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The three-dimensional simulation of physical phenomena involving moving bodies 
undergoing large displacements represents a real challenge. These simulations, combine the 
issues related to instability, meshing and Fluid-Structure Interaction, are generally difficult to 
perform and very costly in terms of computation time. We present in this research report an 
overview on moving mesh methods used in the literature. Several mesh deformation methods 
are proposed,  local remeshing operations are explained and finally different approaches that 
uses PDE are detailed. 
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Introduction

In this project we are interested in speci�c metal manufacturing processes. The studied processes
involve several heat transfer mechanisms. Studying these heat transfer mechanisms is very important
since they condition the temperature distribution of the �nal part and its quality. The numerical
simulation has proved to be a powerful tool for understanding and controlling these phenomena.

The software THOST is dedicated to the simulation of heat transfer phenomena occurring in
furnaces and quenching tanks[18, 17]. In order to make the simulation of complex processes more
realistic, THOST software has to be able to simulate the overall process as a single problem and
to control both heating and cooling as a unique continuous and integrated process. This is the
objective of HECO project: the control of the history of industrial parts along their heat treatment,
from HEating to COoling.

The variety of the industrial equipment (turbines, fans,..) has to be taken into consideration but
also the displacement of the parts from one equipment to another.

The three-dimensional simulation of these physical phenomena involving moving bodies undergo-
ing large displacements represents a real challenge. These simulations, which combine the di�culties
related to instability[16, 22], meshing and Fluid-Structure Interaction, are generally di�cult to per-
form and very costly in terms of computation time.

In such applications, as the body moves, the mesh may require adaptation at each time step
to ensure good representation of the �uid-solid interface or the existing mesh has to be allowed to
deform to track the moving geometry. The former solution is computationally expensive, especially
for 3D problems but also requires an interpolation step to map the solution into the newly generated
mesh. This interpolation step is itself time-consuming but also introduces additional errors. The
latter option introduces the concept of a �moving� and �deforming� mesh.

In the case of a deforming mesh, the mesh deformation has to be accomplished e�ciently and
reliably in order to robustly perform the FSI simulations. Solver stability and accuracy is a primary
concern in mesh moving algorithms. As the mesh deforms, elements can become inverted or highly
skewed which can result in solver stability issues and errors degrading the accuracy of the model. For
this, the algorithm used for moving the mesh has to be e�cient and robust and able to handle large
deformations. Usually, moving mesh algorithms are coupled to some mesh optimization operations
that aim at maintaining the best possible the mesh quality while deforming it using either several
local remeshing operations such as vertex addition, vertex collapsing, connectivity change or some
mesh smoothing methods based only on vertex displacements. In addition to that, the e�ciency of
the computations in terms of CPU time represents also a great challenge.

The aim of this thesis is to develop a robust moving mesh algorithm able to handle large displace-
ments and e�cient in terms of CPU time. In our context, a �nite elements scheme and unstructured
meshes are used.

A brief bibliographic overview of the moving mesh methods used in the literature will be given.
An outline of this report is given as follows: In section.1 the di�erent mesh deformation methods used
in the literature will be given. In section.2 some local remeshing operations will be explained and
�nally in section.3 the di�erent approaches used for solving the governing equations are presented.
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1 Mesh deformation methods

In moving mesh simulations, the whole mesh has to be allowed to deform in order to follow the
displacement of the geometry while preserving the validity of the computational mesh. The whole
problem can be formulated as follows: knowing the displacement of the vertices located on the moving
body, what displacement must be applied to the rest of the domain vertices in order to respect the
above description.

In general, a moving mesh algorithm has to be e�cient in terms of CPU time as it is called at
each solver time step. It has also to be able to keep a valid mesh so that remeshing operations remain
very occasional in order to avoid the induced errors due to the interpolation steps required after any
remeshing. It has to be able to preserve a good quality of the mesh so that the solution accuracy is
not degraded. The main mesh deformation methods usually used in the literature will be given in
this section.

1.1 Mechanical Analogy

In the case of the mechanical analogy based methods, two alternatives are generally considered: the
spring analogy methods and linear elasticity methods.

