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Abstract. The axisymmetric gravity-driven migration of two interacting bubble and solid particle
near a free surface is examined. The solid particle location and the bubble and free surface shapes
are numerically tracked in time. This is done by solving at each time step a steady Stokes problem
(with mixed-type boundary conditions) owing to a boundary approach which makes it possible to
reduce the task to the treatment of two boundary-integral equations on the unbounded liquid domain
boundary. The theoretical material and the relevant numerical implementation, valid for a bubble
and a free surface with either equal or unequal uniform surface tensions, are briefly described and
preliminary numerical results for a nearly-neutrally buoyant solid sphere interacting with a bubble
and a free surface with equal surface tensions are presented.

Introduction

In basic applications (geophysics, glass process,...) it is important to determine the gravity-driven
migration of clusters of non-rigid bubbles immersed in a liquid near a free surface. Such a task is
involved since the bubbles and free surface shapes are unknown and time-dependent. Moreover, the
liquid flow is in general governed by the unsteady Navier-Stokes equations. Fortunately, for small
“enough” bubbles one can neglect inertial effects therefore arriving at a much more tractable creeping
flow quasi-steady problem. Within this convenient framework, Pigeonneau & Sellier [1] recently pro-
posed a boundary approach to efficiently deal with axisymmetric configurations obtained when the free
surface and the bubbles share the same axis of symmetry aligned with the imposed uniform gravity
g. Later Guémas et al. [2] extended [1] to the case of bubbles and free surface not necessarily having
the same surface tension. However, one also encounters in practice clusters made of both bubbles
and solid particles. For instance, in liquid glass nearly neutrally buoyant solid impurities coexist with
bubbles and it is important to investigate to which extent such solid particles affect the migration of
the bubbles. To deal with this issue, still in axisymmetric configurations, Guémas et al. [3] proposed
a theoretical boundary formulation for clusters made of M ≥ 1 bubble(s) and N ≥ 1 not-necessarily
spherical solid particles consisting in (numerically) inverting N + 1 relevant boundary-integral equa-
tions on the liquid domain boundary (i. e. the free surface and the cluster’s boundary). This paper
presents preliminary numerical results for a neutrally buoyant solid sphere interacting with one bubble
and a free surface having identical surface tensions.

Theoretical formulation and adopted boundary procedure

This section briefly gives the governing problem and the relevant bondary-integral equations em-
ployed at each time step for one bubble interacting with one solid particle (case M = N = 1). For
further details the reader is directed to where the theory is presented for the general case of a collection
of M ≥ 1 bubble(s) and N ≥ 1 solid particle(s).

Axisymmetric governing Stokes flow problem

We consider a solid particle P and a bubble B immersed in a Newtonian liquid, with uniform
viscosity µ and density ρ, migrating under the action of a uniform gravity field g = −ge3 towards a



free surface. At time t the solid has boundary Σ(t), the bubble has surface S1(t) with uniform surface
tension γ1 and the free surface with uniform surface tension γ0 is denoted by S0(t). As sketched in
Figure 1, all surfaces moreover admit the same axis of revolution (0, e3).
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Figure 1: Two interacting bubble B and solid sphere P ascending near the free surface S0(t). At initial
time t = 0 the bubble is spherical with radius a while the solid particle has radius a/2. The plotted
shapes are the computed ones at normalized time t = 1.90 for Bo = ρga2/(3γ1) = 2 (see also Figure
2 (c) in the section devoted to the numerical results).

At initial time t = 0 the free surface is the x3 = 0 plane with pressure p0, the bubble is spherical
with radius a and all surface are separated. At each time t > 0 the axisymmetric flow in the liquid
domain D(t) has pressure p+ρg.x+p0 and velocity u with typical magnitude V > 0. The solid particle,
with uniform density ρs and length scale as ≤ O(a), translates (no rotation for symmetry reasons) at
the velocity U(t)e3 whereas the bubble has constant volume V and constant pressure p1. Assuming
that Re = ρV a/µ ≪ 1, the flow (u, p) with stress tensor σ then obeys the following quasi-steady
Stokes flow problem

∇ · u = 0 and µ∇2u = gradp in D(t), (u, p) → (0, 0) as |x| → ∞, (1)

