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2Surface du Verre et Interfaces, UMR125 CNRS St Gobain, 39 quai Lucien Lefranc, BP 135, 93303

Aubervilliers, Cedex, France

e-mail: marine.guemas@ladhyx.polytechnique.fr

e-mail: sellier@ladhyx.polytechnique.fr

Keywords: Bubble, free surface, surface tension, Stokes flow, Boundary-integral equation, film drainage.

Abstract

We investigate the challenging problem of bubble(s) and rigid particle(s) interacting near a free
surface. The time-dependent bubble(s) and free surface shapes are determined for a large range of
Bond number by solving the creeping flow induced by the bubble(s) and the particle(s) motion. This
works extends the boundary-integral formulation handled in a recent work solely dealing with bub-
ble(s) ascending toward a free surface.

1. Introduction

The gravity-driven motion of bubble(s) interacting with solid particle(s) in a viscous liquid in pres-
ence of a free surface is of high interest in applications such as geophysics, chemistry, glass process, . . .
This task is quite involved due to the interactions occurring between the different solid and evolving
surfaces. The axisymmetric gravity-driven migration of bubble(s) ascending toward a free surface has
been numerically investigated either for bubble with equal surface tension in [4] or unequal surface
tension in [1]. In contrast, this work considers, still for axisymmetric geometry, the more-involved case
of cluster made of both bubble(s) and solid particle(s). This problem is solved adopting regularized
and carefully-selected boundary-integral equations enforced on the entire liquid domain.

2. Challenging time-dependent problem

2.1 Assumptions and relevant axisymmetric quasi-steady Stokes flow

We consider a cluster made of M ≥ 0 bubbles Bm and/or N ≥ 0 solid particles Pn with M +N ≥ 1
immersed in a Newtonian fluid with uniform density ρ and viscosity µ. This liquid is bounded by a free
surface and both the cluster and the liquid are subject to the uniform gravity g = −ge3 (with g > 0).
The bubble Bm, the solid particle Pn and the free surface have smooth and time-dependent surfaces
Sm(t) with uniform surface tension γn, Σn(t) and S0(t) with uniform surface tension γ0, respectively.

As illustrated in Figure 1 for M = N = 1, all surfaces S0(t), Sm(t) and /or Σn(t) admit unit normal
vector n directed into the liquid domain D(t) and the same axis of revolution (O, e3) (axisymmetric
problem).

As the cluster migrates under the gravity, the shapes of the bubble(s) and free surface evolve
in time. At initial time, each bubble is spherical with typical radius a and the free surface is the
z = 0 plane. At any time t, the pressure p0 above the disturbed free surface S0(t) and pm inside the
disturbed bubble Bm are assumed to be constant. Each solid particle Pn with uniform density ρn

has, for symmetry reasons, time-dependent velocity U (n)(t)e3. In addition, the liquid flow has pressure
p+ρg.x (here x = OM with O denoting the origin of our Cartesian coordinates) velocity u and stress
tensor σ. We denote by a the bubble(s) and solid particles typical length scale and by V the typical
magnitude of velocities u and U (n)(t). Assuming that Re = ρV a/µ ≪ 1, inertial effects are negligible
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Figure 1: One bubble B1 and a solid sphere P1 moving near a free surface S0(t).

and the flow (u, p) obeys the following quasi-steady creeping flow equations and boundary conditions

∇ · u = 0 and µ∇
2u = gradp in D(t), (u, p) → (0, 0) as |x| → ∞, (1)

σ · n = (ρg · x− pm + γm∇S · n)n on Sm(t) for m = 0, ...,M, (2)

u = U (n)(t)e3 on Σn(t) for n = 1, ..., N (3)

where H = [∇S · n]/2 is the local average curvature. Assuming bubbles with constant volume, one
supplements (1)-(3) with the relations 1

∫

Sm(t)
u · n dS = 0 on Sm for m=0,...,M. (4)

For N ≥ 1 the velocities U (n)(t) are unknown. By symmetry, each solid particle Pn is torque-
free. In addition, each Pn with negligeable inertia is force-free. This latter property results in the
additionnal conditions

∫

Σn(t)
e3 · σ · ndS = (ρn − ρ)Vn g for n = 1, ..., N (5)

where ρn and Vn designate the uniform density and volume of the particle Pn.
The material surface(s) Sm(t) have velocity V. Since there is no mass transfer across the surfaces

Sm(t), one has
V · n = u · n on Sm for m = 0, ...,M. (6)

2.2 Proposed tracking algorithm for the time-dependent entire liquid boundary

We compute the time-dependent shape of the free surface, the bubble(s) and particle(s) surface(s)
by running at each time t the following steps :

1Note that (4) indeed also holds for m = 0 because u is divergence-free and u→ 0.



Step 1: From the knowledge at time t of the liquid domain D(t), one first computes the quantity
∇S · n on each surface Sm(t).

Step 2: One then solves at time t the relations (1)-(5) to get the unknown velocities U (n)(t) and
the fluid velocity u on each surface Sm(t).