1.1.1 Spring analogy method

The method views the �uid mesh as a network of springs. In the spring analogy �rst presented in
[41], a �ctitious tension/compression spring is attached to each edge connecting two vertices i and
j, the sti�ness of the spring kij is chosen to be inversely proportional to the length of the supporting
edge lij :

Kij ∝
1

lij

The above de�nition of Kij is driven by the fact that if during the mesh movement two vertices
tend to get closer, the spring attached to the edge they belong to becomes sti�er and therefore
prevents them from colliding.

This method often results in invalid meshes due to mesh lines crossovers; this is due to the fact
that the tension/compression springs prevent two vertices from colliding but does not prevent a vertex
from crossing an edge that faces it. This method has been improved by Farhat in [43] that introduced
torsional springs at the mesh vertices to prevent neighboring triangles from interpenetrating each
other; for a triangle whose vertices are designed by i, j and k, let θ

ijk

i denote the angle between two
edges ij and ik of this triangle, the sti�ness of a torsional spring is given by:

C
ijk

i =
1

sin2θ
ijk

i

=
l
2

kil
2

kj

4Aijk
2

where, A
ijk

is the area of the considered triangle, lki is as before the length of the edge connecting
k and i, and lkjthe length of the edge connecting k and j.

The above sti�ness coe�cient is meant to prevent both vertex-to-vertex and vertex-to-edge col-
lisions. Actually, whether vertex k moves towards vertex i or j, or whether it moves towards edge
i− j, this leads the area Aijk

of the triangle to decrease, which in turn results in the increase of the
sti�ness coe�cient C

ijk

i .
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This method despite of the attempts to improve it has shown law robustness and tends to dete-
riorate the quality of the mesh when large displacements are considered [39].

1.1.2 Linear-elasticity method

In the case of the linear elasticity analogy [1], the motion of the internal nodes is governed by the
equations of elasticity.

the movement of the vertices is obtained by solving an elasticity-like equation:

div(σ(ε)) = 0,

with

ε =
∇d+ (∇d)

T

2
,

where σ and ε are respectively the Cauchy stress and strain tensors, and d is the Lagrangian
displacement of the vertices. The Cauchy stress tensor follows the Hooke's law for isotropic homoge-
nous medium, where ν is the Poisson ratio, E the Young modulus of the material, and λ and µ are
the lame coe�cients and Id the identity tensor:

σ(ε) = λtrace(ε)Id + 2µε, and ε(σ) = 1+ν
E
σ − ν

E
trace(σ)Id

As boundary condition, the motion of the nodes at the interfaces is speci�ed to match the normal
velocity of the �uid at the interface.

One advantage of this method is that it o�ers the possibility to introduce a special treatment
based on element size, actually, it is possible to adapt the local sti�ness according to the size of each
element so that smaller elements are sti�ened more than the large ones [52]. This can be realized by
modifying the way the Jacobian transformation from the element domain to the physical domain is
accounted for in the FEM matrix assembly [35].

Classically, the P
1
Finite Element formulation of the linear elasticity matrix leads to the evaluation

of quantities of the form:

´
K
s∂ϕJ
∂xk

∂ϕI
∂xl
dx = s

36|K|(
_

ηJ)k(
_

ηI)l

where s is either λ, µ or λ+ 2µ and
_

ηI = ((
_

ηI)x, (
_

ηI)y, (
_

ηI)z) is the inward non-normalized normal
opposite to vertex i in tetrahedron K .In [35], the above quatity is replaced by :

´
K
s∂ϕJ
∂xk

∂ϕI
∂xl

(
|K̂|
|K|

)χ

dx =

(
|K̂|
|K|

)χ

s
36|K|(

_

ηJ)k(
_

ηI)l

where K̂ is the reference element. This method sti�ens each element by a factor proportional to
|K|−

χ

and χ > 0 is the sti�ening power that determines the degree by which the smaller elements are
rendered sti�er than the larger ones.

But, this method can only handle small incremental deformations and may require much sub-
iteration to complete the full deformation of the mechanical time step. It is usually coupled to regular
optimization phases to maintain a quality compatible with the desired accuracy.

Both spring analogy and linear elasticity methods need mesh connectivity information to construct
a system of equations of the size of the number of �ow nodes ni in order to calculate the displacement
of the mesh. Solving this ni × ni matrix repeatedly is computationally intensive.
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For the case of the linear elasticity method, in [40], the author tried to �nd a way to reduce the
CPU time dedicated to this method. Actually, instead of solving the elasticity system at each solver
time step, its solution is done once for a large time step ∆tmax. After solving the elasticity system,
the mesh motion is analyzed. If the mesh is not valid, then the elasticity time step is reduced until
validity is achieved: ∆t = ∆tmax

2n
. Some results obtained by this method are shown in the Figure1.

