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∗ Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain,Aubervilliers, France

† Laboratoire Navier, UMR CNRS 8205, Université Paris-Est Marne la Vallée, France,

Keywords: film drainage, Trouton model, molten glass, high viscous fluid, evaporation

Abstract

This work presents a theoretical model to study the gravitational drainage of a vertical molten glass film. Surface
tension gradient due to the evaporation of sodium oxide fromthe interfaces is taken into account using a simple model
with a surface tension function of the liquid film thickness.A lubrication model is derived taking into account the
gradient of surface tension. The final system of equations describing the mass and the momentum conservations is
numerically solved by an implicit time solver using a finite difference method at a second order in time and space.
The numerical method is compared with a previous results obtained without surface tension gradient. Afterward, the
numerical procedure is applied to study a film drainage of molten silica-soda-lime glass. The effect of the surface
tension gradient is investigated: it is pointed that with anincrease of0.5 % of the surface tension over the spread of
the film which is order of few centimeters, the liquid film reaches an equilibrium thickness in agreement with previous
experimental work.

1. Introduction

Foam consists of bubbles entrapped in a liquid solution
occurring in daily life of everybody as well as in many
industrial processes. In most of cases, the stability of
foam is a required property. Today, many investigations
are devoted to the creation of stable foams. Neverthe-
less, in glass melting process in particular, foam can be
a nuisance. Most of glass furnaces are heated by a com-
bustion chamber above the glass bath. Consequently, if
a large part of the bath surface is recovered of foam, heat
transfer, mainly radiative1, decreases due to the insulator
property of glass foam.

Glass melting is a chemical process for which glass
is made in most of cases with silica, soda ash, and lime.
The raw materials are generally carbonaceous elements
giving a carbon dioxide release. The low solubility of
CO2 leads to a creation of large quantity of bubbles en-
trapped in the molten glass. To remove these gaseous
inclusions, sulfate compounds are added to raw materi-
als. Gases liberated by sulfate decomposition lead to a
raising of bubble size. Due to buoyancy forces, bubbles
can escape from bath surface, see Shelby (1997).

The onset of foaming has been studied by Kim and
Hrma (1992), who, from a knowledge of chemical reac-

1The typical value of temperature is the combustion chamber is
greater than2000 K.

tions produced by sulfate species, determined the foam-
ing temperature. Pilon (2002) developed a model to
study the foam formation by bubbling and established
a relationship between foam layer and physical prop-
erties of liquid using a dimensional analysis. Kappel
et al. (1987) achieved an experimental study about film
drainage on molten glass. They found that the film
thickness decreases exponentially with time. They ob-
served a stabilization state for which the film thickness
was around one hundred nanometers. Laimböck (1998)
did a similar experiments using the electric resistivity of
molten glass to determine the film thickness. He found
that glass film can reach a stabilized thickness in the
same order of magnitude found by Kappel et al. (1987).
Laimböck proposed a model to explain the film stability
based only on the static equilibrium. The purpose of this
work is to carefully study the drainage of a vertical film.

The mathematical model to describe the two-
dimensional draining film has been studied by different
authors as for instance Schwartz and Roy (1999). The
behaviors of mobile and immobile soap films were in-
vestigated. Howell (1996) presented a general method
to obtain lubrication model of thin film model in various
situations. A work has been done by Braun et al. (1999,
2002) and Naire et al. (2000) for which the drainage of
vertical film has been studied taking into account the
Marangoni stress and the transport of surfactant agent.
The role playing by thermal gradient on the surface ten-
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sion has been recently studied by Scheid et al. (2010),
they shown that it is possible to form a stable liquid film
controlled by the thermal gradient. In this work, the pur-
pose is to present a lubrication model taking into account
the surface tension gradient according the prior develop-
ment of Howell (1996).

The second section is devoted to a model giving the
behavior of the surface tension as a function of the film
thickness according the recent work of Pigeonneau et al.
(2012). The lubrication model is presented in section 3.
The numerical development is given in §4. Results and
discussion are developed in section 5 before to conclude.

2. Surface tension in molten glass and
variation with the film thickness

Laimböck (1998) achieved an experimental work on a
drainage of molten glass film achieved by dropping and
dipping a Platinum loop in a crucible. He observed that
after a fast drainage, the film thickness decreases very
slowly. He proposed an explanation of this phenomena
based on the change of the surface tension as a function
of the film thickness. Using XPS measurement, Laim-
böck (1998) observed that the glass composition through
the film thickness changes significantly: the Na2O con-
tent increases strongly at the liquid/air interface while
the SiO2 content decreases. He proposed a simple model
to describe the Na2O content in the film using a mass
balance assuming Na2O adsorption.

