Time-dependent thermomechanical constitutive model for polymers based on network theory: application to thermoplastic polymers
Résumé
Polymers are characterized by a rich variety of mechanical properties originating from their complex chains network. To capture such intricate structure properties, a number of polymer constitutive models have been proposed and implemented into finite element codes in an effort to solve complex engineering problems. Recent effort by Billon [1,2] focused on proposing alternative route for constitutive equations to model time-dependent mechanical behavior of polymers. This approach is based on a statistical equivalent network concept modified to account for the effect of microstructure evolution associated to inelastic processes taking place during polymer deformation. The model considers microstructure at a mesoscopic level through internal state variables (ISV) evolving in an equivalent statistical network according to classical physic-chemical approaches. Inelastic phenomena are assumed to result from state variables evolution associated to evolution of the network.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...