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Abstract

Phase separation is involved in many chemical processes andis generally limited by the collapse of inclusions at the
free surface. For instance, the coalescence of bubbles in highly viscous Newtonian fluids is observed in various fields,
such as geophysics or the glass industry.
When a bubble rises through a liquid toward a free surface, wefirst observe the rising of the bubble driven by the
buoyancy forces. In the second step corresponding to the drainage, a liquid film is created between the bubble
interface and the free surface decreasing with the time. Both the bubble shape close to the free surface and the film
thickness depend upon on the Bond number which is the ratio ofgravity to surface tension forces.
Under the assumption of the small Reynolds number, the inertial effects are neglected. Moreover, both the surface
tensions of the free surface and the bubble are assumed uniform but theirs values can be different. We have
already investigated the gravity-driven migration using anumerical method based on the boundary-integral method
(Pigeonneau and Sellier (2011)). The aim of the current workis to develop an asymptotic solution when the Bond
number is small.
In the perturbation method, the interfaces and flow are developed following an asymptotic expansion for which the
small parameter is the Bond number. The zeroth order corresponds to the case of undeformed interfaces (flat free
surface and spherical bubble) which can be determined usingbipolar coordinates. The hydrodynamic force at the
zeroth order is obtained using the exact solution provided by Stimson and Jeffery (1926).
The behavior of the film thickness is obtained from the momentum equation on the bubble. We compare the
asymptotic predictions with the previous numerical results. Finally, the bubble and free surface shapes are investigated
for different values of the surface tension ratio and small Bond number.

1. Introduction

The problem of bubble deformation and migration in the
presence of a free surface occurs in many multi-phase
flows applications, such as phase separation or foam
production. The motion of a bubble driven by the
gravity in a viscous flow toward a free surface is of
particular interest in such varied fields as glass process
or biomechanics application. As one bubble approaches
a free surface the hydrodynamic interaction affect the
shapes of the bubble and of the interface. This problem
has been numerically investigated by Pigeonneau and
Sellier (2011) who examined the deformations, versus
the Bond number (see definition in §2.2), of interacting
free surface and bubble(s). This was performed for
axisymmetric free surface and bubble having the same
axis of revolution parallel with the applied gravity
field and thesame uniform surface tension. This work
was recently extended in Guémas et al. (2012) to the

caseγ0 6= γ1. Nevertheless, numerical troubles occur
for small Bond number. Therefore, this work asymp-
totically obtains the free surface and bubble shapes
whenBo ≪ 1. This is achieved here by mimicking the
treatement employed in Chervenivanova and Zapryanov
(1985) for a droplet.

2. Governing problem

2.1. Axisymmetric problem

As depicted in Fig. 1, we look at a bubbleB1 driven by
buoyancy effects toward a free surfaceS0. The liquid
surrounding the bubble is a Newtonian fluid with uni-
form densityρ and viscosityµ. The bubble is subject
to a uniform gravityg = −gez with magnitudeg and
the ambient fluid above the free surface is a gas with a
uniform pressurep0. Both the temperatureT1 and the
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pressurep1 inside the bubble are assumed uniform and
constant in time. The bubble surfaceS1(t) and the free
surfaceS0(t) have uniform surface tensionγ1 > 0 and
γ0 > 0, respectively.

As the bubble approaches the free surface, the
shape of each surface evolves in time. At initial time,
the bubble is taken spherical with radiusa and the
free surface is thez = 0 plane. At any timet, the
deformed bubble surfaceS1(t) and free surfaceS0(t)
are axisymmetric, having identical axis of revolution
parallel with the gravityg, and the flow in the liquid
domainD(t) has pressurep + ρg.x and velocityu with
typical magnitudeU. All inertial effect are neglected, i.e
the Reynolds number Re obeysRe = ρUa/µ ≪ 1.

Assuming quasi-steady bubble and free surface defor-
mations, the flow(u, p) then satisfies the following far-
field behavior and Stokes equations

µ∇
2u = grad[p] and ∇ · u = 0 in D(t),

(u, p) → (0, 0) as |x| → ∞ (1)

wherex = OM.

x

z

n

n
B

γ
1

S

S

(t)

1
(t)

γ
0

D(t)
g = −gez

0

1

p

T

p
0

T1

1

1

Figure 1: One bubbleB1 ascending near a free surface
S0(t).