More recently, Pigeonneau et al. (2012) achieved the
same kind of experiments but observed a decrease of
sodium oxide close to the interfaces. Recall that Na2O is
known to be a volatile species (Sanders and Haller 1977;
Beerkens 2001). The evaporation of Na2O leads to a
modification of the glass composition at the interface.
The evaporation of Na2O is generally explained by a het-
erogeneous chemical reaction between water vapor and
sodium oxide giving sodium hydroxide, NaOH. Conse-
quently, it is expected to observe a positive gradient of
Na over the depth of the film meaning a volatilization
as it is measured in our chemical analysis (Pigeonneau
et al. 2012).

The full problem involves transient diffusion process
with a mass transfer coefficient between the film and the
atmosphere difficult to evaluate. So, the aim of this sec-
tion is to provide a simple model to describe the varia-
tion of the surface tension as a function of film thickness.

According to an additivity principle, Scholze (1990)
writes the surface tension of glass as follows:

γ =

N
∑

i=1

γiyi, (1)

whereγ is the surface tension,N is the number of oxides

in the glass composition,yi the mass fraction of the ox-
ide i andγi is a factor corresponding to the contribution
of the oxidei in the surface tension given in N/m.

Since the surface tension is determined from the bulk
quantities and that Na2O evaporate, we consider the
volatilization of Na2O to describe the change of surface
tension. When the film is pulled out, the volatilization
occurs leading to a decrease of Na2O concentration. To
determine this quantity for a portion of film of volume
V and constant thicknessh, the mass balance before and
after the evaporation is given by

ρNa2O,0V = ρNa2OV + 2
dmNa2O

dS
S, (2)

in which ρNa2O,0 is the mass concentration of Na2O in
the bulk andρNa2O the mass concentration in the liquid
film, V the volume of the film andS the area of each
interface. Finally,dmNa2O/dS is the mass loss by unit
surface. Since the ratio ofS overV is directly the film
thickness,h, the last equation can be written as follows

ρNa2O,0h = ρNa2Oh+ 2
dmNa2O

dS
. (3)

This equation is similar in appearance to the one used to
describe the soap films just after the pulling out but with
different physics (de Gennes 2001). To close this equa-
tion, we assume that the loss of mass is proportional to
ρNa2O inside the portion of film of thicknessh and to the
sizeδ over which the volatilization occurs as proposed
in (Pigeonneau et al. 2012):

dmNa2O

dS
= δρNa2O. (4)

This assumption is similar to the Langmuir isotherm
used by Ruckenstein and Jain (1974) to study the rupture
of thin liquid film with a soluble surface active agents.
Remark that Laimböck (1998) took the same approxi-
mation assuming the sodium oxide is adsorbed whereas
we argue that the sodium oxide is evaporated. By com-
bining Eqs. (3) and (4), the mass concentration of Na2O
in a portion of film of thicknessh is given by

ρNa2O =
ρNa2O,0

1 + 2δ/h
. (5)

So, this phenomenological relationship leads to a closed
equation to describe the mass concentration of Na2O as
a function of the film thickness. Finally, the difference
of mass concentration of Na2O in a film of thicknessh
and the bulk that will be used to describe the change of
surface tension, is given by

ρNa2O − ρNa2O,0 = − ρNa2O,0

1 + h/(2δ)
. (6)
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This last equation can be used to evaluate the feature
of surface tension as a function of film thickness. In-
deed, if we assume that the surface tension changes only
due to the mass concentration of Na2O, SiO2 and CaO
which are the main oxides in the glass, the difference
between the surface tension for a very thin film,γ, and
a surface tension of bulk glass,γ0, is given according to
(1) by

γ − γ0 = γNa2O(yNa2O − yNa2O,0) + γSiO2
(ySiO2

−
ySiO2,0) + γCaO(yCaO − yCaO,0). (7)

By assuming that the decrease of the concentration of
Na2O is compensated by the increase of SiO2 and CaO
proportionally to their mutual initial weight ratio, the
surface tension becomes

γ = γ0 + δγfγ(h/2), (8)

whereδγ is given by

δγ =

(

γSiO2

ySiO2,0

ySiO2,0 + yCaO,0
+ γCaO

yCaO,0

ySiO2,0 + yCaO,0
− γNa2O

)

yNa2O,0, (9)

andfγ(χ), whereχ ∈ [−h/2;h/2], is an even function
given by

fγ(χ) =
1

1 + |χ|/δ . (10)

From the factorsγSiO2
, γCaO and γNa2O provided

in Scholze (1990) and Rubenstein (1964) and with the
glass composition composed by 70 wt % of SiO2, 15
wt % of Na2O and 15 wt % of CaO,δγ is a posi-
tive quantity meaning that the surface tension given by
(8) increases when the film thickness decreases. While
the scale,δ, over which the sodium oxide evaporates
depends on temperature (Pigeonneau et al. 2012), the
quantityδγ is only a function of the glass nature. Its
value is equal to4.2 · 10−2 N/m whilst the surface ten-
sion γ0 is equal to3.2 · 10−1 N/m for the largest tem-
peratureT = 1400◦C. According to this modeling, the
relative increase of surface tension is at the maximum
equal to1.5% for h → 0 and of the order of0.5% for
h ≃ 5δ. This last value seems appropriate for quantify-
ing the Marangoni stress due to evaporation for thin film
whose thicknessh ∼ 100 nm and whose Na2O variation
is observed over a depth equal to20 nm (Pigeonneau
et al. 2012).