Figure 1: Snapshots of a moving rotating cube using the method in [40]

1.2 Adaptive MMPDE-based methods

Mesh adaptation plays an indispensable role in the e�cient numerical simulation of many physical
phenomena since it helps reducing the dedicated CPU time to these simulations while keeping high
accuracy[28, 27, 29]. Some authors view the theory of moving meshes as part of an r-adaptive
strategy for solving partial di�erential equations with moving bodies.

The idea is to move the mesh points and concentrate them in regions where the solution has
a �special� behavior, usually a rapid variation of either the solution or its derivatives[10, 26]. The
objective is to get the smallest error possible for the number N of mesh nodes. A vector or a scalar
monitor function is used in order to control the size, shape and orientation of the elements of the
mesh to be generated. The monitor function is usually designed to give an estimate of some measure
of the solution error which is then equidistributed over each mesh cell.

The mesh adaptation is viewed as a mathematical equivalent of the determination of a coor-
dinate transformation. The adaptive mesh is viewed as the image of a uniform reference mesh
under a coordinate transformation (mapping) x = x(ξ) from a regular domain (the computa-
tional domain) Ωc = {ξj, j = 1, ..., Nv} to an irregularly-shaped domain (the physical domain)
Ω = {xj, j = 1, ..., Nv}. J = dx

dξ
is used to denote the Jacobian matrix of the mapping x(ξ).

Several techniques have been developed in order to generate moving adaptive meshes. Most
of these approaches can be classi�ed into two groups. The �rst group is called the location-based
method (or the coordinate-based method) because it controls directly the location of the mesh nodes.
The second group is called the velocity-based approach since it controls the time derivative of the
mapping or the mesh velocity. In other words, the mesh equation is formulated for the mesh velocity
and the mesh point location is obtained by integrating the velocity �eld. In the following paragraphs,
good representatives of each group will be given.

1.2.1 Velocity-based approaches:

1.2.1.1 The classical Lagrangian method In �uid dynamics, Lagrangian coordinates consti-
tute a moving coordinate system used to follow �uid particles. If u(x, t) is the velocity of the �uid,
ξ the reference coordinate of a �uid particle and x(ξ, t) the position of the particle at time t, then
the particle and consequently the Lagrangian coordinates envolve with:
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∂x

∂t
= u (1)

An interesting property of Lagrangian coordinates is that convection terms are eliminated from
the governing equations. However, a purely Lagrangian formulation is usually avoided especially in
problems involving large deformations since they tend to produce highly skewed meshes resulting in
the failure of the numerical calculation.

1.2.1.2 The geometric conservation law method The so-called geometric conservation law
(GCL) was used for many years in the engineering community to develop cell-volume-preserving
�nite volume schemes. In [54] for example, the GCL was used to eliminate oscillations and preserve
physical conservation laws for solutions on moving meshes.

In [4, 53] it is used to transform the algebraic expression specifying the Jacobian into equivalent
di�erential equation which is the key for the moving mesh strategy. The GCL is given by the following
de�nition:

For any coordinate transformation x(ξ, t) from Ωc to Ω, the mesh speed xt and the time derivative
of the Jacobian matrix for the mapping x(ξ) from Ωc to Ω satisfy:

∇.xt = − 1

J

DJ

Dt
(2)

Let's consider the determination of the mapping x(ξ, t) through its time derivative. For a given
monitor function ρ(x, t) > 0, we want the cell area to be inversely proportional to ρ(x, t) at each
time t. To do so, the mapping x(ξ, t) is required to satisfy:

∇.xt = −1

ρ

Dρ

Dt
(3)

By comparing equations (2) and (3) we have :

D

Dt
(ρJ) = 0 (4)

Which implies that:

ρJ = constant (5)

,
(3) can be written as:

∇.(ρxt) +
∂ρ

∂t
= 0 (6)
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Using only this equation is not su�cient to determine the mesh speed xt. Using the Helmholtz
Decomposition Theorem for vectors:� A continuous and di�erentiable vector �eld can be resolved into

the orthogonal sum of the gradient of a scalar �eld and the curl of a vector �eld � a supplementary
equation can be provided. Actually, xt can be calculated using its divergence through (6) and its
curl. For this x(ξ, t) is required to satisfy :

∇× ω(xt − u) = 0 (7)

where ω and u are, respectively, a weight function and a background velocity �eld to be speci�ed.
Di�erent choices of ω lead to di�erent curl conditions.