The flow(u, p) has stress tensorσ and, denoting (see
Fig.1) byn the unit normal onS0(t) ∪ S1(t) directed
into the liquid, one also requires the boundary condition

σ · n = (ρg · x − pm + γm∇S · n) · n
onSm(t) for m = 0, 1 (2)

where[∇S · n]/2 = H is the local average curvature
([∇S ·n] is the surface divergence of the unit normaln.)
Moreover, there is no mass transfer accross the liquid
boundary which implies that

v · n = u · n onSm(t) for m = 0, 1 (3)

with v the material velocity on each surfaceSm(t).
One also requests a time-independent bubble volume.
Sinceu is divergence-free, this results in the following

conditions
∫

Sm

u · n dS = 0 for m=0,1. (4)

Therefore, the constant volume of the bubble isV =
4πa3/3 wherea is the bubble radius at initial time. Fi-
nally, since the bubble has no inertia, the net force on the
bubble is zero at any time, i.e.

∫

S1(t)

σ · n dS − ρV g = 0. (5)

SubstitutingV by its expression, we obtain
∫

S1(t)

σ · n dS = −4πρga3

3
ez. (6)

Note that (6) holds at any time.

2.2. Dimensionless parameters

From the condition (2) on the stress component, we in-
troduce three dimensionless numbers. First, the Bond
numberBo, associated with the bubble, which compares
the body force ((ρg ·x) ·n) to the capillary surface force
(γ1(∇S ·n) ·n). Second, the free surface capillary num-
berCa comparing the viscous force (σ · n) to the capil-
lary surface forceγ0(∇S · n) · n. Finally, γ̂ designates
a surface tension ratio. Takinga as typical length andU
as velocity scale, these numbers read

Bo =
ρga2

γ1
, Ca =

µU

γ0
, γ̂ =

γ0

γ1
. (7)

For symmetry reasons, the hydrodynamic forceF ex-
erted on the bubble admits the following form

F =

∫

S1(t)

σ · n dS = −4πµUaλ ez (8)

with λ the so-called dimensionless drag.
Recalling (6), we arrive at

−4πµ U a λ ez = −4

3
πρg a3 ez. (9)

Accordingly,

λUµ =
ρga2

3
, Bo = 3λ γ̂ Ca. (10)

In the case of a rigid bubble trnaslating in an un-
bounded viscous liquid at the velocityUez Hadamard
(1911) predicts thatλ = 1. Therefore, a rigid (spherical)
bubble migrates far from the free surface under the
uniform gravityg = −gez at the velocityU∞ez with
U∞ = ρga2/(3µ).
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2.3. Available results and pending
issue

This problem has been numerically solved by Pigeon-
neau and Sellier (2011) for uniform surface tensions
γ0 = γ1 by implementing a boundary integral for-
mulation. Recently, Guémas et al. (2012) extended
this work to deal with the casêγ 6= 1. These studies
cover a large range of Bond number and deal with large
deformations of the interfaces. However, as the Bond
number tends to zero, numerical calculations experience
troubles. Nevertheless, as the Bond number becomes
small we expect the bubble and the free surface to
be nearly-spherical and nearly-flat, respectively. This
suggests to track the bubble and free surface shapes by
achieving an asymptotic analysis versus the small Bond
number. Such an analysis is presented in this work.

3. Asymptotic analysis

Henceforth, we assume thatBo ≪ 1. As noticed at the
end of §3.1, it can be shown that the dimensionless drag
λ is of order unity. Assuminĝγ = O(1), the relation
Bo = 3λ γ̂ Ca yieldsCa ≪ 1.

Therefore, the flow(u, p) and its stress tensorσ are
expanded in terms of the small parameterCa as follows











u = u0 + Cau1 + · · · ,

p = p0 + Ca p1 + · · · ,

σ = σ0 + Caσ1 + · · ·
(11)

with (u0, p0) the Stokes flow about a spherical bubble
moving toward a flat free surface.

3.1. Zeroth-order solution (u0, p0)

We further adopt cartesians coordinates normalized by
the radiusa. As illustrated in Fig. 2, the flow(u0, p0)
is the Stokes flow due to a spherical bubble translating
at the velocityUez toward the flatz = 0 free surface.
This flow fulfills the boundary conditionsu0 · ez = 0 at
z = 0 andu0 · n = Uez · n on the bubble surfaceS1

having unit outward normaln.