σ · n = (ρg · x+ γ0∇S · n)n on S0(t), σ · n = (ρg · x− p1 + γ1∇S · n)n on S1(t), (2)

u = U(t)e3 on Σ(t) (3)

where n denotes the unit normal on the liquid domain boundary directed into the liquid and H =
[∇S · n]/2 designates the local average curvature. The solid particle with volume Vs has negligible
inertia and therefore is to be force-free. Accordingly, one requires the additional condition

∫

Σ(t)
e3 · σ · ndS = (ρs − ρ)Vs g. (4)

In a similar fashion, the bubble is also force-free. Such a property reads
∫

S1(t)
e3 · σ · ndS = −ρVg.

It is however already satisfied by integrating on the bubble surface S1(t) the boundary condition (2)
there (since γ1 is uniform). Finally, since the bubble has time-independent volume, (1)-(4) is also
supplemented with the key relation

∫

S1(t)
u · n dS = 0. (5)

In summary, one has to solve for the unknown flow (u, p) and solid particle velocity U(t)e3 the equa-
tions and boundary conditions (1)-(3) in conjunction with the requirements (4)-(5).

Auxiliary Stokes flow and boundary method



As shown in [3], a trick actually permits one to determine the velocity U(t)e3 without solving the
entire problem! It appeals to the auxiliary Stokes flow (u′, p′), with stress tensor σ′, obeying (1) and
the following boundary conditions and relation

σ
′ · n = 0 on S0(t) ∪ S1(t), u′ = e3 on Σ(t),

∫

S1(t)
u′ · n dS = 0. (6)

As seen in [3], once the resulting traction σ
′ ·n on Σ(t) and velocity u′ on the surface S0(t)∪S1(t) are

gained, the velocity U(t) is then obtained from the relation (easily deduced from the usual reciprocal
identity [4])

[

∫

Σ(t)
e3 · σ

′ · n dS

]

U(t) = (ρ− ρs)Vs g +

1
∑

m=0

∫

Sm(t)
u′ · (ρg · x+ γm∇S · n)n dS. (7)

Accordingly, it is sufficient to successively obtain the unknown velocity on S0(t)∪S1(t) and the surface
traction on the solid particle boundary Σ(t) for two similar problems consisting of (1)-(3) and (5):
the first one for the auxiliary flow (u′, p′) and the second one (after calculating U(t) from (5)) for the
liquid flow (u, p). This is done by solving two coupled boundary-integral equations and the relation
(5). More precisely as it is shown in [3], one has here to solve the

−8µπu(x) + µ

∫

S0(t)∪S1(t)
[u(y) − u(x)] ·T(y,x) · n(y)dS −

∫

Σ(t)
G(y,x) · [σ · n](y)dS

=

∫

S0(t)∪S1(t)
G(y,x) · [σ · n](y)dS for x on S0(t) ∪ S1(t), (8)

µ

∫

S0(t)∪S1(t)
u(y) ·T(y,x) · n(y)dS −

∫

Σ(t)
G(y,x) · [σ · n](y)dS

= 8µπu(x) +

∫

S0(t)∪S1(t)
G(y,x) · [σ · n](y)dS for x on Σ(t), (9)

∫

S1(t)
u · n dS = 0 (10)

where the second-rank velocity G and associated third-rank stress tensor T are defined in [4].

Implementation and preliminary numerical results

This section gives a few informations on the employed numerical strategy and also provides numer-
ical results for a neutrally buoyant solid sphere interacting with one bubble and a free surface having
identical surface tensions.

Implementation

Since the problem is axisymmetric, cylindrical coordinates (r, φ, z) with r =
√

x2 + y2, z = x3
and φ the azimuthal angle in the range [0, 2π] are employed. The traces Lm of Σm for m = 0, 1 and
L of Σ in the φ = 0 half plane are also introduced. Then, performing an integration of the boundary
problem (8)-(10) over φ yields another boundary problem involving the previous contours L0,L1 and
L. This latter problem is solved by a boundary element technique after truncating the unbounded
contour L0. As explained in [1], the numerical treatment of the resulting linear system appeals to a
discrete Wielandt’s deflation method.

