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Rising bubble near a free surface : numerical and asymptotic study

M. GuémasF. PigeonneguA. Sellier
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Abstract

Phase separation is involved in many chemical processeis giesherally limited by the collapse of inclusions at the
free surface. For instance, the coalescence of bubblegliyhiiscous Newtonian fluids is observed in various fields,
such as geophysics or the glass industry.

When a bubble rises through a liquid toward a free surfacefinsieobserve the rising of the bubble driven by the
buoyancy forces. In the second step corresponding to thieady@ a liquid film is created between the bubble
interface and the free surface decreasing with the timeh Bw bubble shape close to the free surface and the film
thickness depend upon on the Bond number which is the ragioanity to surface tension forces.

Under the assumption of the small Reynolds number, theidhexffects are neglected. Moreover, both the surface
tensions of the free surface and the bubble are assumedrmnifot theirs values can be different. We have
already investigated the gravity-driven migration usinguanerical method based on the boundary-integral method
(Pigeonneau and Sellier (2011)). The aim of the current vidth develop an asymptotic solution when the Bond
number is small.

In the perturbation method, the interfaces and flow are dgeel following an asymptotic expansion for which the
small parameter is the Bond number. The zeroth order caynelspto the case of undeformed interfaces (flat free
surface and spherical bubble) which can be determined uBpwar coordinates. The hydrodynamic force at the
zeroth order is obtained using the exact solution provideStbmson and Jeffery (1926).

The behavior of the film thickness is obtained from the momentquation on the bubble. We compare the
asymptotic predictions with the previous numerical resiinally, the bubble and free surface shapes are invéstiga
for different values of the surface tension ratio and smah@number.

1. Introduction caseyy # ~1. Nevertheless, numerical troubles occur
for small Bond number. Therefore, this work asymp-

The problem of bubble deformation and migration in the totically obtains the free surface and bubble shapes

presence of a free surface occurs in many multi-phasewhenBo « 1. This is achieved here by mimicking the

flows applications, such as phase separation or foamtreatement employed in Chervenivanova and Zapryanov

production. The motion of a bubble driven by the (1985) for a droplet.

gravity in a viscous flow toward a free surface is of

particular interest in such varied fields as glass process

or biomechanics application. As_or_le bubb_le approachesl Governing problem

a free surface the hydrodynamic interaction affect the

shapes of the bubble and of the interface. This problem

has been numerically investigated by Pigeonneau an

Sellier (2011) who examined the deformations, versus As depicted in Fig. 1, we look at a bubblg driven by

the Bond number (see definition in §2.2), of interacting buoyancy effects toward a free surfag The liquid

free surface and bubble(s). This was performed for surrounding the bubble is a Newtonian fluid with uni-

axisymmetric free surface and bubble having the sameform densityp and viscosityu. The bubble is subject

axis of revolution parallel with the applied gravity to a uniform gravityg = —ge, with magnitudeg and

field and thesame uniform surface tension. This work the ambient fluid above the free surface is a gas with a

was recently extended in Guémas et al. (2012) to theuniform pressurey,. Both the temperaturé; and the

1. Axisymmetric problem
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pressurep; inside the bubble are assumed uniform and conditions
constant in time. The bubble surfaSg(t) and the free
surfaceSy(t) have uniform surface tensien > 0 and

o > 0, respectively.

As the bubble approaches the free surface, the
shape of each surface evolves in time. At initial time,
the bubble is taken spherical with radiasand the
free surface is the = 0 plane. At any timet, the
deformed bubble surfacg, (¢) and free surface,(t) / o-ndS—pVeg=0. (5)
are axisymmetric, having identical axis of revolution S1(t)
parallel with the gravityg, and the flow in the liquid
domainD(t) has pressurg + pg.x and velocityu with 5
typical magnitudé/. All inertial effect are neglected, i.e / o-ndS — _dmpga e,. (6)
the Reynolds number Re obelis = pUa/u < 1. S1(t) 3

/ u-ndS =0 form=0,1. 4)
Svn

Therefore, the constant volume of the bubbld/is=
4ma® /3 wherea is the bubble radius at initial time. Fi-
nally, since the bubble has no inertia, the net force on the
bubble is zero at any time, i.e.

Substitutingl” by its expression, we obtain

] ] Note that (6) holds at any time.
Assuming quasi-steady bubble and free surface defor-

mations, the flow(u, p) then satisfies the following far-
field behavior and Stokes equations 2.2. Dimensionless parameters
pV?u =gradfp] and V-u=0 in D(t), From the condition (2) on the stress component, we in-
(u,p) — (0,0) as |x| — 1) troduce three dimensionless numbers. First, the Bond
numberBo, associated with the bubble, which compares
the body force (pg - x) - n) to the capillary surface force
(71(Vs-n)-n). Second, the free surface capillary num-
berCa comparing the viscous forcer(- n) to the capil-

z lary surface forcey (Vs - n) - n. Finally, 4 designates

D A S0 a surface tension ratio. Takirngas typical length an@

° as velocity scale, these numbers read

n T, 2 U
o | B Jo=-ge, Bo=H%  ca=tl 52
D(t) n\_1 0 B! 70 gi!
Vi For symmetry reasons, the hydrodynamic fakcex-
\ erted on the bubble admits the following form
Figure 1: One bubbleB; ascending near a free surface F= /s (t) o-ndS = —4dmplUale; (8)
1

So(t). ) . .
with X the so-called dimensionless drag.