Step 3: The liquid boundary D(t + dt) at time t + dt is obtained by moving between times t
and t + dt each surfaces Sm by exploiting the relation (6) and each solid surface Σn at the velocity
U (n)(t)e3.

One should note that for such a procedure the following issues are of the utmost importance:

(i) To accurately compute the local average curvature (σ · n)/2 on each surface Sm in Step 1.

(ii) To efficiently and accurately solve the Stokes problem (1)-(5) in Step 2.

(iii) To adequately select a time step at in Step 3.

This work introduces a suitable treatment to cope with the previous issue (ii).

3. Advocated method

This section presents a new procedure to appropriately solve the problem (1)-(5).

3.1 Auxiliary Stokes flows for cluster involving at least one solid particle.

As soon as N ≥ 1, each velocity U (n) occuring in (1)-(5) is unknown. Fortunately, it is possible to
determine U (1)(t), · · · , U (N)(t) prior to obtain the liquid flow (u, p) ! The trick consists in introducing,
for n = 1, · · ·N , auxiliary Stokes flows (u(n), p(n)) obtained without stress on each Sm and when each
solid surface Σq is motionless for q 6= m with the surface Σn of Pq which translates at the velocity e3.
In other words, the flow (u(n), p(n)) with stress tensor σ

(n) satisfies (1) and the following boundary
conditions

u(n) = δnqe3 on Σq for q = 1, · · · , N (7)

σ
(n) · n = 0 on Sm for m = 0, · · · ,M. (8)

In addition, one supplements (1), (7)-(8) with the additionnal conditions

∫

Sm(t)
u(n) · n dS = 0 on Sm for m = 0, ...,M. (9)

Denoting by ∂D the liquid boundary, the reciprocal identity [2] for the flows (u, p) and (u(n), p(n))
reads

∫

∂D

u(n) · σ · n dS =

∫

∂D

u · σ(n) · n dS. (10)

Enforcing the relations (5) by exploiting the aformentionned identity (10) and the boundary con-
ditions (2)-(3) and (7)-(8), one then arrives at the N -equation linear system

∑

q≥1

(

∫

Σq

e3 · σ
(n) · n dS

)

U (q)(t) = (ρ − ρn)Vn g

+
∑

m≥0

∫

Sm

u(n) · (ρg · x− pm + γm∇S · n)n dS for n = 1, · · · , N. (11)



Furthemore, the pressure pm is uniform in the bubble Bm which leads, in conjection with (5), to

∑

q≥1

(

∫

Σq

e3 · σ
(n) · n dS

)

U (q)(t) = (ρ − ρn)Vn g

+
∑

m≥0

∫

Sm

u(n) · (ρg · x + γm∇S · n)n dS for n = 1, · · · , N. (12)

It is possible (and here admitted) to prove, invoking the energy dissipation in Stokes flow, that
(12) is well-posed (i. e. presents a non-singular matrix). Note that, one solely needs to evaluate the
surface quantities u(n) on each Sm and σ

(n) ·n on each Σq to obtain the translational velocity U (q)(t)e3

of the particle Pq. As shown in the next subsection, those required key surface quantities u(n) and
σ

(n) ·n are calculated by inverting relevant boundary-integral equations on the entire liquid boundary
∂D.

3.2 Relevant boundary-integral equations

3.2.1 Three-dimensionnal formulation

For a Stokes flow (u, p) with stress tensor σ obeying (1) with prescribed values of the stress σ · n
on each Sm and of the velocity u on each Σn, one has the key coupled regularized boundary-integral
equations (see for instance [5]),

−8µπu(x0) +
∑

m≥0

∫

Sm

µ[u(x) − u(x0)] ·T(x,x0) · n(x)dS −
∑

n≥1

∫

Σn

G(x,x0) · σ · n(x)dS

=
∑

m≥0

∫

Sm

G(x,x0) · σ · n(x)dS for x0 on Sm (13)

and

∑

m≥0

∫

Sm

µ[u(x)−u(x0)] ·T(x,x0) · n(x)dS −
∑

n≥1

∫

Σn

G(x,x0) · σ · n(x)dS

= +8µπu(x0) +
∑

m≥0

∫

Sm

G(x,x0) · σ · n(x)dS for x0 on Σn (14)

where the second-rank tensor G and third-rank stress tensor T are defined as [3]

G(x,x0) =
I

|x− x0|
+

(x − x0) ⊗ (x − x0)

|x − x0|3
; (15)

T (x,x0) = −6
(x − x0) ⊗ (x − x0) ⊗ (x − x0)

|x− x0|5.
(16)

with I the identity tensor. Clearly, solving (13)-(14) permits one to get the unknown vectors u on Sm

and σ · n on Σn from the knowledge of u on Σn and σ · n on Sm.

3.2.2 Axisymmetric formulation

Since we restrict the analysis to the axisymmetric configuration depicted in Fig.1, we adopt cylin-
drical coordinates (r, φ, z) with r =

√

x2 + y2, z = x3 and φ the azimuthal angle in the range
[0, 2π]. We set u = urer + uzez = uαeα (with α = r, z), f = σ · n = frer + fzez = fαeα and
n = nre + nzez = nαeα and introduce the traces Ln of Σn and Lm of Sm in the φ = 0 half plane.