3. Lubrication model of 2D-Cartesian film

This section is devoted to the derivation of the lubrica-
tion film equations in the Cartesian framework. The sit-
uation addressed in this work is shown in Fig. 1. A

H0

x

y

nn

tt

g

L

Liquid pool

h(x, t)/2−h(x, t)/2

Figure 1: Liquid film draining under the gravity force.
Figure is not on scale.

vertical film is attached to a wire inx = 0 wherex rep-
resents the longitudinal direction of the film whiley is
the transversal coordinate. Under the gravity force di-
rected alongx, the film thickness,h, changes with the
time t and depends also onx. The film has a height
equal toL and falls in a liquid pool. In the following,
the film thicknessH0 on x = 0 is assumed to be very
small compare to the heightL. Moreover, the film stays
symmetric following they coordinate.

Note that in a first reading, this section can be dropped
and the reader can directly go to the beginning of section
4 where the lubrication model is summed-up.

3.1. Problem statement

The purpose of this section is to determine the equations
of the motion using the lubrication theory. In order to
do that we start from the general equations of the fluid
dynamics written in the Cartesian reference frame. The
liquid is assumed incompressible and the dynamic vis-
cosity is taken constant. The continuity and momentum
equations are written as follows:

u,x + v,y = 0, (11)

u,t + uu,x + vu,y = −P,x

ρ
+ ν (u,xx + u,yy) + g, (12)

v,t + uv,x + vv,y = −P,y

ρ
+ ν (v,xx + v,yy) , (13)

whereu andv are the velocity components overx and
y respectively andP the pressure. The quantity,ν, is
the kinematic viscosity defined byµ/ρ whereρ is the
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density. In the last equations, the Jacobian notation is
used to represented the partial derivative overx andy
whereu,x is equal to∂u/∂x for instance.

These equations must be completed by boundary con-
ditions. Onx = 0, the no-slip condition is used:

u(0, y, t) = v(0, y, t) = 0. (14)

On the free surface representing the frontiers of the film,
two kinds of boundary conditions are used: the first is a
kinematic condition given by

v(x,±h/2, t) = ±1

2

[

∂h

∂t
+ u(x,±h/2, t)

∂h

∂x

]

(15)

written in±h/2 where the upper sign is used iny = h/2
and the lower sign iny = −h/2.

The second condition is obtained from the momentum
balance written at the interface between two fluids. This
last one is decomposed in two following relationships:

n · σ · n = −γκ, (16)

t · σ · n = grad γ · t, (17)

whereγ is the surface tension,n the unit normal vector
to the interface,t the unit tangential vector andκ is the
average curvature. Following the development given in
§2, the surface tension is a function ofh meaning that the
partial derivative overy is equal to zero. The quantities
n, t andκ are given by

n =
1

√

1 + h2
,x/4

(

−h,x

2
ex ± ey

)

, (18)

t =
1

√

1 + h2
,x/4

(

ex ± h,x

2
ey

)

, (19)

κ = − h,xx

2(1 + h2
,x/4)

3/2
. (20)

From these definitions of geometrical quantities, Eqs.
(16) and (17) become

−P +
2µ

1 + h2
,x/4

[

h2
,x

4
u,x + v,y∓

h,x

2
(u,y + v,x)

]

=
γh,xx

2(1 + h,x/4)3/2
, (21)

µh,x(v,y − u,x)± µ

(

1−
h2
,x

4

)

(u,y + v,x) = γ,x

√

1 + h2
,x/4, (22)

in y = ±h(x, t)/2.

Close to the liquid pool, the film behaves as a static
meniscus: the force balance is achieved between the sur-
face tension and gravity forces. This equilibrium can be
written as follows, (Naire et al. 2000)

κ,x =
1

l2c
, (23)

wherelc is the capillary length defined by

lc =

√

γ

ρg
. (24)

Eq. (23) will be used in the following to specify the
boundary conditions inx = L.

The system of equations written above is used to es-
tablish the lubrication equations. In order to do that, the
problem must be normalized which is done in the next
subsection.