In practice, we track in time the (truncated) free surface S0(t), the bubble surface S1(t) and the
solid particle boundary Σ(t) by running a Kutta-Fehlberg algorithm. At time t, the knowledge of
those surfaces makes it possible to calculate the curvature there, then the solid sphere velocity U(t)
and finally the liquid velocity u on the liquid domain boundary. For a time step ∆t the new surfaces
at time t+∆t are obtained by advancing the fluid boundary with the displacement vector ∆t(u.n)n.



Numerical results for a neutrally-buoyant solid sphere

We further present numerical results for a solid sphere with uniform density ρs and radius as
interacting with a bubble and a free surface of identical surface tensions γ1 = γ. Morevover, as it
appears in liquid glass, the sphere is neutrally buoyant with ρs/ρ = 0.94 (a value encountered in glass
process). When distant from the sphere and the free surface the bubble B is spherical with radius a
and migrates at the velocity V e3 (the one obtained in an unbounded liquid) given by V = ρga2/(3µ).
Note that because its volume is preserved as time evolves B has length scale a.

Henceforth, we take 2a and 2a/V as length and velocity scale, respectively. Therefore, the nor-
malized time t is t = ρgat/(6µ). Finally, the Bond number Bo which compares at the bubble surface
the “gravity” term ρg.x with the capillary “term” γ1∇S · n is here defined as Bo = ρga2/(3γ1).

Let us first take as = a/2 and Bo = 2 and put at initial time t = 0 the solid sphere between the
spherical bubble and the undisturbed free surface, the initial gaps between the sphere and each other
surface being equal to a.
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Figure 2: Computed free surface, bubble and solid sphere locations and shapes for Bo = 2 at different
normalized times: t = 0 (a), t = 0.120 (b), t = 1.90 (c) and t = 2.72 (d).

As seen in Figure 2, two different regimes are found as time evolves. In a first “fast” regime the
bubble ascends faster than the solid sphere and the sphere-bubble gap therefore decreases faster than
the gap between the sphere and the free surface whereas the free surface is weakly deformed (compare
Figure 2(a) with Figure 2(b)). In a second “slow” regime, illustrated in Figure 2(c) and Figure 2(d),
the bubble and the sphere slowly migrate towards the free surface which now experiences a slight
deformation due to the combined action of the sphere and the bubble. In this regime liquid films take
place below and above the solid sphere with the film below being the thinner one.



Not surprisingly, the computed shapes also depend upon the free-surface and bubble surface ten-
sions γ1 = γ0. This is illustrated by plotting in Figure 3 the obtained shapes for Bo = 1, 2 at different
normalized times t starting with the same initial configuration.
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Figure 3: Compared shapes obtained at three different normalized times t0 = 0, t1 = 1.19 and t2 for
as = a/2 at two different Bond numbers. (a) Bo = 1 and t2 = 2.58. (b) Bo = 2 and t2 = 2.72.

When the surface tension is weaker (case of Bo = 1 depicted in Figure 3(a)) the bubble is less
“flexible” and thus speeds up more the solid sphere (compared the sphere locations at time t = 1.20 in
Figure 3(a) and Figure 3 (b)) during the previously-distinguished “fast” regime. In addition, for this
ratio as = a/2 the deformation of the free surface at t = 1.20 appears to be larger for Bo = 1 than for
Bo = 2 although the surface tension there is larger. Not surprisingly, during the second “slow” regime
in which the drainage of both thin films really takes place the free surface deformation for Bo = 2
finally is more pronounced than for Bo = 1.

In absence of sphere one would obtain (see [1]) a larger deformation of the free surface at each
normalized time t for Bo = 2. This actually also occurs when the sphere is sufficiently small compared
to the bubble. We illustrate this behaviour in Figure 4 for the case for as = a/4.
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Figure 4: Compared shapes obtained at three different normalized times t = 0, t = 1.19 and t = 2.03
for as = a/4 at two different Bond numbers. (a) Bo = 1. (b) Bo = 2.

Conclusions

Our preliminary results for a nearly neutrally buoyant sphere reveal that the obtained final con-
figuration (free surface shape) is strongly sensitive to the sphere size (compared to the bubble) and



to the Bond number. Additional results will be given and discussed at the oral presentation with
attention also paid to the case of inequal free surface and bubble surface tensions γ0 and γ1.
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