Equations (2) and (7) can be formulated as a minimization of the functional:

IGCL =
1

2

ˆ
Ω

|∇.(ρxt) +
∂ρ

∂t
|2 +

( ρ
ω

)2

|∇ × ω(xt − u)|2dx (8)

The following boundary condition is considered:

xt.n = 0 (9)

Equations (8) and (9) constitute an elliptic system for the mesh velocity xt, its solution exists
and is smooth. By satisfying the relation (5) the Jacobian of the mapping is determined by the
monitor function ρ(x, t) and thus, the Jacobian stays positive and the mapping stays itself locally
non-singular. However, this method usually tend to produce highly skewed meshes.

1.2.1.3 The moving �nite element method The moving �nite element method (MFE) de-
veloped in [31, 30] is also a velocity-based method. Given a time dependent physical problem:

∂u
∂t

= Lu

where L is a spatial di�erential operator. Determining xt using the MFE method, consists in
minimizing the L2-norm of the residual involving u and xt over the entire space:

Imfe
[
xt,

Du
Dt

]
=
´
Ω

(
Du
Dt
−∇u.xt − Lu

)2
ωdx

In the classical version of MFE [31, 30] ω is taken equal to 1 and in the gradient weighted MFE
(GWMFE) [5, 6] ω is equal to 1/(1+|∇u|2 ).

One positive point of the MFE method is that the resulting mesh has the tendency to follow a
path corresponding to the smallest L2-norm of the residual of the discrete equations. The problem
is that the mesh resulting from only the minimization of this error can become degenerate or nearly
degenerate and requires special regularizing terms (i.e., penalty functions).

1.2.2 Location-based approaches

1.2.2.1 Winslow's variable di�usion functional Winslow's formulation [55] requires solving
a non-linear Poisson-like equation in order to generate the mapping. Suppose that higher mesh
concentrations are desired in regions with large values of a given function ω(x) > 0. With the
approach of Winslow, the mapping is de�ned as the minimizer of :
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IWin[ξ] =
´
Ω

1
ω

∑
i

(∇ξi)
T
(∇ξi)dx

1.2.2.2 The functional of Brackbill and Saltzman Brackbill and Saltzman developed a
global coordinate approach based on modifying the Winslow algorithm. In [2] they tried to combine
mesh smoothness, concentration and orthogonality. The functional associated with mesh concentra-
tion for example is given by the integral:

IBS[ξ] =
´
Ω

ω(x)Jdx

One di�culty that arises is that there is no theory to guide the relative weights of each integral and
they are left to be speci�ed by the user. In addition to that, the various terms are not dimensionally
homogenous and must be rescaled according to each speci�c application. One more thing is that one
cannot guarantee the existence of a solution to the previous equation (unless it is a pure smoothness
functional).

1.2.2.3 Harmonic mapping In [13] Dvinsky developed a method for generating adaptive grids
based on harmonic maps. Given an n× n symmetric positive de�nite matrix G(x) with g = det(G),
the mapping is de�ned as a harmonic mapping between Ω ⊂ Rn

equipped with metric G and Ωc ⊂
Rn

equipped with the Euclidean metric. This is equivalent to �nding the minimizer of:

Ihrm[ξ] =
´ √

g
Ω

∑
i

(∇ξi)
T

G
−1

(∇ξi) dx

In [48], the authors used a moving mesh strategy similar to Dvinsly's scheme except the fact that
a �nite elements approach was used rather than a �nite di�erence discretization and the fact that
the harmonic mapping in this case was constructed by an iterative procedure.

