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Abstract 
 
Forecasting the total photovoltaic (PV) power generated in the control areas of the 
transmission system operators (TSO) is an important step in the integration of the large 
amounts of PV energy into the German electricity supply system. A standard approach 
for evaluating the regional PV power generation from weather forecast consists in 
upscaling the forecast of a limited set of reference plants to the complete area. Previous 
studies shown that this method can lead to large errors when the set of reference plants 
has different characteristics or weather conditions than the set of unknown plants. In 
this paper, an alternative to the upscaling approach is proposed. In this method, called a 
probabilistic regional PV model, an average PV model with a very limited number of 
inputs (two module orientation angles) is used to calculate the power generation of the 
most frequent module orientation angles. The resulting power values are finally 
weighted according to their probability of occurrence to estimate the actual power 
generation. The implementation of this model thus only requires information on the 
location and peak capacity of the plant installed in a region and no PV plant 
measurement is necessary. The proposed method has been evaluated against the 
estimate of the total power generation provided by the German TSOs, which shows that 
an RMSE ranging from 4.2 to 4.9% can be obtained with this method using on IFS 
meteorological forecast. The regional power forecasted with the probabilistic approach 
was also compared to the day-ahead forecast disseminated by the TSO. This analysis 
shows that the forecast evaluated with the proposed approach has an RMSE less than 
0.5% higher than the reference forecasts. This is considered a promising result given 
that the forecast evaluated with the probabilistic model is based on one single weather 
model and that – at the exception of the model calibration - no statistical post-
processing method is used to optimize its performance. 
 

1. Introduction 
 
Over the last years, Germany has witnessed a rapid development of its photovoltaic (PV) 
capacity. In the beginning of 2016, more than 1.5 million PV plants with a total installed 
capacity of 36.66 GWp were connected to the German grid. With Germany having an 
energy demand varying between 35 and 75 GW [1] and a minute reserve power (tertiary 
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control reserve) of -5.5 and +7 GW [2], the accurate consideration of the PV power 
generation is thus crucial for the secure and economical operation of the power system. 
 
For the integration of the large amount of PV power into the electricity supply system, 
the transmission system operators must assess and forecast the total PV power 
generated in their control areas. Since only a limited number of power measurements 
are available, an exact determination of the total power generated by the PV plants 
installed in a region is not possible. The actual value of the power generated by the 
numerous PV plants installed in a control area must instead be estimated using the 
limited information available for each PV plant (peak capacity, location, time of 
installation). This estimate, which is referred to in this paper as an estimate of the 
regional PV power generation, is very important, as it is used for the grid monitoring and 
as a basis for the PV power forecast. 
 
The upscaling algorithm is currently the standard approach in Germany for estimating 
the regional PV power generation. The principle of the upscaling method is to assess the 
normalized power generation of any PV plant installed in a region by a spatial 
interpolation of the normalized power of a set of reference plants. This approach has 
been described by e.g. Lorenz et al. [3] and Schierenbeck et al. [4]. Saint-Drenan et al. 
conducted a detailed analysis of the sources of error of the upscaling method in [5], 
which shows that the uncertainty of this method results mainly from two issues: 

- The spotty acquisition of the irradiation field by a limited number of point 
measurements, and, 

- Differences between the characteristics of the reference and uncharacterized PV 
plants. 

A methodology was proposed by Shaker et al. to identify the most adapted set of 
reference plants by a mixture of k-means clustering and PCA and to derive an estimate 
of the total PV power generation based on measurements from this set of reference 
plants using linear regression [27] or fuzzy-logic operators [28]. A prerequisite for the 
implementation of this approach is however that power measurements of all plants 
installed in the considered region are available over a training time period of at least 4 
months. This requirement makes the implementation of this method difficult when the 
availability of PV power measurements is limited.  
 

An alternative approach to the upscaling method and its modified versions [27], [28] 
with the aim of mitigating the two issues mentioned above without the need for PV 
power measurements is proposed in [6]. This method, called probabilistic approach, is 
based on two main ideas. Firstly, given that meteorological data is available region-wide 
(e.g. from NWP model or satellite derived irradiation), the irradiation and temperature 
of each PV plant installed in the considered region can be considered explicitly instead 
of interpolating data from a set of reference plants. Secondly, values derived from the 
statistical analysis of numerous PV plants are used as the parameters of a PV plant 
model, rather than considering only the parameters of the set of reference plants. The 
probabilistic approach thus avoids the first issue of the upscaling method by efficiently 
using the meteorological data available for the power estimation of each plant installed 
in the considered region. The problem of representativeness of the set of reference 
plants is also mitigated by the probabilistic approach by using statistical values for the 
model parameters. 
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A first validation of this approach is proposed in [6], where the results of the upscaling 
and probabilistic approaches are compared for several hundreds of PV plants located in 
Southern Germany. This analysis shows that the performance of the probabilistic 
approach is slightly better than that of the upscaling approach when the number of 
reference plants is high, and that the probabilistic approach outperforms the upscaling 
method when the number of reference plants is low. It however fails to clarify to what 
extent the results can be generalized for different regions, and especially for the control 
areas of the transmission system operators (TSOs), for which regional PV forecast are 
needed by grid operators. One major goal of this paper is thus to evaluate and analyse 
the performances of the probabilistic approach at TSO level, which is highly relevant for 
the grid integration of PV electricity. 