) Recalling (6), we arrive at
The flow(u, p) has stress tenser and, denoting (see

Fig.1) byn the unit normal onSy(¢) U S;(t) directed —4rpUale, = —éwpg ae,. 9
into the liquid, one also requires the boundary condition 3

o-n=(pg-Xx—pn+vmVs-n)-n

Accordingly,
onS,(t)form=0,1 (2) 5
pga .
where[Vs - n]/2 = H is the local average curvature AU = 5> Bo= 347 Ca. (10)
([V s -n] is the surface divergence of the unit normg)
Moreover, there is no mass transfer accross the liquid
boundary which implies that In the case of a rigid bubble trnaslating in an un-
bounded viscous liquid at the velocitye, Hadamard
v.-n=u-n onS,(t)form=0,1 (3) (1911) predicts that = 1. Therefore, a rigid (spherical)
bubble migrates far from the free surface under the
with v the material velocity on each surfag, (¢). uniform gravityg = —ge, at the velocityU,.e, with

One also requests a time-independent bubble volumel., = pga?/(3p).
Sinceu is divergence-free, this results in the following
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z=0

2.3. Available results and pending
issue z=-l Ue.

This problem has been numerically solved by Pigeon- n

neau and Sellier (2011) for uniform surface tensions

v = =1 by implementing a boundary integral for-

mulation. Recently, Guémas et al. (2012) extended g, o One spherical bubble rigidly translating to-
this work to deal with the cas& # 1. These studies ward thez = 0 flat free surface.

cover a large range of Bond number and deal with large

deformations of the interfaces. However, as the Bond

number tends to zero, numerical calculations experiencewherec > 0, 0 < n < 7, —oo < ¢ < co and 0 <
troubles. Nevertheless, as the Bond number becomesy < 27,

small we expect the bubble and the free surface to For these coordinates, the surface= ¢ > 0de-
be nearly-spherical and nearly-flat, respectively. This scribes a sphere above the= 0 plane whereas the sur-
suggests to track the bubble and free surface shapes bjace¢ = —(, describes a sphere below the- 0 plane.

achieving an asymptotic analysis versus the small BondThe constang, is moreover related to the lengths as
number. Such an analysis is presented in this work.

I = cosh((p), ¢ = sinh (=),

wherel is the bubble center distance to the- 0 plane
3. Asymptotic analysis normalized byu.

. In terms of bipolar coordinates, the boundary condi-
Henceforth, we assume thb < 1. As noticed atthe  tjons satisfied by the zeroth-order flow become

end of 83.1, it can be shown that the dimensionless drag

A is of order unity. Assuming = O(1), the relation u-n=20 at¢ = 0 (free surface),

Bo =3\4 CayieldsCa « 1. (13)
Therefore, the flow(u, p) and its stress tenser are u-n="Ue, n at¢ = —¢, (bubble). (14)

expanded in terms of the small parameiaras follows

Since the problem is axisymmetric, it is convenient to

u=up+Caus +---, introduce a stream functidii W (¢, x) with x = cos(n).
p=po+Capi+:, (11)  Then
o=o0c9+Caoy+--- W) — )2 OU

toe = o - e = _py (eSO =) 0

c? ox’
(cosh(¢) — x)* oW
Asin(n) ¢

with (ug, po) the Stokes flow about a spherical bubble
moving toward a flat free surface.

(15)

Ugy = Ug - €, = —U

_ where(e¢, e,) are the unit vectors for the bipolar coor-
3.1. Zeroth-order solution  (ug, po) dinates (see Happel and Brenner (1983)).

. . . Appealing to Stimson and Jeffery (1926), one has
We further adopt cartesians coordinates normalized by

the radiusa. As illustrated in Fig. 2, the flowug, po) 1 >
is the Stokes flow due to a spherical bubble translating  ¥(¢, x) = (eoh(0) — ) Un(Q) Va(x) (16)
at the velocityUe, toward the flatz: = 0 free surface. cos X% n=1

This flow fulfills the boundary conditions, - e, = 0 at
z = 0 andug - n = Ue, - n on the bubble surfac&,
having unit outward normat.

whereV,, (x) = [Po-1(x) — Pat1(x)] with P,(x) the
Legendre polynomial of ordet, and by virtue of the
boundary condition (14),