3.2. Scaling and dimensionless
equations

Since the length of the liquid film isL, the longitudinal
coordinate is normalized as follows

x =
x

L
. (25)

For they coordinate, the typical scale is given byH0 so
we put

y =
y

H0
. (26)

The film thickness is written as follows

h =
h

H0
. (27)

The ratioǫ = H0

L is assumed smaller than one. From
this statement, the two dimensionless velocity compo-
nents are written as follows

u =
u

U0
, (28)

v =
v

ǫU0
, (29)

whereU0 is a characteristic velocity determined from
the equilibrium of longitudinal viscous stress and the
gravity force given by

U0 =
ρgL2

µ
. (30)

The pressure and time are respectively normalized by

P =
P

µU0/L
, (31)

t =
tU0

L
. (32)
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According to (8), the surface tension is written like this

γ = γ0 + δγfγ(h/2), (33)

wherefγ(χ) is a dimensionless even function defined in
§2, Eq. (10).

By dividing by γ0, the dimensionless surface tension
becomes

γ = 1 + δγfγ(h/2), (34)

with

δγ =
δγ

γ0
. (35)

In the following, the quantityδγ is assumed sufficiently
small to takeγ equal to one.

The nondimensional equations of motion and bound-
ary conditions, dropping the bar over the dimensionless
variables, are

u,x + v,y = 0, (36)

ǫ2Re (u,t + uu,x + vu,y) = −ǫ2P,x + ǫ2u,xx +

u,yy + ǫ2, (37)

ǫ2 Re (v,t + uv,x + vv,y) = −P,y + ǫ2v,xx + v,yy, (38)

in the liquid film whereRe is the Reynolds number equal
to

Re =
ρU0L

µ
. (39)

The kinematic conditions are

v(x,±h/2, t) = ±1

2

[

∂h

∂t
+ u(x,±h/2, t)

∂h

∂x

]

(40)

in ±h/2 and the jump stress conditions are

−P +
2

1 + ǫ2h2
,x

[

ǫ2h2
,x

4
u,x + v,y ∓

h,x

2
(u,y+

ǫ2v,x)
]

=
1

Bo

γh,xx

2(1 + ǫ2h,x/4)3/2
, (41)

ǫ2h,x(v,y − u,x)±
(

1− ǫ2
h2
,x

4

)

(u,y + ǫ2v,x) =

±Ma ǫ2
dfγ
dχ

h,x

2

√

1 + ǫ2h2
,x/4, (42)

with

Bo =
ρgL3

γ0H0
, (43)

Ma =
δγ

µU0
. (44)

The quantityBo is a Bond number andMa a Marangoni
number.

3.3. Lubrication model

From the previous developments, the equations depends
on a small parameterǫ2. The lubrication model consists
to expand each unknown in a power ofǫ2 as for instance

u(x, y, t; ǫ2) = u0(x, y, t) + ǫ2u1(x, y, t) + · · · . (45)

If the equations of motion in the liquid film, Eqs. (36-
38), are easy to expand as a function ofǫ2, the boundary
conditions are more difficult to develop. This is due to
that the boundary conditions are applied on±h/2 where
h must be also expanded as a function ofǫ2. Conse-
quently, the boundary conditions must be projected on
the film thickness at zeroth orderh0 whereh is expanded
like

h(x, t; ǫ2) = h0(x, t) + ǫ2h1(x, t) + · · · . (46)

In the following, we sum up the determination of the
lubrication model without giving all details.

3.3.1. Equations at the zeroth order

At the zeroth order, the equations of motion are

u0,x + v0,y = 0, (47)

u0,yy = 0, (48)

−P0,y + v0,yy = 0. (49)

The boundary conditions in±h0/2 are:

v0(x,±h0/2, t) = ±1

2

[

∂h0

∂t
+ u0(x,±h0/2, t)

∂h0

∂x

]

, (50)

−P0 + 2v0,y =
h0,xx

2Bo
, (51)

u0,y = 0. (52)

It is easy to see thatu0 depend only onx andt as well
as the pressure which can be given by

P0(x, t) = −2u0,x −
h0,xx

2Bo
. (53)

Moreover,v0 can be written as follows

v0(x, y, t) = −yu0,x. (54)

Using the kinematic conditions, Eq. (50), the continuity
equation

∂h0

∂t
+

∂(h0u0)

∂x
= 0, (55)

is established.
Nevertheless, the velocity componentu0(x, t) is un-

known requiring another equation obtained from the first
order solution.
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3.3.2. Equations at the first order

To find a supplementary equation, we use the method
described in (Howell 1996) where the momentum equa-
tion overx coordinate is written. From the expansion
as a function ofǫ2, the momentum equation alongx is
given by:

u1,yy = Re (u0,t + u0u0,x)− 3u0,xx −
h0,xxx

2Bo
− 1, (56)

where the pressureP0 given by (53) has been used. The
integration of the last equation overy gives the relation-
ship

u1,y(x, h0/2, t)− u1,y(x,−h0/2, t) = Reh0 (u0,t+

u0u0,x)− 3h0u0,xx − h0h0,xxx

2Bo
− h0. (57)

The boundary conditions at the first order show that
u1,y(x,±h0/2, t) can be written like

u1,y(x,±h0/2, t) = ±
[

2u0,xh0,x +
h0

2
u0,xx+

Ma
dfγ
dχ

h0,x

2

]

, (58)

which is only a function of the unknowns at the zeroth
order.