In contrast to the work presented in [6], where power measurements of several 
hundreds of PV plant has been used to validate the probabilistic approach, assessing the 
performances of this method on control areas raises the problem of choosing the true 
value of the total power generated. Indeed, as previously mentioned, only a limited 
subset of the plants is measured and the access to these measurements is very difficult 
for most stakeholders. As a result, it is impossible to get the actual value of the 
aggregated power generation on that regional scale and the only possibility is to use a 
best guess, which has a given uncertainty. It was therefore decided to assess the 
performances of the proposed approach against TSO estimates of the PV power 
generation, which can be considered as the best estimate of this regional power 
generation. These values are evaluated by upscaling power measurements from 
numerous PV power plants installed in their control area.  

The use of TSO estimates raises a number of questions related to the relevance of the 
validation presented in this paper. Since the reference power values are estimated by an 
upscaling method, it is questionable to which extend it is relevant to propose an 
alternative approach to the upscaling? To answer this first question, it is important to 
note that the power measurements used by the German TSOs are - to date - not 
available to any forecast provider. It is thus not possible to use the same information 
than the TSO for forecasting purposes. A forecast provider has thus to develop its 
forecast approach independently from the TSO by e.g. collecting its own power 
measurements. The access to power measurements being in Germany extremely 
difficult, this prerequisite can noticeably limit the number of companies being able to 
propose a forecast product. The methodology proposed in this paper being 
implementable without power measurements, its validation may be highly relevant to 
stakeholders interested by PV power forecast but without access to measurements. A 
second question may be what is the value of the validation proposed in this paper since 
the actual aggregated power generation is not known and an estimate is used as true 
value? In a rigorous scientific context, the relevance of a comparison of the output of the 
proposed method with the TSO estimates is unclear since the actual value is unknown 
and both estimates have a given uncertainty. However, the chosen validation reflects 
the situation faced by forecast providers during the evaluation of their model output: 
the performances of a PV power prediction are assessed by TSO using their estimates. 
Though the validation proposed in this paper is of limited relevance from a scientific 
perspective, it is nevertheless pertinent in an industrial context. 
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This paper is structured in three main parts. The first part describes the motivations 
and the principle of the probabilistic approach already introduced in [6] (section 2). The 
difference between the TSO estimates and the output of the probabilistic approach are 
analysed in the second part (section 3). The results are finally summarized and 
discussed in the concluding part of this paper (section 4). 

2 Approach 

2.1 Motivation 
 
The motivation for the development of the probabilistic approach is to design a method 
mitigating the two problems identified in the upscaling method: The uncertainty 
resulting from the acquisition of the meteorological information by a coarse network of 
reference plants and the lack of representativeness of the set of reference plants.  
 
The mitigation of these two problems by the probabilistic approach is based on two 
main ideas, (a) the efficient use of available meteorological data and (b) the use of 
statistical information on the PV plant parameter for the calculation of the PV power. 
 
a) Efficient use of available meteorological data 
As previously mentioned, one issue with the upscaling method is that the meteorological 
fields are only assessed by a limited number of points (set of reference PV plants). This 
approach is justified when an estimate is made from power measurements but when a 
NWP-based power forecast is made this approach is suboptimal since meteorological 
information is available region-wide and thus for each single plant installed in the 
considered region. Based on this consideration, the first idea behind the probabilistic 
approach consists of using all weather information available instead of only that at the 
locations of the reference PV plants. 
 
b) Use of statistical information on PV plant parameters for the calculation of PV power  
The second issue of the upscaling method is that an error may occur when non-
representative PV plants are used as reference plants. Lorenz and Heinemann addressed 
this issue in [3]: “In order to determine a suitable set of representative systems, in a first 
step the basic characteristics of the complete set of systems in an area have to be 
described”. The recommendation of Lorenz and Heinemann is then to select a subset of 
representative reference plants among a larger set of plants using the characteristics of 
the complete set. This approach is problematic when the set of plants with available 
measurements is limited. Alternatively, if statistical information on the different 
parameters of a PV plant is available, it may be advantageous to directly use it for the 
calculation of the PV power. The second idea pursued in the development of the 
probabilistic approach is therefore to use statistical data on the parameters of PV plants 
for the calculation of the PV power, which should guarantee that the parameter used 
well describes the complete set of systems in an area.  
 
A preliminary step to the implementation of the two ideas described above is the 
selection of a PV plant model. Here, the choice of the model has to compromise between 
a high accuracy and a limited number of parameters. The motivations for the choice of 
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the model as well as a description of the different parts of the model are given in section 
2.2.  
 
To implement the probabilistic approach, a statistical analysis of the model parameter is 
then necessary. At this step, one must take care that the data assessed during the 
statistical analysis can be used for simulating a PV plant. In particular, the nonlinearity 
of the model with the input parameter is taken into consideration. For example, the PV 
power simulated with a southward orientation is not equal to the mean of the PV power 
simulated with an eastward and westward orientation. To cope with this nonlinearity, 
the approach chosen is a statistical analysis to identify the parameter sets (Ai)i=1...n that 
occur frequently, as well as their probability (wi)i=1...n . With this information, the power 
production of a PV plant can be estimated according to the following equation: 
 

              ∑                                  

 

   

 (1) 

 
Where 
Ppv(x,t)  is an estimate of the power produced at time t by a PV plant located at x [kW] 
Ppeak  is the peak capacity of the PV plant [kWp] 
Ghor(x,t) is the global horizontal irradiance at time t and location x [W/m2] 
Tair(x,t) is the air temperature at time t and location x [°C] 
fPV(…) represents the PV model used to calculated the normalized PV power 

[kW/kWp] 
Ai  represents the set of plant parameters needed by the PV model  
wi  is the probability of occurrence of a parameter set Ai 
 
The choice of the term “probabilistic approach” for the method described in this section 
has been motivated by Eq. 1. Though a single (deterministic) power value is calculated 
for each plant, the proposed methodology is very similar to a probabilistic approach 
since all possible configurations are considered separately, resulting in an ensemble of 
estimates of the PV power production. A deterministic value is then evaluated from this 
ensemble by a weighted average of the ensemble members, the weights being the 
probabilities of occurrences of each scenario, which is evaluated in the statistical 
analysis. 
 
