ug,zz — Ma %h,m + h. (61)
hO,mmm -1 (56) X
2 Bo ’ The functionf, is given by (10). At the top of the film,

where the pressurg, given by (53) has been used. The the boundary conditions are:

integration of the last equation ovggives the relation- h(0, 1)

ship (62)

—1,
w(0, 1) = 0. 63)
W1.y(@, ho/2,1) = w1, ~ho/2, 1) _hIZe o (to.i+ For the bottom, the behavior of the static meniscus is
0 0rzr _ po (57) used as already pointed out by Ruschak (1978) and Naire
2Bo et al. (2000). Forr = 1, we impose the first and the
The boundary conditions at the first order show that second derivatives df:
u1,y(z, £ho/2,t) can be written like

UoUo,z) — Sholo ze —

ha(1,t) = a, (64)
ho 2
U1, (:Ea :l:ho/?, t) ==+ 2u0,mh0,w + _’U/O,mm"" — [ _ g 3
v > heo(Lt) ==/ (2- F)K* (65)
Ma Cg_VhL;} . (58) with K = /1 + €2a2/4. (66)
X

The condition o ., is obtaining from the equation of
the static meniscus (see detail of derivation in Annexe
A). The boundary condition is stayed free for the veloc-
ity at the bottom of the film.

At the initial time, h is imposed by

which is only a function of the unknowns at the zeroth
order.

Finally, the momentum equation overcoordinate is
written as follows

8(h0u0) 8(h0UOU0) - 48(hQUQ@)
ot Or N ox

h h rrxr d .
20T0zza 4 Ng ﬁho 2+ +ho. (59) for z € [0; z.] and
2Bo dy

Re

+ h(z,0) = 1, (67)

2 2

The left hand side is the inertial contribution. The first 7(z,0) = 1—(a—5)$c—%+(0¢—5)$—%7 (68)
term in the right hand side is the extensional viscous
force, the second is the surface tension force due to thfor = €]z.; 1] wherea andj3 are the coefficients used in
gradient of curvature, the third term is the force due to the boundary conditions an= 1 given previously and
the surface tension gradient and the last is the gravityz. is given by
force. g, =1-2 (69)

With the two equations (55) and (59), the Cauchy B
problem is well determined for the two unknowhg The velocityu is assumed to be equal to zera at 0.
andug. The last point is to establish the boundary con-  To solve the coupled equations, (60) and (61), a finite
ditions onz = 0 and1 and the initial condition which  difference method is used. Thespace is divided iV
are presented at the beginning of the numerical part.  elements where a discrete values:phire given by

1
4. Numerical method i = o (70)

We address in this section the numerical method to solvewherei varies from0 to N. The derivatives in space
the drainage equation of two-dimensional film obtained and time are determined at the second order in time
at the zeroth order. In the following the indéxn the and spaceQ(At?, Ax?) whereAt is the time step and
unknowns are removed. Note that the problem here staysAz = 1/N. According Press et al. (1992); Fletcher



8™ International Conference on Multiphase Flow,
ICMF 2013, Jeju, Korea, May 26 — 31, 2013

(1991), a centered schemes are used for all space derivas used given the relationship

tives apart from nodes= 1 and N — 1 where the third
derivative of h must be determined with unsymmetric

schemes (Collatz 1960).

Definingh¥ andu? as the film thickness and the ve-

locity respectively at the time iteratiohand inz;, the
discrete form of Egs. (60) and (61) fo=2to N —2is

given by

3hETY —4nk 4 pi !
At
k+1 k41 k+1 k41
hi+1 Uiy — hi "y .
=0,
Az
T 4ui—c + uf_l

At

k41 k+1
ur -t

1 —1 k41 k4+1Y , k+1
= - _4[(h‘i+ +hij—1)uij—1
B+l

Az
= (hiH + 20+ R
(h;ﬁ-l + hk-l—l) uk-i—l} /Ax2 _

_|_

k Bub " k k
Re hftt =t + Re bt t!

i+1 ) Wit
PR — ok o — )
2Bo A3
K+l g k+1
Ao P2 BT — B )
dx Ax '

(71)

(72)

Sultt — quk 4 of T
Re thrl U; A’l’;z + U; +Re hf+1u§+l
k+1 k+1
Uipr — U1 E+1 k+1Y , k+1
4 [(hz + hi 7y ) Ui—q
k41 k41 k4+1Y , k+1
- (hifl + 207 + i ) u; '+

Az
(V1 3 k3] /8

k+1
hi

3RE — 10RFT 4 1208

2130[ i+l

dfy (bt /2)
6hE ) + AT JAr® — Ma =112
i—2 + 173]/ xz a dX
h = bt

R 2n; =0, (74)

For the boundary conditions in= N (z = 1), down-
ward schemes (Collatz 1960) are used given the relation-
ships

BhRT — ARt + R,
2Ax
2R — BN, + 4hRy — Wy
Az?