This problem has been solved by M. Meyyeppan (7, (¢) = B, sinh (n — E)CJFD” sinh (n + §)<,
(1981) using bipolar coordinatés, n, ¢). Those coor- 2 (17)

din_ate; (see Happel and Brenner (1983)) are related to The coefficients3,, and D,, are analytically obtained
cylindrical coordinate$z, z, ¢) through the relations (and displayed in the Appendi®) by enforcing the

_ c¢sinh ¢ _ csinn (12) 1These coefficients were given by M. Meyyeppan (1981) but with

cosh ¢ — cos 77’ r= cosh ¢ — cos 77’ misprints corrected in the present paper.
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boundary condition (13). Once this is done, it is pos- In a similar fashion, the governing equation for the
sible to compute the zeroth-order hydrodynamic force shape funtion¢? is found in Chervenivanova and Za-

Fy such that pryanov (1985) to be
0 1—x2 0
Fo = / oo -ndS =—4rpUalg e, (18) cosh(, —x)* | — —2& =L
0 s 0 0 ( gp X) 8X (COSh gp _ X)2 8X
We retrieve that\y — 1 as! — oo (Hadamard solution) +2 ¢ cosh(¢p) = 5, (24)

and also convincing numerical comparaisons with Bart
(1968) at finite values df These computations show, as
previously-announced, that = O(1). Finally, invok-

ing (10) we getly = U, /o With U, = pga®/(3p).

with the right-hand sid€ defined as
ca
§=-[ lec o0 ed (<Gum)

+ 3o c? (cosh ¢, — X)% V2
3.2. First-order, disturbed free-surface o
and bubble shape S @n+1) e P (y)|. (25)

n=1
For Ca = 0, the free surface and the bubble shapes are
flat and spherical with equatiogs= 0 and¢{ = —(,,
respectively. In the case of < Ca < 1, the weakly
disturbed shapes admit then the equations

Finally, we impose the conservation of the bubble vol-
ume and that) is the bubble center of volume. Those
conditions give

1
¢~Cali(x), (free surface) (19) / ﬁ dy =0, (26)
—1 3 ) —
¢~ —G+ - Ca} (x), (bubble)  (20) o
. b . —1 (cosh ¢, — X)4
with ¢; and ¢y two unknow shape functions and =

cosn € [—-1,1].

Those functions obeys differential equations estab- In summary, one has to be solve the problem (21)-
lished in Chervenivanova and Zapryanov (1985). For (23) and (24),(26)-(27).
the free surface, one obtains

33[1+X 8(1}

-2+ (1 —x)

Iy L1—x2 Oy 4. Numerical method and preliminary results
cBo ca . . .
T il =0 lec-00-ec](0,n). (21)  4.1. Numerical implementation

In this section, we briefly introduce our numerical
method to determine the time-dependent free surface
and bubble shapes. This is achieved by appealing to the
G following key steps :

)1(1g11 =) =0. (22)
X 1) Initial data: we prescribe the small Bond number
Chervenivanova and Zapryanov (1985) solved (21)- Bo = pga?/y1 < 1 and the surface tension ratio
(22) and predicted a disturbed free surface having a4y = ~,/~;. We also give at initial time = 0 the bubble
non-horizonthal tangent at = 0 (i.e. on the(0,e,) shape (spherical with given radiasand location below
axis). However, on theoretical grounds, the smooth dis- a sufficiently distant flat free surface.
turbed free surface necessarily exhibits a zero slope on
the (0, e,) axis of revolution.? Therefore, in this work, 2) Attimet > 0, we know the location of the bubble
we supplement (21)-(22) with the additionnal require- center of volumeO (i.e. the value of as shown in Fig.
ment of a zero slope at= 0 (y = —1). This condition 2) from the solution at previous times.
reads
2 %G +¢=0. (23) 2.1) First, we obtaing, o, Ag andU = U /Ao US-
Ix ing the solution given in §3.1. We then calculate the as-

2The numerical predictions obtained in Pigeonneau and egelli SOCiated Capillary numbéra = 1U /o = Bo/ (30 7).
(2011) actually comply with this property.

Since at infinity (as" — o), the free surface is not
disturbed, one requires that
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2.2) Then, we determine the disturbed shafg&) A. Expression of the coefficients B, and D,
and S;(t) by solving the problems (21)-(23) and
(24),(26)-(27), respectively. By contrast to Cher- Enforcing the boundary condition (14) and taking into
venivanova and Zapryanov (1985) who employed a account of (15)-(16), one gets

. . b i
decomposition of functiong and¢? in terms of Legen N [67% et ]

dre polynomials, we here directly solve the problem by B, = n (28)
using a second-order finite difference method scheme (2n — 1)[cosh (2n + 1) ¢ — cosh 2¢)]
(the resulting linear system being solved by a LU k, [€(2n+1) ¢ — 2 ]

o D, = 29
factorization). (2n + 3)[cosh (2n + 1) (, — cosh 2¢,] (29)

3) Finally, between time andt + dt, we move the An(2n+1)
bubble center of volum® at the velocityl/e.. wherek, = 2o+ 1)
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