The goal of the statistical analysis is therefore to identify sets of PV plant parameters Ai 
and their probability of occurrence wi. The database used for this purpose as well as for 
the statistical analysis of each model parameters is presented in section 2.3. A detailed 
description of the calculation steps of the probabilistic model is finally given in section 
2.4. 

2.2 PV plant model selection 
 
The first step needed for the implementation of the regional probabilistic PV model is 
the selection of a PV plant model. A model giving the output PV power generation as a 
function of the time, location, global horizontal irradiation and air temperature is 
needed. With the PV model being the cornerstone of the probabilistic approach, its 
accuracy directly impacts the performance of the algorithm. Under this perspective, the 
most accurate model should be preferred. Nevertheless, the choice of an accurate but 
too detailed model would imply the need to make a statistical analysis of some 
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parameters that are difficult to obtain. In this case, the situation can occur where a 
detailed model used with statistical information of low quality results in a lower quality 
than would a simpler model. With regards to this, the choice of a robust model with a 
limited number of parameters should be preferred. A compromise is thus required 
between minimizing the amount of information on the PV plant needed by the model 
and maximizing the model accuracy. 
 
The model selection is based on the work conducted by Saint-Drenan [6], where a 
sensitivity analysis revealed that the model parameters to which the PV power is the 
most sensitive are the module orientation angles and the power curve. In this previous 
work, a statistical analysis of power curves of several hundreds of PV plants also showed 
that large differences exist among single PV plants but that the difference between 
average power curves evaluated for difference classes of peak power is very small. 
Accordingly, we assume that a constant power curve can be used when the aggregated 
power of a large number of PV plants is evaluated. Based on this finding, the model used 
in [6] has been simplified. The different calculation steps of the simplified model used in 
the present analysis are described below. 
 
With local shading being neglected, the plane of array (POA) irradiation can be 
estimated from the global irradiation and the sun position using a set of models 
commonly used for this purpose [7][8]. Here, the separation and transposition models 
proposed by Skartveit et al. [9] and Perez et al. [10] are each respectively used for 
estimating the plane of array irradiation from the global horizontal irradiation. The 
ground albedo is assumed to be constant and equal to 20%. The module azimuth and tilt 
angle are the two PV plant information required for this first step.  
 
To estimate the POA irradiation effectively contributing to the photovoltaic effect 
(effective irradiation), optical losses are calculated using the formulation of Martin and 
Ruiz [11], where the fitting coefficients are assumed constant and fixed to the set of 
values representative for crystalline modules provided by the authors.  
 
The module efficiency is evaluated using the model proposed by Beyer et al. in [12], 
which requires four parameters. Three parameters describe the dependency of the 
module efficiency with the POA irradiation for a module temperature equal to 25°C. The 
fourth parameter quantifies the temperature dependency of the module efficiency (Ross 
parameters), which is assumed to be linear [13]. The reference values of the Beyer et al 
model proposed by Lorenz et al in [14] are used for the simulation of the module 
efficiency (Figure 1 left) and a constant value equal to 0.030 °Cm2/W is assumed for the 
parameter of the Ross model. Based on the sensitivity analysis conducted in [6], the 
ohmic losses occurring in the DC cables are neglected. Further loss factors taking place 
in the DC part of the PV plant such as module mismatch, soiling, and shading are also 
neglected and it can therefore be assumed that the specific power calculated with the 
module model is equal to that fed into the inverter. 
 
The efficiency of the inverter is evaluated using the model proposed by Schmidt et Sauer 
[15]. In this model, the inverter losses are assumed to be the sum of three loss terms 
(self consumption, voltage drop and ohmic losses), which are quantified by three 
parameters. The database of PV inverter provided by Photon [16] is used for the 
determination of the standard inverter parameters. Here, the parameters of the Schmidt 
et Sauer model corresponding to the mean power curve of inverters with an euro-
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efficiency comprised between 75 and 90% is used as reference value for the PV inverter 
(Figure 1 right). Finally, the inverter model needs to consider the sizing ratio, which is 
equal to the rated power of the inverter divided by the module peak power. A constant 
sizing ratio of 0.85 is assumed. 
 

  
Figure 1: Left: reference PV module efficiency from [14]. Right: reference PV inverter efficiency evaluated 
from the Photon inverter database [16]. 

 
With the selected model, besides from the coordinates of the plant, the time, the global 
horizontal irradiance and air temperature which can be considered to be known (see 
section 1), the two parameters of the PV model are the module azimuth and tilt angles. 
As statistic analysis of these two angles is thus conducted in the following section to 
implement the regional model as defined in equation (1). 
 