This problem has been solved by M. Meyyeppan
(1981) using bipolar coordinates(ζ, η, φ). Those coor-
dinates (see Happel and Brenner (1983)) are related to
cylindrical coordinates(x, z, φ) through the relations

z =
c sinh ζ

cosh ζ − cos η
, r =

c sin η

cosh ζ − cos η
, (12)

n

z = 0

z = −l Uez

O

Figure 2: One spherical bubble rigidly translating to-
ward thez = 0 flat free surface.

wherec > 0, 0 ≤ η ≤ π, − ∞ ≤ ζ ≤ ∞ and 0 ≤
φ ≤ 2π.

For these coordinates, the surfaceζ = ζp > 0 de-
scribes a sphere above thez = 0 plane whereas the sur-
faceζ = −ζp describes a sphere below thez = 0 plane.
The constantζp is moreover related to the lengths as

l = cosh(ζp), c = sinh (−ζp),

wherel is the bubble center distance to thez = 0 plane
normalized bya.

In terms of bipolar coordinates, the boundary condi-
tions satisfied by the zeroth-order flow become

u · n = 0 at ζ = 0 (free surface),
(13)

u · n = Uez · n atζ = −ζp (bubble). (14)

Since the problem is axisymmetric, it is convenient to
introduce a stream functionUΨ(ζ, χ) with χ = cos(η).
Then

u0ζ = u0 · eζ = −U
(cosh(ζ) − χ)

2

c2

∂Ψ

∂χ
,

u0η = u0 · eη = −U
(cosh(ζ) − χ)2

c2 sin(η)

∂Ψ

∂ζ
,

(15)

where(eζ , eη) are the unit vectors for the bipolar coor-
dinates (see Happel and Brenner (1983)).

Appealing to Stimson and Jeffery (1926), one has

Ψ(ζ, χ) =
1

(cosh(ζ) − χ)
3

2

∞
∑

n=1

Un(ζ)Vn(χ) (16)

whereVn(χ) =
[

Pn−1(χ) − Pn+1(χ)
]

with Pn(χ) the
Legendre polynomial of ordern, and by virtue of the
boundary condition (14),

Un(ζ) = Bn sinh (n − 1

2
) ζ + Dn sinh (n +

3

2
) ζ.

(17)
The coefficientsBn andDn are analytically obtained

(and displayed in the Appendix1) by enforcing the

1These coefficients were given by M. Meyyeppan (1981) but with
misprints corrected in the present paper.
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boundary condition (13). Once this is done, it is pos-
sible to compute the zeroth-order hydrodynamic force
F0 such that

F0 =

∫

S1

σ0 · n dS = −4πµUaλ0 ez (18)

We retrieve thatλ0 → 1 asl → ∞ (Hadamard solution)
and also convincing numerical comparaisons with Bart
(1968) at finite values ofl. These computations show, as
previously-announced, thatλ0 = O(1). Finally, invok-
ing (10) we getU = U∞/λ0 with U∞ = ρga2/(3µ).

3.2. First-order, disturbed free-surface
and bubble shape

For Ca = 0, the free surface and the bubble shapes are
flat and spherical with equationsζ = 0 andζ = −ζp,
respectively. In the case of0 < Ca ≪ 1, the weakly
disturbed shapes admit then the equations

ζ ≃ Ca ζ1 (χ), (free surface) (19)

ζ ≃ −ζp +
γ1

γ0
Ca ζb

1 (χ), (bubble) (20)

with ζ1 andζb
1 two unknow shape functions andχ =

cos η ∈ [−1, 1].
Those functions obeys differential equations estab-

lished in Chervenivanova and Zapryanov (1985). For
the free surface, one obtains

−2 ζ1 + (1 − χ)
3 ∂

∂χ

[ 1 + χ

1 − χ2

∂ζ1

∂χ

]

+
c Bo ζ1

1 − χ
=

ca

µU
[eζ · σ0 · eζ ] (0, η). (21)

Since at infinity (asr → ∞), the free surface is not
disturbed, one requires that

lim
χ→1

ζ1

(1 − χ)
= 0. (22)

Chervenivanova and Zapryanov (1985) solved (21)-
(22) and predicted a disturbed free surface having a
non-horizonthal tangent atr = 0 (i.e. on the(0, ez)
axis). However, on theoretical grounds, the smooth dis-
turbed free surface necessarily exhibits a zero slope on
the(0, ez) axis of revolution.2 Therefore, in this work,
we supplement (21)-(22) with the additionnal require-
ment of a zero slope atr = 0 (χ = −1). This condition
reads

2
∂ζ1

∂χ
+ ζ1 = 0. (23)

2The numerical predictions obtained in Pigeonneau and Sellier
(2011) actually comply with this property.