= a, (75)

= B. (76)

The system of non-linear equations is solved using a
Newton scheme (Déminovith and Maron 1979).

5. Results and discussion

Fori — 1, the momentum equation is modified by ©-1. Test without surface tension

taking an upward scheme (Collatz 1960) to determine

the third derivative of. as follows

k+1 k k—1
u; T —4uf 4+ u;
Re h§+1 i i i +Re h§+1u§+l
At
k+1 k+1
Uiy — Ui

e e
— (R +2nf T+ RE ) wf T+
(91 + R k] A -

hi_f-ﬁ-l
2Bo [

i) — hi) /-

k k k
—3hity + 10RF T — 1205+

dx
k k
hijrrll - hijll
Ax

\ia 6 2)

—2nF T =0, (73)

gradient

In this first subsection, we address a computation with
a Dirichlet boundary conditions applied at the top and
the bottom wheré, = 1 andu = 0. The gradient of
surface tension is not taken into account. Furthermore,
the viscosity is assumed sufficiently large to neglect the
inertia force in the momentum equation, (61). As conse-
qguence, the problem depends only on one parameter: the
Bond number. The problem has been previously studied
by Schwartz and Roy (1999). In the limit of large Bond
number, the surface tension force can be removed. In
this situation, Schwartz and Roy (1999) determined a
self-similar solution given by

tet(zfl)/él
h(x,t) = 4(1—8715/4)’ (77)
l_eftz/4 T
H = —¢ T 78
wnh = e 9

Remark that the boundary conditions brare not ful-

and fori = N — 1, a downward scheme (Collatz 1960) filled with equation (77). In fact, this solution can be
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T . T
o—o Num. sol.,t = 0.25

N I L = Num.sol.,t=0.5
— Num. sol. I
1y - Solution (77) o— Num. so:.,i =0.75
0.03- Num.‘ sol.t=1 B
— Solution (78)¢ =
1.05
h S0.021- il

0.95
0.01— -

0.9]

Bl L 1 L 1 L 1 L 1 L L L
0 0.1 0.2 0.3 0.4 015 0.6 0.7 0.8 0.9 1 0 L 1 L | L | L L

L
0 0.2 0.4 0.6 0.8 1

Figure 2: Film thickness}, as a function of: with h =
0 andu = 0 at the top and the bottom and for
t = 0.25, 0.5, 0.75 and1. Comparison with
the self-similar solution of Schwartz and Roy
(1999).

Figure 3: Film velocity,u, as a function of: with h = 0
andu = 0 at the top and the bottom and for
t = 0.25, 0.5, 0.75 and1. Comparison with
the self-similar solution of Schwartz and Roy
(1999).

seen as an exterior solution. Indeed, close to the bounc |
aries where the curvature changes sharply, the surfac
tension force can not be neglected. Furthermore, the ir
tegration over: betweer( to 1 of 4 given by (77) shows N
that the average df stays equal ta whatevet:. | osel
Figure 2 shows the film thickness versugor ¢ equal
t00.25, 0.5, 0.75 and1 obtaining for a Reynolds number

Insert 1
T

1.05)

o—o Bo = 467

equal to zero and a Bond number equal7@9. Numer- 035 e, 7
ically, N is taken equal t200 and At = 10~2. The ~—Bo— 20807

profile of the film thickness presents an anti-symmetry o,
around the point = 1/2. As mentioned above, the in- T T T T )
tegration ofi, over x stays equal to one. This result is

a consequence of the mass conservation which is veryrigure 4: Film thickness,h, as a function ofz with

well verified numerically since the average lofwhen h = 1 andu = 0 at the top and the bottom
t = 1is equal tol1.0024. From apart the area close to and fort = 1 and for five Bond numbers. In-
the top and the bottom of the film, the comparison be- sert 1 presents as function of the stretched
tween the self-solution (77) and the numerical results is coordinatezv/Bo.

good.