With the different loss factors being neglected, it is clear that the selected PV plant 
model reflects the power generation of a PV plant in optimal conditions. It can thus be 
expected that power values simulated with the model described previously over-
estimate the actual power generation of many plants. This problem is addressed by 
calibrating the result of the regional model to the targeted power values. The constant 
derating factor fitted in this calibration accounts for the aggregated effect of the different 
neglected losses as well as for the difference between the performance ratios obtained 
with the model and those of the plants installed in the consideration [17]. 
 
It is also assumed here that a PV plant has a single fixed orientation. Special cases, where 
a PV plant is made of module on different orientations or where the modules are 
mounted on a solar tracker are thus not considered. It is assumed that the disregard of 
these special cases is not problematic for the application addressed in this work, as the 
large majority of plants have – or at least can be simulated with - a single fixed 
orientation. Finally, we have not considered the effect of inverter clipping on the power 
generation. Though this effect may have significant effect on single plants, we expect 
that this effect is smoothed by the aggregation of power generation of numerous plants. 
 
Finally, it is worth mentioning that the effect of module degradation on the PV power 
generation is not considered in the chosen model. This effect has been intentionally 
omitted due to the uncertainty on the ageing rate [18][19]. We expect pragmatically that 
the effect of ageing is limited by the calibration procedure previously mentioned, 
whereas it is clear that the degradation occurring between the time period used for the 
calibration and that used for the validation will bring about an estimation error. A better 
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consideration of this loss mechanism may be considered in a future development of the 
proposed approach. 
 

2.3 Estimation of the weights of the reference configurations (module orientation 
angles) 

The two parameters of the PV plant model introduced in section 2.2 being the module 
azimuth and tilt angle, the goal of the present section is to identify the most frequently 
occurring values of this pair of angles as well as their frequency of occurrence for the 
implementation of the regional PV power model described in equation (1). For this 
purpose, a database including the peak power, location and orientation angles of more 
than 35 000 plants is used. This database is resulting on the one hand from the 
collection of plant meta-information publicly available on the internet [20][21][22] and 
on the other hand from the characterisation of several hundreds of plants from 
historical data using the parameter estimation approach described in [23]. A detailed 
description of this database is available in [6]. 
 
Since characteristics of PV plants are known to be different for large and small plants [3], 
the dependence between the tilt angle and the nominal capacity was first tested by 
plotting all values of the tilt angles contained in the database against the corresponding 
nominal capacities (grey dots in Figure 2). Due to the different order of magnitude of the 
nominal PV plant capacity, the data are displayed with a semi-log scale. In order to 
better visualize the dependency between the two parameters, bin average and standard 
deviation are also represented (red and blue lines, respectively). The width of the bins is 
constant in the logarithmic scale. 
 
A clear dependency between the tilt angle and the size of the PV plant (nominal 
capacity) can be observed. For PV plants smaller than 10 kWp, the bin-averages of the tilt 
angle increases from 31 to 35°. Between 10 and 100 kWp, bin averages of the tilt angle 
decrease from 32° to 16° and remain relatively constant until 1000 kWp. While the 
dependency of the average tilt angle with the nominal capacity is continuous until 1000 
kWp, a strong discontinuity can be observed at 1000 kWp: the average tilt angle included 
in the classes 600-1000 and 1000-2000 kWp are 17° and 26° respectively. This 
discontinuity is also observable in the scatter points. The bin-average of the tilt angles 
for nominal capacity values greater than 1000 kWp is relatively constant and close to 26°. 
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Figure 2: Scatter plot of the tilt angle against the PV plant nominal capacity. Grey points: all values; red 
lines: bin averages; blue lines: standard deviation for each bin.  

 
In order to quantify the statistical dependency between the tilt angle and the size of a PV 
plant, 10 classes of nominal capacity were chosen to reflect the trend of the bin averages 
of the tilt angle observed in Figure 2 and to encompass the maximum number of values 
per class. Probability density distributions of the tilt angles have then been evaluated for 
each class. The results are displayed in Figure 3, where the colours of the different lines 
correspond to different classes of nominal capacity.  
 

  
Figure 3: Probability density distribution of the tilt angle for different classes of the nominal PV plant 
capacity (line colours) 

 
The trend observed in the Figures 2 and 3 can be explained as follows. For small to 
medium plants, PV modules are directly mounted on building roofs so that the tilt angle 
is determined by the roof inclination of the building. In contrast, large plants are more 
frequently mounted on a rack system with an optimal tilt angle. This explains why the 
tilt angle is suboptimal for small plants but becomes optimal, as plants get larger. A more 
detailed analysis of the effect of the plant size on the module tilt angle can be found in 
[6]. 
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The calculated probability distributions of the tilt angles represented in Figure 4 shows 
the importance of considering the size of the PV plants when estimating the statistical 
properties of the module orientation angles. The displayed values are however not 
sufficient for implementing the model given in Equation 1 since the frequency of 
occurrence for each combination of tilt and azimuth angle is necessary. A joint 
probability distribution of the two module orientation angles has thus been evaluated 
for each class of the peak capacity (Figure 4). For this purpose, azimuth angles ranging 
from -90 to 90° with a step of 5° and tilt angles ranging from 0 to 60° with a step of 5° 
have been considered.  
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Figure 4: Joint probability distributions of the module orientation angles for 10 classes of 
PV plants 

2.4 Conclusion 
The set of model parameter (Ai) introduced in Equation 1 includes the 432 combinations 
of tilt and azimuth angles considered for the calculation of the joint probability 
distributions (see Figure 4). This set of parameter is the same for all plant. The weights 
wi introduced in Equation 1 are the probabilities of occurrence displayed in Figure 4. 
According to the results described in section 2.3, the set of weights (wi) will be different 
depending on the size of the PV plant (i). It is thus necessary to differentiate the PV 
plants installed in the considered region according to their peak capacity when 
implementing equation 1 for the estimation of the regional PV power generation. This is 
possible in Germany using the register of RES plants [24], where the location and peak 
capacity of each plant is available. 