In a similar fashion, the governing equation for the
shape funtionζb

1 is found in Chervenivanova and Za-
pryanov (1985) to be

(cosh ζp − χ)3
[ ∂

∂χ

1 − χ2

(cosh ζp − χ)2
∂ζ1

∂χ

]

+ 2 ζ1 cosh(ζp) = S, (24)

with the right-hand sideS defined as

S = −
[ ca

µU
[eζ · σ0 · eζ ] (−ζp, η)

+ 3 λ0 c2 (cosh ζp − χ)
1

2

√
2

∞
∑

n=1

(2n + 1) e(n+1)ζp Pn(χ)
]

. (25)

Finally, we impose the conservation of the bubble vol-
ume and thatO is the bubble center of volume. Those
conditions give

∫ 1

−1

ζ1(χ)

(cosh ζp − χ)
3 dχ = 0, (26)

∫ 1

−1

ζ1(χ)

(cosh ζp − χ)
4 dχ = 0 (27)

In summary, one has to be solve the problem (21)-
(23) and (24),(26)-(27).

4. Numerical method and preliminary results

4.1. Numerical implementation

In this section, we briefly introduce our numerical
method to determine the time-dependent free surface
and bubble shapes. This is achieved by appealing to the
following key steps :

1) Initial data: we prescribe the small Bond number
Bo = ρga2/γ1 ≪ 1 and the surface tension ratio
γ̂ = γ0/γ1. We also give at initial timet = 0 the bubble
shape (spherical with given radiusa) and location below
a sufficiently distant flat free surface.

2) At time t > 0, we know the location of the bubble
center of volumeO (i.e. the value ofl as shown in Fig.
2) from the solution at previous times.

2.1) First, we obtainu0, σ0, λ0 andU = U∞/λ0 us-
ing the solution given in §3.1. We then calculate the as-
sociated Capillary numberCa = µU/γ0 = Bo/(3λ0 γ̂).
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2.2) Then, we determine the disturbed shapesS0(t)
and S1(t) by solving the problems (21)-(23) and
(24),(26)-(27), respectively. By contrast to Cher-
venivanova and Zapryanov (1985) who employed a
decomposition of functionsζ1 andζb

1 in terms of Legen-
dre polynomials, we here directly solve the problem by
using a second-order finite difference method scheme
(the resulting linear system being solved by a LU
factorization).

3) Finally, between timet andt + dt, we move the
bubble center of volumeO at the velocityUez.

4.2. Results

Some preliminaries results are exposed here.

We compare in Fig. 3 the free surface shapes pre-
dicted by the numerical code and the present asymptotic
analysis forBo = 0.09, γ̂ = 1 andl = 3.515. For this
case, one obtainsCa ≃ 0.0257.

0 2 4 6 8
0

0,02

0,04

0,06

0,08

r

z

Figure 3: Compared free surface profiles. Numerical
results (dashed line) and asymptotic analysis (solid line).

As expected, forz & O(Ca) the differences between
the two profiles is orderO(Ca2).

5. Conclusion

For Bo ≪ 1, the weakly disturbed shapes of the free
surface and bubbles have been asymptotically obtained
at the leading order. Additional comparaisons against
the direct numerical treatment proposed in Pigeonneau
and Sellier (2011) and Guémas et al. (2012) will be ad-
dressed at the talk.

A. Expression of the coefficients Bn and Dn

Enforcing the boundary condition (14) and taking into
account of (15)-(16), one gets

Bn =
kn

[

e−2ζp − e(2n+1) ζp

]

(2n − 1)[cosh (2n + 1) ζp − cosh 2ζp]
(28)

Dn =
kn

[

e(2n+1) ζp − e2ζp

]

(2n + 3)[cosh (2n + 1) ζp − cosh 2ζp]
(29)

wherekn =
c2n(2n + 1)√

2(2n + 1)
.
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