Finally, the momentum equation overx coordinate is
written as follows

Re

[

∂(h0u0)

∂t
+

∂(h0u0u0)

∂x

]

= 4
∂(h0u0,x)

∂x
+

h0h0,xxx

2Bo
+Ma

dfγ
dχ

h0,x + h0. (59)

The left hand side is the inertial contribution. The first
term in the right hand side is the extensional viscous
force, the second is the surface tension force due to the
gradient of curvature, the third term is the force due to
the surface tension gradient and the last is the gravity
force.

With the two equations (55) and (59), the Cauchy
problem is well determined for the two unknownsh0

andu0. The last point is to establish the boundary con-
ditions onx = 0 and1 and the initial condition which
are presented at the beginning of the numerical part.

4. Numerical method

We address in this section the numerical method to solve
the drainage equation of two-dimensional film obtained
at the zeroth order. In the following the index0 in the
unknowns are removed. Note that the problem here stays

under dimensionless form. The two-coupled equations
to solve are recalled here:

∂h

∂t
+

∂(hu)

∂x
= 0, (60)

Reh

(

∂u

∂t
+ uu,x

)

= 4
∂(hu,x)

∂x
+

hh,xxx

2Bo
+

Ma
dfγ
dχ

h,x + h. (61)

The functionfγ is given by (10). At the top of the film,
the boundary conditions are:

h(0, t) = 1, (62)

u(0, t) = 0. (63)

For the bottom, the behavior of the static meniscus is
used as already pointed out by Ruschak (1978) and Naire
et al. (2000). Forx = 1, we impose the first and the
second derivatives ofh:

h,x(1, t) = α, (64)

h,xx(1, t) = β =
2

ǫlc

√

(

2− ǫα

K

)

K3, (65)

with K =
√

1 + ǫ2α2/4. (66)

The condition onh,xx is obtaining from the equation of
the static meniscus (see detail of derivation in Annexe
A). The boundary condition is stayed free for the veloc-
ity at the bottom of the film.

At the initial time,h is imposed by

h(x, 0) = 1, (67)

for x ∈ [0;xc] and

h(x, 0) = 1−(α−β)xc−
βx2

c

2
+(α−β)x− βx2

2
, (68)

for x ∈]xc; 1] whereα andβ are the coefficients used in
the boundary conditions onx = 1 given previously and
xc is given by

xc = 1− α

β
. (69)

The velocityu is assumed to be equal to zero att = 0.
To solve the coupled equations, (60) and (61), a finite

difference method is used. Thex space is divided inN
elements where a discrete values ofxi are given by

xi =
i

N
, (70)

wherei varies from0 to N . The derivatives in space
and time are determined at the second order in time
and space,O(∆t2,∆x2) where∆t is the time step and
∆x = 1/N . According Press et al. (1992); Fletcher
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(1991), a centered schemes are used for all space deriva-
tives apart from nodesi = 1 andN − 1 where the third
derivative ofh must be determined with unsymmetric
schemes (Collatz 1960).

Defininghk
i anduk

i as the film thickness and the ve-
locity respectively at the time iterationk and inxi, the
discrete form of Eqs. (60) and (61) fori = 2 toN − 2 is
given by

3hk+1
i − 4hk

i + hk−1
i

∆t
+

hk+1
i+1 u

k+1
i+1 − hk+1

i−1 u
k+1
i−1

∆x
= 0, (71)

Rehk+1
i

3uk+1
i − 4uk

i + uk−1
i

∆t
+Rehk+1

i uk+1
i

uk+1
i+1 − uk+1

i−1

∆x
− 4

[(

hk+1
i + hk+1

i−1

)

uk+1
i−1

−
(

hk+1
i−1 + 2hk+1

i + hk+1
i+1

)

uk+1
i +

(

hk+1
i + hk+1

i+1

)

uk+1
i+1

]

/∆x2 −
hk+1
i

2Bo

hk+1
i+2 − 2hk+1

i+1 + 2hk+1
i−1 − hk+1

i−2

∆x3
−

Ma
dfγ(h

k+1
i /2)

dχ

hk+1
i+1 − hk+1

i−1

∆x
− 2hk+1

i = 0. (72)

For i = 1, the momentum equation is modified by
taking an upward scheme (Collatz 1960) to determine
the third derivative ofh as follows

Rehk+1
i

3uk+1
i − 4uk

i + uk−1
i

∆t
+Rehk+1

i uk+1
i

uk+1
i+1 − uk+1

i−1

∆x
− 4

[(

hk+1
i + hk+1

i−1

)

uk+1
i−1

−
(

hk+1
i−1 + 2hk+1

i + hk+1
i+1

)

uk+1
i +

(

hk+1
i + hk+1

i+1

)

uk+1
i+1

]