3 Implementation and validation of the probabilistic model 

3.1 Experimental setup 
The proposed methodology is validated against the estimates of the total PV power 
generation of the four Germany transmission system operators in their control area. 
Time series of the total PV power generation with a time resolution of 15min have been 
collected on the websites of the four German TSOs [23] for the years 2014 and 2015. 
These data are estimates of the actual PV power generation made by the TSOs by 
generally upscaling the power measurements of a set of reference plants. Data of the 
year 2014 are used for the calibration of the model (section 3.2) and data for the year 
2015 for the model validation (section 3.3). It would have been optimal to use the actual 
power generation instead of the estimates provided by the TSO for the validation. 
Unfortunately, the numerous plants installed in Germany being not measured, the true 
value is not available and TSO data represent the best guess of the total PV power 
generation. Though this approach makes a definitive conclusion on the performance of 
the proposed model difficult (a given uncertainty can be expected for the TSO estimates), 
it is representative of a real-world situation. Indeed, TSOs evaluate the skill of their 
forecast against their estimate. 
 
The location and peak capacities of all plants installed in Germany have been collected 
from the register of plants funded by the German renewable energy act [22], which 
provides the plant locations (x) and the installed capacity (Ppeak,) in Eq. 1. The weights 
(wi) are chosen under consideration of the installed capacity of each installed plant 
using the results of the statistical analysis presented in section 2.3. 
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Since day-ahead forecast is one of the most important applications of regional model for 
the integration of the PV energy in the electricity supply system, we decided to use NWP 
forecast data for the global horizontal irradiation and air temperature needed for the 
implementation of Equation 1. We used the 2-meter temperature and the solar surface 
radiation downwards parameter from the IFS model (ECMWF) for each plant location 
listed in the RES database. These parameters have been extracted from the model run 
starting at 00:00 and for a time lead comprised between 24 and 48 hours. The two 
meteorological quantities have then been linearly interpolated to match with the time 
resolution of the TSO estimates. 
 
Since a day-ahead forecast is evaluated with the proposed methodology, publicly 
available day-ahead forecast provided by the German TSOs have also been collected for 
the year 2015, which allows a comparison of the forecast error obtained with the 
proposed methodology with that of a third party (reference). This comparison is 
conducted in section 3.3. 
 
Since the effects of snow and shading are not considered in the model presented in 
section 2, the calibration and validation are conducted without winter months (April to 
October of the respective years).  

3.2 Model calibration 
The goal of the model calibration is to determine a derating factor accounting for the 
different loss processes neglected in the model selection. This derating factor also 
accounts for systematic modelling errors. Though this step is motivated by the selection 
of the model in section 2.2, it can also be considered as a model output statistic aimed at 
improving the performance of the model. 
 
For estimating the derating factors for the four German control areas, the rough output 
of the probabilistic model is compared with the TSO estimates for the year 2014 (data of 
the year 2015 being kept for the validation). This comparison is illustrated in Figure 5, 
where the TSO estimates are plotted against the output of the probabilistic approach for 
the four control areas (light grey dots). 
 
We can observe in Figure 5 that - as expected (see Section 2.2) – the rough output of the 
probabilistic model overestimate the actual PV power generation of the four German 
control areas. Derating factors have been evaluated by a simple regression with the data 
displayed in Figure 5. The black lines in Figure 5 represent these derating factors. With 
values equal to 0.82205 and 0.81826, the derating factors are very similar for the 
Amprion and 50 Hertz control areas. The smallest and largest derating factors are found 
for the TenneT (0.72858) and TransNetBW (0.88464) control areas respectively.  
 



 

Preprint submitted to Solar Energy in September 2016  13 

  

  
Figure 5: Scatter plot of the rough output of the probabilistic model against the TSO 
estimates (light grey dots) and fitted correction (black lines) for the four German control 
areas. 
 
It is interesting to note that the larger is the control area, the smaller is the fitted 
derating factor. It appears thus that the derating factor account for a decrease of the 
regional power generation resulting from a smoothing effect that is underestimated by 
the probabilistic model. Indeed, the maximal values found with the probabilistic model 
are all approximately equal to 0.8 for the four control areas while the maximal values of 
the TSO estimates are equal to ca. 0.6, 0.65, 0.65 and 0.75 for the TenneT, Amprion, 50 
Hertz and TransNetBW control area respectively (sorted by increasing size of the 
control area). The underestimation of the power decrease due to smoothing effect with 
the probabilistic model is probably stemming from the chosen weather data, whose 
spatial variations are smoother than the actual ones. 
 
The evaluated derating factors are now used to calibrate the output of the probabilistic 
model of the validation data set, which is compared to the TSO estimates in the following 
section.  
 