The velocity profiles obtained numerically are plotted
in Figure 3 fort = 0.25, 0.5, 0.75 and1. The velocity aries, the five profiles are quasi-identical. In order to
profile does not change a lot with The solution given ~ control the scaling of the boundary layer as a function of
by (78) is computed when= 1 showing the good result  the Bond numberh is plotted versus the stretched co-
obtained with the numerical method. ordinate,z+v/Bo in the insert 1 where the scaling is very

Close to the top and the bottom, the film thickness ex- Well verified.

hibits a strong variation that can not be evidenced with

the self-similar solution given by (77). Nevertheless, a 5 2. Effect of the boundary conditions

simple scaling analysis gives that the order of magnitude at the bottom

of the boundary layer must be equalitév/Bo. In this

case, close to the boundary, the force balance is betweein this subsection, the drainage of vertical film is investi-
viscous term and surface tension one. In order to con-gated for which the coupled equations (60) and (61) are
trol this scaling, numerical computations have been donesolved with the conditions given by Egs. (62-65). The
with various Bond number in the range [@60; 60000]. physical properties are taken from data corresponding to
Figure 4 gives the behavior é@fas a function oft when silica-soda-lime glass with a nominal composition of 70
t = 1 and for five Bond numbers. Outside of the bound- wt % of SiO,, 15 wt % of NgO and 15 wt % of CaO.
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Figure5: Minimum of /2 in the liquid film as a function ~ Figure6: Film thickness,, as a function of: for (a)
t =5, 10, 20, 40 and50.

The density is equal t@350 kg/m?, the dynamic vis-
cosity is equal t&0 Pas, corresponding to molten glass
at1240 °C. The surface tensiony is equal ta).32 N/m
using the correlation factors given by Rubenstein (1964). 100 -are not vgry large. , )
The length and the initial thickness of the liquid film are ~ F19ure 7 gives the velocity profile for the three val-
respectivelyl = 3- 102 m andH, = 10-3 m. With ues ofa and the same times used_m Figure 6. The main
these characteristic values, the Bond number is equal tf?dvantage of the boundary conditions (64) and (65) is
1.94 - 10% and the Reynolds number &85 - 10~. In that 'Fhe velocity is not spelcmed at the bottom bu'g is &
golution of the problem. Since the spread of the liquid
film increases withy, the velocity at the bottom is over
estimated whem is small as a result of the mass con-
servation. The result is true for = 20. In contrary, the
velocity profiles are quasi-similar fax = 50 and 100.
The velocity calculated at the bottom are very similar for
these two values af. Nevertheless, when = 100, a
shoulder is observed far= 50.

Finally, remark that even if it is not easy to see in Fig-
ure 7, the velocity is lightly negative close to the top of
the liquid film as a consequence of the suction of the
boundary where the liquid film is larger that the film

film increases obviously witkhv. Nevertheless, the dif-
ference between the results obtained with= 50 and

this subsection, the surface tension gradient is assume
equal to zero, i.eMa = 0.

The boundary conditions on the bottom used in the
numerical method depend on the arbitrary vatueT his
subsection discuss the influencecoin the behavior of
the film thickness in space and time.

Figure 5 represents the minimum bfin the liquid
film as a function of time for three value af The graph
is represented in semi-log scales. The film thickness de-
creases rapidly in the first times and after the thinning
rate is slower whert is larger thans0. The first de-
crease is mainly due to the initial condition assuming an .
uniform thickness. Close to the top of the liquid film thickness far away the top boundary.

a meniscus appears as soon as the drainage starts asbitTge resg!;cs Sh(?WGghat the llooundary(;:ondl_gons given
is shown in the previous subsection. The second part y Egs. (64) and (65) are relevant to describe numeri-

of the thinning process is a properly speaking due to cally the matchin.g_ with the liquid pool. We do not need
the drainage. As expected, the film thickness decrease boundary condition for the velocity on the bottom. The

exponentially with the time due to the pure extensional velocity ISa squtlo_n of th? boundary condltlpns used to
flow in the film. match with the static meniscus. In the following, numer-

The effect of the boundary conditions at the bottom ical computations are done with= 100.
gives a small effect on the drainage of the liquid film.
The thinning rates for the three valuesofire similar. 5§ 3. Effect of the surface tension
'(I)'fhe thinning rates are quasi-identical for the three values gradient

.