Integrating over φ the equations (13)-(14), then yields the equivalent coupled boundary equations

−8πuα(x0) +
∑

m≥0

∫

Lm

µ[uβ(x) − uβ(x0)]Cαβ(x,x0)dl −
∑

n≥1

∫

Ln

Bαβ(x,x0)fβnβ(x)dl

=
∑

m≥0

∫

Lm

Bαβ(x,x0)fβnβ(x)dl for x0 on Lm (17)

and

∑

m≥0

∫

Lm

µ[uβ(x) − uβ(x0)]Cαβ(x,x0)dl −
∑

n≥1

∫

Ln

Bαβ(x,x0)fβnβ(x)dl

= 8πuα(x0) +
∑

m≥0

∫

Lm

Bαβ(x,x0)fβnβ(x)dl for x0 on Ln (18)

for α = r, z, the differential arc length dl in the φ = 0 plane and the so-called single-layer and double-
layer 2× 2 square matrices Bαβ(x,x0) and Cαβ(x,x0) given in Pozrikidis [5]. Note that a summation
over β = r, z holds in (17)-(18).

3.2.3 Resulting boundary-integral equations for the axisymmetric Stokes flow problem

Dealing with our axisymmetric problem (1)-(4), we first evaluate for each axisymmetric flow

(u(n), p(n)) the needed vectors u(n) = u
(n)
α eα on each Sm and σ

(n) = f
(n)
β eβ on each Σq. We per-

form this calculation by inverting (17)-(18) for u
(n)
z = δnq and u

(n)
r = 0 on each Σq and σ

(n) ·n = 0 on
each Sm. Once both the velocity and stress vectors are known on each surfaces Σq and Sm, one then
obtains each velocity U (q)(t) by solving the linear system (12).

Finally, we gain the required velocity u = uαeα on each Sm by inverting one more time (17)-(18)
using the boundary conditions (2)-(3), i. e.

−8πuα(x0) +
∑

m≥0

∫

Lm

µ[uβ(x) − uβ(x0)]Cαβ(x,x0)dl −
∑

n≥1

∫

Ln

Bαβ(x,x0)fβnβ(x)dl

=
∑

m≥0

∫

Lm

Bαβ(x,x0)[ρg · x + γm∇S · n]nβ(x)dl for x0 on Lm (19)

and

∑

m≥0

∫

Lm

µ[uβ(x) − uβ(x0)]Cαβ(x,x0)dl −
∑

n≥1

∫

Ln

Bαβ(x,x0)fβnβ(x)dl = +8πU (n)(t)e3(x0)

+
∑

m≥0

∫

Lm

Bαβ(x,x0)[ρg · x + γm∇S · n]nβ(x)dl for x0 on Ln (20)

for α = r, z and γm uniform on each surface Sm. In summary, our approach consists, for N ≥ 1 solid
particle(s), in inverting N + 1 boundary-integral equations (17)-(18).

4. Numerical method

The coupled boundary-integral equation (17)-(18) are numerically inverted by appealing to the
following key steps (see for further details [4, 1]):

(i) First, the entire contour L = Ln ∪ Ln is divided into Ne curved boundary elements with the
L0 truncated free surface. Each boundary element has Nc collocation points spread with a uniform
distribution. An isoparametric approximation is used for the components u and f = σ · n on each
boundary element.



For the nodes located on Lm, the vectors U and Fd collect the unknown and prescribed components
of u and f . In a similar fashion, F and Ud are the vectors associated with the unknown and given
values of f and u at the nodes of the solid contours Ln. Finally, once the coupled boundary-integral
equations (17)-(18) are discretized, these vectors satisfy indeed the 2NeNc-equation linear system

U + C ·U − B1 ·F = −B2 ·Fd for x0 on ∪m≥0Lm, (21)

C · U− B1 · F = −Ud + B2 ·Fd for x0 on ∪n≥1Ln. (22)

The matrices B1, B2 and C involve integrations of the quantities Bαβ and Cαβ introduced in §3.2.2
over the entire contours ∪m≥0Lm and ∪n≥1Ln. .

(ii) One finds the solution (U,F) of (21)-(22) by Gaussian elimination.

(iii) The shape of each surface Sm and the position of each Σn if N ≥ 1 is tracked in time using
the boundary condition (6) and solving the equation dx/dt = u(x, t) for each nodal point. A Runge-
Kutta-Fehlberg method performs this task using a time-step selected by controlling the errors for the
second and third-order schemes. Furthermore, as the distance between two surfaces tends to zero, the
adjusted time step is then very small and the computations is stopped.

5. Conclusions

Preliminary numerical results will be exposed at the oral presentation for a cluster made of one
bubble and one spherical solid particle. Furthermore, this particular case will be dicussed and com-
pared with the two-bubbles configurations studied in [4, 1]
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