It is here assumed that the derating factors assessed with the data of 2014 are valid for 
the year 2015. The validity of this assumption is not obvious since several issues change 
the characteristics of the match between TSO estimate and output of the probabilistic 
method with time. Firstly, the statistics of the PV plant orientation angles can change as 
new plants are installed. We consider that this effect can be disregarded considering the 
newly installed PV capacity between 2014 and 2015 with respect to the installed 
capacity in 2014 (see Annexes 1 to 4). Secondly, improvements of the weather model 
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can result in a change of the characteristics of the output of the probabilistic model with 
time, which would in turn make the derating factor evaluated with 2014 data 
suboptimal for 2015. Thirdly and finally, changes in the algorithms used by the TSO for 
estimating the total power generated in their control area can also results in a difference 
between the optimal derating factors for the two time periods.  

3.3 Model validation 
The values of the calibrated output of the probabilistic model are compared with the 
TSO estimates of the actual PV power generation in the four scatter plots of Figure 6. It 
can be observed that the scatter points are centred on the identity line, which shows 
that the calibration indeed removed the bias observed with uncalibrated data in Figure 5. 
 

  

  
Figure 6: Scatter plot of the calibrated output of the probabilistic model against the TSO 
estimates (light grey dots) for the validation time period. 
 
A comparison of the time series of the forecast disseminated by TenneT and the 
calibrated output of the probabilistic model with TenneT estimate is displayed for the 
time period 14-21/08/2015 in Figure 7. It can be observed that the output of the 
probabilistic approach matches well with the TSO estimate and that there are even days 
when it outperform the forecast provided by the TSOs. 
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Figure 7: Comparison of the time series of the forecast disseminated by the TSO (blue) and 
the calibrated output of the probabilistic model (red) with the TSO estimates (grey) for the 
TenneT control area between 14/08/2015 and 21/08/2015 
 
Different error metrics have been evaluated to assess the performance of the 
probabilistic approach, which are given in Table 3. The results are expressed in percent 
of the installed capacity. In addition, the root mean square errors of the probabilistic 
method and the forecast disseminated by the TSOs are displayed in Figure 8. Since the 
root mean square error (RMSE) is mainly used by the TSOs, the following analysis is 
focusing on this metric.  
 
Table 3: Average power generation, bias, MAE and RMSE of the calibrated regional PV 

power calculation for the four German control areas evaluated with the TSO estimates of the 

actual PV power generation (in % of the installed capacity). 

 TenneT Amprion 50 Hertz TransNetBW 

Average power 
generation 

0.2167 W/Wp 0.2425 W/Wp 0.2477 W/Wp 0. 2802 W/Wp 

Bias 

Probabilistic 
approach -0.61 % 0.28 % -0.46 % 0.16 % 

TSO 
forecasts  1.17 % 0.27 % - 0.08 % 0.23 % 

MAE 

Probabilistic 
approach 2.77 % 3.16 % 3.27 % 3.83 % 

TSO 
forecasts  2.55 % 4.04 % 2.92 % 2.82 % 

RMSE 

Probabilistic 
approach 4.16 % 4.76 % 4.87 % 6.13 % 

TSO 
forecasts  3.73 % 5.99 % 4.51 % 4.54 % 

 
In Figure 8, the TSOs are sorted by increasing size of the control area. It can be observed 
that the RMSE increases as the size of the control area decreases. It can also be noted in 
Table 3 and Figure 8 that at the exception of TransNetBW, RMSE values obtained with 
the probabilistic model are all below 5% and even very close to 4% for TenneT. The 
reason for the higher RMSE value obtained for the TransNetBW control area may on the 
one hand be explained by the smaller spatial extension of the area in comparison to 
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other control areas. On the other hand, as can be seen in Annex 4, the last input of the 
TransNetBW EEG register has been recorded in July 2014 while registers of the other 
TSO are more recent with last input recorded between April and May 2016 (see Annexes 
1, 2 and3). The higher error obtained for TransNetBW may thus also be resulting from a 
mismatch between the set of plants used for the calculation and the actual ones. 
Accordingly the higher RMSE value obtained for TransNetBW should be considered with 
some caution and cannot be used as an indicator of the performance of the proposed 
approach. The results obtained for the TransNetBW control area are therefore not 
further considered in the continuation of this analysis. 
 

 
Figure 8 RMSE of the forecast calculated with the probabilistic model (blue bars) and 
RMSE of the day-ahead forecast disseminated by the TSOs (yellow bars). (More detailed 
analyses of the errors are given in Annexes 1, 2, 3 and 4) 
 
The performances of the probabilistic model are then compared to those obtained with 
the day-ahead forecast provided by the TSOs. The dissemination of a day-ahead forecast 
by the TSO is made mandatory by the EEG act. It is however unclear which forecast 
products are delivered and if those are representative for the forecast used 
operationally by the TSOs. This benchmark has to be interpreted with caution, since the 
TSO forecast methodology is unknown. It can for example be noted that the RMSE of the 
forecast provided by Amprion is noticeably higher than those of the three other TSOs. 
This value is probably corresponding to an under-average forecast and will not be 
further considered in the present analysis. Given the relatively low RMSE values 
obtained for TenneT and 50 Hertz, we consider that the data provided by the TSO are 
corresponding to outputs of cutting-edge forecast systems. The comparison will thus be 
limited to these two control areas. 
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It can be observed in Table 3 and Figure 8 that the error obtained with the probabilistic 
model is only 0.43 and 0.36 higher than that of the day-ahead forecast provided by the 
TenneT and 50 Hertz respectively. This can be considered as a positive result 
considering that the forecast evaluated with the probabilistic model is based on one 
single weather model and that – with the exception of the model calibration – no post-
processing scheme has been used. Indeed, most commercial forecast providers optimize 
the skill of their forecast by means of statistical post-processing and/or by implementing 
a multi-model approach.  