/∆x2 −
hk+1
i

2Bo

[

−3hk+1
i−2 + 10hk+1

i − 12hk+1
i+1+

6hk+1
i+2 − hk+1

i+3

]

/∆x3 −Ma
dfγ(h

k+1
i /2)

dχ

hk+1
i+1 − hk+1

i−1

∆x
− 2hk+1

i = 0, (73)

and fori = N − 1, a downward scheme (Collatz 1960)

is used given the relationship

Rehk+1
i

3uk+1
i − 4uk

i + uk−1
i

∆t
+Rehk+1

i uk+1
i

uk+1
i+1 − uk+1

i−1

∆x
− 4

[(

hk+1
i + hk+1

i−1

)

uk+1
i−1

−
(

hk+1
i−1 + 2hk+1

i + hk+1
i+1

)

uk+1
i +

(

hk+1
i + hk+1

i+1

)

uk+1
i+1

]

/∆x2 −
hk+1
i

2Bo

[

3hk+1
i+1 − 10hk+1

i + 12hk−1
i+1 −

6hk+1
i−2 + hk+1

i−3

]

/∆x3 −Ma
dfγ(h

k+1
i /2)

dχ

hk+1
i+1 − hk+1

i−1

∆x
− 2hk+1

i = 0, (74)

For the boundary conditions ini = N (x = 1), down-
ward schemes (Collatz 1960) are used given the relation-
ships

3hk+1
N − 4hk+1

N−1 + hk+1
N−2

2∆x
= α, (75)

2hk+1
N − 5hk+1

N−1 + 4hk+1
N−2 − hk+1

N−3

∆x2
= β. (76)

The system of non-linear equations is solved using a
Newton scheme (Déminovith and Maron 1979).

5. Results and discussion

5.1. Test without surface tension
gradient

In this first subsection, we address a computation with
a Dirichlet boundary conditions applied at the top and
the bottom whereh = 1 andu = 0. The gradient of
surface tension is not taken into account. Furthermore,
the viscosity is assumed sufficiently large to neglect the
inertia force in the momentum equation, (61). As conse-
quence, the problem depends only on one parameter: the
Bond number. The problem has been previously studied
by Schwartz and Roy (1999). In the limit of large Bond
number, the surface tension force can be removed. In
this situation, Schwartz and Roy (1999) determined a
self-similar solution given by

h(x, t) =
tet(x−1)/4

4
(

1− e−t/4
) , (77)

u(x, t) =
1− e−tx/4

t
(

1− e−t/4
) − x

t
. (78)

Remark that the boundary conditions onh are not ful-
filled with equation (77). In fact, this solution can be
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Figure 2: Film thickness,h, as a function ofx with h =
0 andu = 0 at the top and the bottom and for
t = 0.25, 0.5, 0.75 and1. Comparison with
the self-similar solution of Schwartz and Roy
(1999).

seen as an exterior solution. Indeed, close to the bound-
aries where the curvature changes sharply, the surface
tension force can not be neglected. Furthermore, the in-
tegration overx between0 to 1 of h given by (77) shows
that the average ofh stays equal to1 whatevert.

Figure 2 shows the film thickness versusx for t equal
to 0.25, 0.5, 0.75 and1 obtaining for a Reynolds number
equal to zero and a Bond number equal to1729. Numer-
ically, N is taken equal to200 and∆t = 10−2. The
profile of the film thickness presents an anti-symmetry
around the pointx = 1/2. As mentioned above, the in-
tegration ofh overx stays equal to one. This result is
a consequence of the mass conservation which is very
well verified numerically since the average ofh when
t = 1 is equal to1.0024. From apart the area close to
the top and the bottom of the film, the comparison be-
tween the self-solution (77) and the numerical results is
good.

The velocity profiles obtained numerically are plotted
in Figure 3 fort = 0.25, 0.5, 0.75 and1. The velocity
profile does not change a lot witht. The solution given
by (78) is computed whent = 1 showing the good result
obtained with the numerical method.

Close to the top and the bottom, the film thickness ex-
hibits a strong variation that can not be evidenced with
the self-similar solution given by (77). Nevertheless, a
simple scaling analysis gives that the order of magnitude
of the boundary layer must be equal to1/

√
Bo. In this

case, close to the boundary, the force balance is between
viscous term and surface tension one. In order to con-
trol this scaling, numerical computations have been done
with various Bond number in the range of[460; 60000].
Figure 4 gives the behavior ofh as a function ofx when
t = 1 and for five Bond numbers. Outside of the bound-

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

u

x

Solution (78),t = 1

Num. sol.,t = 0.25

Num. sol.,t = 0.5

Num. sol.,t = 0.75

Num. sol.,t = 1

Figure 3: Film velocity,u, as a function ofx with h = 0
andu = 0 at the top and the bottom and for
t = 0.25, 0.5, 0.75 and1. Comparison with
the self-similar solution of Schwartz and Roy
(1999).
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Figure 4: Film thickness,h, as a function ofx with
h = 1 andu = 0 at the top and the bottom
and fort = 1 and for five Bond numbers. In-
sert 1 presentsh as function of the stretched
coordinate,x

√
Bo.

aries, the five profiles are quasi-identical. In order to
control the scaling of the boundary layer as a function of
the Bond number,h is plotted versus the stretched co-
ordinate,x

√
Bo in the insert 1 where the scaling is very

well verified.