1.2.2.4 Brackbill's direction control functional Based onWinslow method and the harmonic
mapping method, Brackbill [42] developed a functional which takes into consideration both mesh
concentration and mesh alignment. The functional can be written as follows:

Ibrb[ξ] =
´
Ω

∑
i

(∇ξi)
T

G
−1

i (∇ξi) dx

for user-de�ned functions Gi. Depending on the desired properties of the mesh, they can be
chosen in several ways. For example, in the case Gi = 1√

g
G, the functional reduces to a harmonic

map. If, for instance, the mesh concentration is of primary concern, the natural choice is G = ω(x)I
, which leads to Winslow's functional. If the mesh is supposed to align with a certain prescribed
�eld(v1, v2, v3), then G can be chosen such that (∇ξi)

T

G
−1

(∇ξi) = |vi ×∇ξi|
2
.

1.2.2.5 Huang's approach The previous methods succeed in concentrating mesh nodes in re-
gions where the monitor function is large. However, the precise relation between the mesh and the
monitor function is unclear. One may observe an improvement of the solution accuracy using the
previous types of mesh generation but it is not clear whether the obtained mesh is optimal in terms of
minimization of the actual error or not. In order to deal with this problem, Huang in [19] formulates
a functional based more directly on error distribution.
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In [49] the mapping is formulated by minimizing an energy based on the so-called equidistribution
(1) and alignment (2) conditions [20] and the mesh adaptation is controlled through a matrix-valued
function.

Equidistribution condition:

|K|
√
det(G

K
) = σh|Kc|

|Ωc| , ∀K∈ Ω

Alignment condition:

1
d
trace((J)G

−1
(J)

−T
) = det((J)G

−1
(J)

−T
)
1
d , ∀K ∈ Ω

where, |K| is the volume ofK, G is the metric tensor associated with the adaptive mesh, GK is the
average of G over K, det(.) and trace(.) denote the determinant and trace of a matrix, respectively,
|Kc| is the volume of the element Kc∈Ωc corresponding to K, and

σh =
∑
|K|

K∈Ω

√
det(G

K
), |Ωc| =

∑
|Kc|

Kc∈Ωc

The meshes that closely satisfy these conditions can be obtained by minimizing the energy func-
tion:

Ih = θ
∑
|K|

K∈Ω

√
det(G

K
)trace((J)G

−1

K (J)
−T

)
dp
2 + (1− 2θ)d

dp
2
∑
|K|

K∈Ω

√
det(G

K
) ( |Kc|
|K|
√
det(G

K
)
)
p

The above functional is used for generating an adaptive mesh for a speci�ed monitor function.
When one is solving a time dependent problem, and in order to move the mesh in a smooth manner
the MMPDE approach is used to de�ne the moving mesh equation as a gradient system of Ih [21, 46]

dξj
dt

= −Pj
τ

[
∂Ih
∂ξj

]T
, j = 1, ....., Nv

where the derivative of Ihwith respect to ξj, ∂Ih/∂ξj, is considered as a row vector, τ>0 is a
parameter used to control the response time of the mesh movement to the change in the metric
tensor.

In [36] a speci�c map is obtained by minimizing a mesh adaptation functional of the following
form:

E(ξ, η) = 1
2

´
Ω

(∇ξTG−1∇ξ)

This functional is minimized by solving the corresponding Euler-Lagrange equation :

∇.(G−1∇ξ) = 0,

This system is solved using Gauss-Seidel iteration. The iteration is continued until there is no
signi�cant change in calculating new grids from one iteration to the next.

1.2.3 Numerical comparison

In [44], the authors tried to present a short numerical comparison of four adaptive moving mesh
methods : the GCL method, the winslow's approach, the harmonic map approach and Huang's
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approach.
The monitor function used is de�ned as follow:

ρ(x, y, t) = 1 + 10exp
(
−50

∣∣∣(x− 1
2
− 1

4
cos(2πt)

)2
+
(
y − 1

2
− 1

4
sin(2πt)

)2
−
(

1
10

)2∣∣∣)
This equation needs the generation of a moving adaptive mesh from the time-dependent monitor

function.
The �gures below show the adaptive meshes at di�erent times for the four methods.

(a) The adaptive meshes obtained by the GCL
method at t=0,0.25,0.5,0.75[44]

(b) The adaptive meshes obtained by Winslow's
method at t=0,0.25,0.5,0.75[44]

(c) The adaptive meshes obtained by the har-
monic map method at t=0,0.25,0.5,0.75[44]

(d) The adaptive meshes obtained by Huang's
method at t=0,0.25,0.5,0.75[44]

Figure 2: Numerical Comparison

For winslow's and Huang's methods, the mesh concentration follows closely the evolution of the
function ρ. For the harmonic mapping, the cercle with the highest mesh concentration is slightly
outside the cercle with the maximum ρ. Moreover, the mesh in the central part of the cercle is much
coarser than in the outer region although ρ takes approximately the same valye in both places. This
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was also noticed in [3]. In the case of the GCL, the mesh becomes highly skewed and the mesh
concentration slowly misplaced.