4 Discussion and Conclusion 
 
In this paper, an alternative to the upscaling approach for estimating the aggregated PV 
power generation of PV plants installed in a region was presented. In this method, called 
a probabilistic regional PV model, an average PV model with a very limited number of 
inputs (two module orientation angles) is used to calculate the power generation of the 
most frequent module orientation angles. The resulting power values are finally 
weighted according to their probability of occurrence to estimate the actual power 
generation. The probability of occurrence of the module orientation is assessed on the 
basis of a database with more than 35 000 PV plants. The implementation of this model 
only requires information on the location and peak capacity of the plant installed in a 
region and no PV plant measurement is necessary. 
 
The advantage of this method is that a value of the PV power generation can be 
estimated for each PV plant installed in the region of interest with local meteorological 
data. The interpolation error made in the upscaling method is thus avoided with the 
proposed methodology. Furthermore, it is hoped that the problem of representativity 
faced by the upscaling method [24] are mitigated by the method proposed in this paper 
by using statistical distribution of module orientation angles as input. Lastly, the 
proposed approach allows forecasting the aggregated PV power generation of any 
region without PV power measurements, which characteristics is highly valuable for 
numerous stakeholders without access to the numerous PV power measurement data 
needed to apply the upscaling method. 
 
The validation of the proposed model against TSO estimates shown that the RMSE 
obtained with the probabilistic model is below 5%. The forecast made with the 
probabilistic approach was found to be less than 0.5% higher than the forecast delivered 
by the TSOs. This is considered a positive result considering that this forecast is 
evaluated with only one single weather model and that we do not use a MOS scheme 
while commercial forecast providers generally optimize their forecast accuracy by using 
a multi-model approach or/and by implementing statistical post-processing techniques. 
The proposed methodology can thus be considered as an interesting alternative to the 
upscaling approach in situations where no or little power measurements are available. 
As shown in [5] and [6], the upscaling method yields very accurate results when it is 
used with numerous PV power measurements. In that case, the added value of the 
proposed methodology is less obvious but it can be expected that a combination of the 
two approaches may be interesting to e.g. limit the effect of unrepresentative reference 
plants.  
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Though the validation of the probabilistic approach is made using PV power forecast, the 
focus of this paper is on the calculation of the aggregated power generation of a fleet of 
PV plants and not on the reduction of the PV power forecast error. It is solely validated 
that the proposed methodology can be implemented to model a fleet of PV plant in a 
forecast context. The improvement of the forecast skill may be considered using adapted 
approaches such as e.g. the explicit consideration of systematic forecast errors with fog 
and low stratus [29]. 
 
It is finally interesting to note that, thanks to its flexibility, the proposed approach offer a 
wide scope for improvements and further developments.  
 
It can at first glance be expected that the performance of the method increases with the 
quality of the statistical information used (average PV plant model and distribution of 
the module orientation angles). An improvement of the statistical analysis presented in 
this paper by using more PV plants may thus represent a possible continuation of this 
work. Alternatively, module orientation angles assessed from LiDAR data [25][26] could 
also be used instead –or together with the statistical data in the future.  
 
It should however be noted that the performance of a forecast system are evaluated by 
the TSO against an estimate of the actual generation, which is based on the upscaling of a 
limited set of reference plants. Situations can thus occur where an improvement of the 
probabilistic forecast by e.g. using LiDAR data or improved statistics is interpreted as a 
degradation of the forecast skill. This would happen if the difference between the 
forecast and the TSO estimates increases. Such situations are probable given that 
medium to large reference plants are mainly used by TSO for estimating the actual PV 
production while the probabilistic approach is taking into account characteristics of all 
plant sizes, including small ones. Should the goal of a forecast be to match with the TSO 
estimate, a more pragmatic approach may consist in choosing the statistical input of the 
probabilistic method giving the best match between model output and TSO estimates. 
This is a difficult issue given the number of parameters and the ill-conditioned nature of 
the problem. However, it could be addressed by implementing inverse modelling 
techniques, which could also represent a possible continuation of the work presented in 
this paper.  
Finally, it should be noted that winter months have been excluded for the present 
analysis. The reason for that is that the effects of snow and shading on the PV power 
generation are not considered in the model described in this paper. A consideration of 
these effects could also be addressed in a further development of the proposed 
methodology. 
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Annex 1 – Results for the TenneT control area 
 

 

Main characteristics of the TenneT 
control area  

(Update time: 05/2016) 

Area 140.000 km² 
Time of the last input 12-May-2016 

N
u

m
b

er
 o

f 
p

la
n

ts
 0-30kWp 595 415  

(88.7 %) 

30-100 kWp 63 347 
(9.4 %) 

100-1000 kWp 11 346  
(1.7 %) 

>1000 kWp 1 143 
(0.2 %) 

Total 671 251 
(100 %) 

In
st

al
le

d
 c

ap
ac

it
y

 0-30kWp 6 569.2 MWp 
(42.8 %) 

30-100 kWp 3 075.3 MWp 
(20.0 %) 

100-1000 kWp 2 591.7 MWp 
(16.9 %) 

>1000 kWp 3 115.9 MWp 
(20.3%) 

Total 15 352.0 MWp 
(100 %) 
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Probabilistic model TSO forecast 