5.2. Effect of the boundary conditions
at the bottom

In this subsection, the drainage of vertical film is investi-
gated for which the coupled equations (60) and (61) are
solved with the conditions given by Eqs. (62-65). The
physical properties are taken from data corresponding to
silica-soda-lime glass with a nominal composition of 70
wt % of SiO2, 15 wt % of Na2O and 15 wt % of CaO.
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Figure 5: Minimum of h in the liquid film as a function
of time forα = 20, 50, and100.

The density is equal to2350 kg/m3, the dynamic vis-
cosity is equal to50 Pa·s, corresponding to molten glass
at1240 ◦C. The surface tension,γ0 is equal to0.32 N/m
using the correlation factors given by Rubenstein (1964).
The length and the initial thickness of the liquid film are
respectivelyL = 3 · 10−2 m andH0 = 10−3 m. With
these characteristic values, the Bond number is equal to
1.94 · 103 and the Reynolds number to5.85 · 10−1. In
this subsection, the surface tension gradient is assumed
equal to zero, i.e.Ma = 0.

The boundary conditions on the bottom used in the
numerical method depend on the arbitrary value,α. This
subsection discuss the influence ofα in the behavior of
the film thickness in space and time.

Figure 5 represents the minimum ofh in the liquid
film as a function of time for three value ofα. The graph
is represented in semi-log scales. The film thickness de-
creases rapidly in the first times and after the thinning
rate is slower whent is larger than50. The first de-
crease is mainly due to the initial condition assuming an
uniform thickness. Close to the top of the liquid film
a meniscus appears as soon as the drainage starts as it
is shown in the previous subsection. The second part
of the thinning process is a properly speaking due to
the drainage. As expected, the film thickness decreases
exponentially with the time due to the pure extensional
flow in the film.

The effect of the boundary conditions at the bottom
gives a small effect on the drainage of the liquid film.
The thinning rates for the three values ofα are similar.
The thinning rates are quasi-identical for the three values
of α.

In Figure 6, the film thickness is plotted versusx for
the three values ofα and five times. Close to the top, the
profiles ofh are similar whatever the value ofα. The
main difference appear close to the bottom of the liquid
film and are directly due toα. The spread of the liquid
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Figure 6: Film thickness,h, as a function ofx for (a)
α = 20, (b)α = 50, and (c)α = 100 and for
t = 5, 10, 20, 40 and50.

film increases obviously withα. Nevertheless, the dif-
ference between the results obtained withα = 50 and
100 are not very large.

Figure 7 gives the velocity profile for the three val-
ues ofα and the same times used in Figure 6. The main
advantage of the boundary conditions (64) and (65) is
that the velocity is not specified at the bottom but is a
solution of the problem. Since the spread of the liquid
film increases withα, the velocity at the bottom is over
estimated whenα is small as a result of the mass con-
servation. The result is true forα = 20. In contrary, the
velocity profiles are quasi-similar forα = 50 and100.
The velocity calculated at the bottom are very similar for
these two values ofα. Nevertheless, whenα = 100, a
shoulder is observed fort = 50.

Finally, remark that even if it is not easy to see in Fig-
ure 7, the velocity is lightly negative close to the top of
the liquid film as a consequence of the suction of the
boundary where the liquid film is larger that the film
thickness far away the top boundary.

The results show that the boundary conditions given
by Eqs. (64) and (65) are relevant to describe numeri-
cally the matching with the liquid pool. We do not need
a boundary condition for the velocity on the bottom. The
velocity is a solution of the boundary conditions used to
match with the static meniscus. In the following, numer-
ical computations are done withα = 100.

5.3. Effect of the surface tension
gradient

The surface tension and its gradient are determined for
the same glass used in the previous subsection. The
quantityδγ given by (9) is equal to3.4 · 10−2 N/m us-
ing the coefficient factors given by Rubenstein (1964).
The conditions used in the numerical simulations are
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Figure 7: Film velocity,u, as a function ofx for (a)α =
20, (b) α = 50, and (c)α = 100 and for
t = 5, 10, 20, 40 and50.
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Figure 8: Minimum of h in the liquid film as a func-
tion of time fork = 0, 10−6, 10−5, 10−4 and
10−3.

identical to those used in the previous subsection. The
Marangoni number is equal to1.64 · 10−3.