1.3 Level-set moving mesh partial di�erential equation (LMPDE)

The Level-set deformation method [25, 32] moves the nodes with a proper velocity so that the nodal
mapping has the desired Jacobian determinant. The grid in this method is represented in an implicit
manner; the intersection points of the level-sets will form the grid nodes at each time.

For example in [32], for 2D simulations, the authors used two level-sets of the following form to
represent the grid:

ψ1(x, y, 0) = x, ψ2(x, y, 0) = y,
The nodes of the mesh are after moved using the usual level-set evolution equation. The velocity

vector used in the evolution equation is constructed by solving a Poisson equation determined by the
monitor function.

The problem of this method is that it is able to produce only structured grids.

1.4 Optimization-Based Rezone strategy

The reference Jacobian optimization-based rezone strategy developed in [50] aims at producing a
mesh of high quality while keeping it as close as possible to the Lagrangian mesh. The essential idea
of the RJM method is the recognition that the Lagrangian solution contains su�cient information
about the �ow to constrain our measure of mesh smoothness.

In [50] the author considered three grids. At the beginning of the computational cycle, the grid
of the previous cycle is considered from the previous step and used as an initial grid. This grid is
assumed to be of �good� quality which means that it is unfolded and also well adapted to the ��ow�
at this time step. The second grid is the Lagrangian grid; this grid is obtained by simply moving each
node of the initial grid with the Lagrangian �uid velocity. This Lagrangian grid is not necessarily
optimal and may require �rezoning�. The rezoning strategy aims at improving the quality of the
Lagrangian grid while preserving the Lagrangian grid as much as possible. By requiring the rezoned
grid to remain as close as possible to the Lagrangian grid, employing locals remappers is justi�ed.
Local remappers are computationally much more e�cient than global remappers [12]. One more
reason to maintain the rezoned grid close to the Lagrangian one is that, the Lagrangian grid contains
important information about the �ow; it follows for example the interface between two materials.

The rezoning strategy consists of two components: A sequence of local optimizations and a global
optimization. The sequence of local optimizations aims at de�ning a set of �reference� Jacobians
which incorporate the de�nition of mesh quality at each grid point. Actually, at each node a local
patch is formed from the adjacent cells of the Lagrangian grid and a local realization of the Winslow
smoothness functional [38] on this patch is constructed. The minimization of this functional with
respect to the position of the central node de�nes its �virtual� location. By connecting this �virtually�
moved node to its stationary neighbors, a reference Jacobian (RJM) that represents the best locally
achievable geometric grid quality is de�ned.

A local realization of the Winslow function is used to determine the new virtual position of the
central node. The optimized position is obtained by minimizing the following functional [2] with two
variables while keeping all other coordinates �xed at their Lagragian positions.

F (x, y) =
´ 1

0

´ 1

0

[(xξ)
2
+(yξ)

2
]+[(xη)

2
+(yη)

2
]

|J | dξdη

where
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J =

(
xξ xη
yξ yη

)
is the Jacobian matrix of map x(ξ, η), y(ξ, η), and |J |is its determinant.
It can be noticed that this functional has a barrier function, which means that the value of

the functional approaches ini�nity when the unknown map approaches any degenerate map where
|J | = 0.

The RJMs are constructed by connecting these virtual positions.
It is not possible to use directly the RJMs themselves to determine the new positions of the

vertices. Actually, each vertex belongs to four cells: a simple rezone strategy applied individually to
each cell will lead in general to four incompatible speci�cations of the rezoned position of any vertex.
For this, a �global� optimization step is performed in order to resolve incompatibilities of the locally
de�ned RJMs. Actually, the �nal rezoned grid results from a minimization of a global objective
function that measures the distance between the RJMs and the Jacobian of the rezoned grid (the
solution of the global optimization step). This function does not guarantee that the rezoned grid is
unfolded, for this, a �barrier� function that penalizes grids whose cells are inverted is included.