Bias -0.61 % 1.17 % 

MAE 2.77 % 2.55 % 

RMSE 4.16 % 3.73 % 

min / max 
Δ 

-17.65 / 35.33 % 
52.98 % 

-16.01 / 17.49 % 
33.50 % 

Q10% / Q90% 
IQ 

-5.25 / 3.82 % 
9.07 % 

-2.39 / 5.61 % 
8.00 % 

Q25% / Q75% 
IQ 

-2.54 / 0.75 % 
3.29 % 

-0.47 / 2.93 % 
3.4 % 

Median -0.34 % 0.51 % 

Correlation  
coefficient 

0.96918 0.97953 
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Annex 2 – Results for the Amprion control area 
 

 

Main characteristics of the Amprion 
control area  

(Update time: 05/2016) 

Area 73.100 km² 
Time of the last input 03-May-2016 

N
u

m
b

er
 o

f 
p

la
n

ts
 0-30kWp 411 271 

(89.3 %) 

30-100 kWp 40 387 
(8.8 %) 

100-1000 kWp 8 623 
(1.9 %) 

>1000 kWp 501 
(0.1 %) 

Total 460 782 
(100 %) 

In
st

al
le

d
 c

ap
ac

it
y

 0-30kWp 4 004.5 MWp 
(43.1 %) 

30-100 kWp 2 039.2 MWp 
(21.9 %) 

100-1000 kWp 1 927.7 MWp 
(20.7 %) 

>1000 kWp 1 329.2 MWp 
(14.3 %) 

Total 9 300.6 MWp 
(100 %) 
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Probabilistic model TSO forecast 

Bias 0.28 % 0.27 % 

MAE 3.16 % 4.04 % 

RMSE 4.76 % 5.99 % 

min / max 
Δ 

-22.41 / 40.96 % 
63.36 % 

-25.86 / 42.72 % 
68.58 % 

Q10% / Q90% 
IQ 

-5.1 / 5.95 % 
11.05 % 

-6.07 / 7.19 % 
13.26 % 

Q25% / Q75% 
IQ 

-1.88 / 1.83 % 
3.71 % 

-2.56 / 2.67 % 
5.23 % 

Median 0.19 % -0.11 % 

Correlation  
coefficient 

0.96713 0.95438 
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Annex 3 – Results for the 50 Hertz control area 
 

 

Main characteristics of the 50 Hertz 
control area  

(Update time: 05/2016) 

Area  109.360 km² 
Time of the last input 20-Apr-2016 

N
u

m
b

er
 o

f 
p

la
n

ts
 0-30kWp 118 296  

(85.3%) 

30-100 kWp 12 910 
(9.3 %) 

100-1000 kWp 5923  
(4.3%) 

>1000 kWp 1565 
(1.1%) 

Total 138 694  
(100%) 

In
st

al
le

d
 c

ap
ac

it
y

 0-30kWp 983.2 MWp 
(11.0%) 

30-100 kWp 626.5 MWp 
(7.0 %) 

100-1000 kWp 1 777.5 MWp 
(19.9 %) 

>1000 kWp 5 533.2 MWp 
(62.0 %) 

Total 8920.4 MWp 
(100 %) 
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Probabilistic model TSO forecast 

Bias -0.47 % -0.08 % 

MAE 3.27 % 2.92 % 

RMSE 4.87 % 4.51 % 

min / max 
Δ 

-19.48 / 40.70 % 
60.1852 

-25.43 / 26.18 % 
51.6139 

Q10% / Q90% 
IQ 

-5.72 / 5.14 % 
10.86 

-4.97 / 4.76 % 
9.73 

Q25% / Q75% 
IQ 

-2.73 / 0.94 % 
3.67 

-1.72 / 1.76 % 
3.48 

Median -0.44 % -0.03 % 

Correlation  
coefficient 

0.96808 0.97212 
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Annex 4 – Results for the TransNetBW control area 
 

 

Main characteristics of the 
TransNetBW control area  

(Update time: 05/2016) 
Area 34.600 km² 

Time of the last input 30-Sep-2014 

N
u

m
b

er
 o

f 
p

la
n

ts
 0-30kWp 245 731 

(87.7 %) 

30-100 kWp 29 345 
(10.5 %) 

100-1000 kWp 4 816 
(1.7 %) 

>1000 kWp 175  
(0.1%) 

Total 280 067 
(100 %) 

In
st

al
le

d
 c

ap
ac

it
y

 0-30kWp 2 314.3 MWp 
(46.1 %) 

30-100 kWp 1 294.9 MWp 
(25.8 %) 

100-1000 kWp 988.9 MWp 
(19.7 %) 

>1000 kWp 422,5  MWp 
(8.4 %) 

Total 5 020.6 MWp 
(100 %) 
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Probabilistic model TSO forecast 

Bias 0.16 % 0.23 % 

MAE 3.83 % 2.82 % 

RMSE 6.13 % 4.54 % 

min / max 
Δ 

-33.36 / 43.72 % 
77.08 % 

-28.96 / 28.42 % 
57.39 % 

Q10% / Q90% 
IQ 

-5.55 / 6.98 % 
12.53 % 

-4.26 / 4.9 % 
9.16 % 

Q25% / Q75% 
IQ 

-2.37 / 1.81 % 
4.18 % 

-1.36 / 1.74 % 
3.1 % 

Median -0.35 % 0.12 % 

Correlation  
coefficient 

0.95954 0.97747 

 