First, the effect ofk is addressed by plotting the min-
imum of h as a function of time. The numerical com-
putations are operated until the minimum ofh reaches
the dimensionless value equal to10−4 corresponding
to a thickness around100 nm whenH0 is equal to1
mm. Figure 8 shows the behavior of the minimum of
the film thickness versus time for five values ofk. The
case ofk = 0 means that the surface tension gradient
are equal to zero. Whenk = 10−6, the surface ten-
sion gradient is to small to see an effect on the drainage
for a typical thickness of10−4. In contrary, whenk is
larger than10−6, the behavior of film thickness changes
strongly whenh is sufficiently small. Indeed, a steady-
state regime is observed after drainage. The asymptotic
film thickness increases withk due to the surface tension
gradient appears sooner whenk is larger.

Film thickness profiles fort = 200 for the five values
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Figure 9: Film thickness,h, as a function ofx for k = 0,
10−6, 10−5, 10−4 and10−3 whent = 200.
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Figure 10: Film velocity,u, as a function ofx for k = 0,
10−6, 10−5, 10−4 and10−3 whent = 200.

of k are plotted in Figure 9. The film profile does not
change fork equal to0 and10−6. Fork = 10−5, the film
thickness is lightly thicker in the middle of the liquid
film. Close to the top and the bottom, the film thickness
is very similar to the profiles obtained withk = 0 and
k = 10−6.

The main differences are significant on the film ve-
locity as it can be seen in Figure 10 whereu is plotted
versusx for the five values ofk. The typical velocity de-
creases by a factor3 whenk increases from0 to 10−5.
Remark, all profiles are close together near the bottom.
The velocity profile observed fork = 10−4 does not
change a lot apart from the top and the bottom with a
value smaller than one obtained fork = 10−3. For this
last value ofk, the velocity decreases form the top to
the bottom due to the largest heterogeneities in the film
thickness observed in Figure 9.

With k = 10−5 corresponding to a dimension value
around10−8 m, the film thickness reaches an asymp-
totic value equal to1.8 · 10−4 (around180 nm in dimen-
sion unit) meaning that the surface tension varies in the
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range of[1; 1.005]. So, an increase of0.5 % is enough to
stabilize the film thickness. Moreover, the equilibrium
thickness found with this value are close to the exper-
imental value given by Laimböck (1998) who found a
value equal to200 nm. Kappel et al. (1987) pointed out
a value smaller (100 nm) but they did not measured the
film thickness carrefully. Whenk is larger than10−5,
the equilibrium thicknesses seems too large compara-
ble to the previous results given in Laimböck (1998) and
Kappel et al. (1987).

These experiments done in Laimböck (1998) and
Kappel et al. (1987) were achieved in laboratory fur-
naces where the thermal homogeneities must be con-
trolled. Indeed, a thermal gradient can also changes the
surface tension. Scholze (1990) indicates a coefficient a
surface tension thermal gradient equal around4 · 10−5

N/(mK) meaning that to have an increase of0.5 % of the
surface tension, the difference of the temperature must
be equal to40 K. This thermal difference must be ap-
peared over the liquid lenght, typically few centimeters,
which is too large with laboratory furnaces where the
thermal heterogeneities are usually smaller than 10 K in
the area of working space. So, the stabilization of the
liquid film must be mainly due to the chemical effect.

6. Conclusion

In this work, a lubrication model is introduced to study
the drainage of vertical liquid films taking into account
the surface tension gradient. The lubrication model is
numerically solved with a finite difference method with
an implicit time solver.

The numerical procedure is tested on vertical film
with a thickness and a velocity specified at the two ex-
tremities. The numerical results are compared with prior
results obtained analytically. Afterwards, the numeri-
cal procedure is applied to study the drainage of molten
glass with a composition close to a window glass. We
show that the chemical effect leading to the surface ten-
sion gradient can stabilize the liquid film at a thickness
in agreement with observed results achieved by Laim-
böck (1998).

These results point out that even if a molten glass
is usually considered with interface without “surfac-
tant agents”, the evaporation of oxides like Na2O to-
ward interface can lead to a stabilization of gravitational
drainage of vertical film. This effect is very important
for applications because it can explain why a significant
foam layer appears in glass furnaces.

Even if the segregation of various oxides leading to a
surface tension gradient of molten glass can be formu-
lated in a theoretical model as it is done in this work,
the driven forces giving this segregation is not explained
here and must be investigated in the future.

A. Derivation of the boundary condition at the
bottom of the liquid film

The equation of the static meniscus is given by Eq. (23).
By multiplying Eq. (23) byκ and integrating overx, the
following relationship is obtained

κ2 = − h,x

l2c

√

1 + h2
,x/4

+
A

l2c
, (79)

whereA is an integration constant.
For a film falling in a large pool, the free surface can

be considered as flat meaning thath,x goes to infinity
whenx → L. Since the curvature must be equal to zero,
A must be equal to2. Finally, under dimensionless form,
if we specify, the first derivative ofh at the bottom of the
film, the second derivative is given by Eq. (65).
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