In Figure 6, the film thickness is plotted verstgor The surface tension and its gradient are determined for
the three values af and five times. Close to the top, the the same glass used in the previous subsection. The
profiles of h are similar whatever the value of The quantitydy given by (9) is equal t&.4 - 102 N/m us-
main difference appear close to the bottom of the liquid ing the coefficient factors given by Rubenstein (1964).
film and are directly due ta.. The spread of the liquid The conditions used in the numerical simulations are
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Figure7: Film velocity,«, as a function of for (a)a = Figure 9: Film thicknessh, as a function of for k = 0,
20, (b) @« = 50, and (c)a = 100 and for 10-%,107°, 10~* and10—3 whent = 200.
t =5, 10, 20, 40 and50.
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Figure 10: Film velocity,u, as a function of for & = 0,
Figure 8: Minimum of A4 in the liquid film as a func- 1076, 102, 10~% and10~3 whent = 200.
tion of time fork = 0, 1075, 105, 10~* and
1073,

of k are plotted in Figure 9. The film profile does not
change fok equal tod and10—6. Fork = 1072, the film
identical to those used in the previous subsection. Thethickness is lightly thicker in the middle of the liquid
Marangoni number is equal to64 - 103, film. Close to the top and the bottom, the film thickness
First, the effect ok is addressed by plotting the min- is very similar to the profiles obtained with= 0 and
imum of  as a function of time. The numerical com- k= 1075.

putations are operated until the minimum/ofeaches The main differences are significant on the film ve-
the dimensionless value equal t6~* corresponding locity as it can be seen in Figure 10 wherés plotted
to a thickness arounti00 nm whenH, is equal tol versuse for the five values ok. The typical velocity de-

mm. Figure 8 shows the behavior of the minimum of creases by a fact@& whenk increases frond to 10~°.

the film thickness versus time for five valuestof The Remark, all profiles are close together near the bottom.

case ofk = 0 means that the surface tension gradient The velocity profile observed fat = 10~* does not

are equal to zero. Wheh = 1079, the surface ten- change a lot apart from the top and the bottom with a

sion gradient is to small to see an effect on the drainagevalue smaller than one obtained for= 10~3. For this

for a typical thickness of0~%. In contrary, wherk is last value ofk, the velocity decreases form the top to

larger thanl0~%, the behavior of film thickness changes the bottom due to the largest heterogeneities in the film

strongly when is sufficiently small. Indeed, a steady- thickness observed in Figure 9.

state regime is observed after drainage. The asymptotic with &k = 10—5 corresponding to a dimension value

film thickness increases withdue to the surface tension  around10-8 m, the film thickness reaches an asymp-

gradient appears sooner whiers larger. totic value equal td.8 - 10~* (around180 nm in dimen-
Film thickness profiles fot = 200 for the five values  sion unit) meaning that the surface tension varies in the

10
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range of(1; 1.005]. So, an increase 0f5 % is enoughto  A. Derivation of the boundary condition at the
stabilize the film thickness. Moreover, the equilibrium bottom of the liquid film
thickness found with this value are close to the exper-
imental value given by Laimbock (1998) who found a The equation of the static meniscus is given by Eq. (23).
value equal t®00 nm. Kappel et al. (1987) pointed out By multiplying Eq. (23) byx and integrating over, the
a value smalleri00 nm) but they did not measured the following relationship is obtained
film thickness carrefully. Whet is larger thanl0—5,
the equilibrium thicknesses seems too large compara- K2 — o he + i (79)
ble to the previous results given in Laimbéck (1998) and 12,/1+ h2, /4 12
Kappel et al. (1987).

These experiments done in Laimbock (1998) and whereA is an integration constant.
Kappel et al. (1987) were achieved in laboratory fur-  For a film falling in a large pool, the free surface can
naces where the thermal homogeneities must be conpe considered as flat meaning that goes to infinity
trolled. Indeed, a thermal gradient can also changes theyhenz — L. Since the curvature must be equal to zero,
surface tension. Scholze (1990) indicates a coefficient a4 must be equal t@. Finally, under dimensionless form,
surface tension thermal gradient equal arodnd 0" if we specify, the first derivative df at the bottom of the
N/(mK) meaning that to have an increas@)df % ofthe  fjlm, the second derivative is given by Eq. (65).
surface tension, the difference of the temperature must
be equal to40 K. This thermal difference must be ap-
peared over the liquid lenght, typically few centimeters,
which is too large with laboratory furnaces where the
thermal heterogeneities are usually smaller than 10 K in
the area of working space. So, the stabilization of the
liquid film must be mainly due to the chemical effect.
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