F (x(ξ, η), y(ξ, η)) =
´ 1

0

´ 1

0

‖J−Jref‖
2

F

|J|/|Jref | dξdη

where ‖.‖F is the Euclidean norm of the matrix, |.|the determinant of the matrix, J the Jacobian
of the rezoned grid and Jref the Jacobian of the rezoned grid. The term |J |

|Jref | in the denominator is

the barrier function used to penalize degenerated solutions.
This function is minimized using a line search procedure coupled with a conjugate gradient

algorithm. The optimization procedure is iterative and every time that it results in a folded mesh,
the mesh is rejected and the objective function is set to a large number.In [50] the method was used
for structured grids but it can also be used for unstructured grids.

1.5 Interpolation methods

Interpolation methods treat mesh deformation as a problem of interpolating deformations between
the moving body and the boundaries of the domain of calculation. These methods are able to handle
large deformations and arbitrary mesh topologies and can be easily implemented in parallel.

1.5.1 Radial Basis Function (RBF)

One main interpolating method is the Radial Basis Function (RBF).The RBF method [51, 14]consists
in interpolating the displacement of the moving body to all the �ow mesh using an interpolation
function:

s(x) =

nb∑
j=1

αjφ(||X −Xbj ||) + p(X) (10)

where Xbj = [xbj , ybj , zbj ] are the centers in which the values are known, in this case the boundary
nodes of the moving body, p a polynomial, nb the number of boundary nodes and φ is a given basis
function with respect to the Euclidean distance ||X||.

The coe�cients {α} and the polynomial p(X) are chosen to satisfy the nb �tting conditions:
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s(Xbj) = dbj

with db containing the discrete known values of the displacements at the boundary nodes
and the constraints :

nb∑
j=1

αjq(Xbj) = 0

for all polynomials q with a degree less or equal than that of polynomial p.
The values of the coe�cients and the linear polynomial can be obtained by solving the system:[
db
0

]
=

[
Mb,b Pb
P
T

b 0

] [
α
β

]
with α the coe�cients αj, β the coe�cients of the linear polynomial p, Mb,b an nb × nb matrix

containing the evaluation of the basis fucntion φbibj = φ(‖Xbi −Xbji‖).

Solving this system can be done in an iterative manner. RBF is an e�cient method to achieve
high quality mesh and to handle large mesh deformations caused by translations and rotations for
both 2D and 3D meshes. However, the performance depends on the used RBF[37].

The main drawback of this method is that the nb × nb matrix is often dense and ill-conditioned
and solving it especially for large meshes is expensive due to the large number of surface points.

This method can be optimized using specialized preconditioners, however, they add more com-
plexity to the implementation of the method.

Some other methods were developed to vastly reduce the number of surface points used, such
as the Greedy point selection used in [33]. The method uses a chosen error function on the surface
mesh to select a reduced subset of surface points; this subset contains a su�ciently small number of
points so as to make the volume deformation fast.

1.5.2 Inverse Distance Weighting interpolation method (IDW)

One other interesting method is based on the Inverse Distance Weighting interpolation method
(IDW) . The IDW [45] is a weighted average interpolation technique for multivariate interpolation
of scattered data points.

The interpolated value is an average of the known values at the data points weighted by the inverse
of the distance to the unsampled point. For mesh deformation, that means that the in�uence of
boundary node displacements on the displacement of an internal mesh node is inversely proportional
to the distance between the two points.

The moving boundaries nodal displacement �eld is de�ned as s(xbi), where xbi is the position
vector of the boundary node i. Then, the displacement �eld s in the volume mesh is then described
through a weighted average of all moving body boundary nodes displacement �eld as given by:

s(x) =

m∑
i=1

wi(x)s(xbi)

m∑
i=1

wi(x)
(11)
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where m is the total number of boundary nodes and wi(x) is a two-exponent weighting function
of the reciprocal distance

wi(x) = Ai

[(
Lref

‖x−xbi‖

)a

+

(
αLref

‖x−xbi‖

)b
]
,

where Ai is the average area of all moving boundary faces containing the node i, this is used so
that the mesh re�nement of a region does not increase its in�uence in the interpolation method, Lref
is the distance between the mesh centroid and the farthest point of the domain, a is the basic IDW
exponent, α is the maximal distance that nodes near to the moving body have to a boundary, and b
is the IDW exponent which rigidi�es nodes in a near-body region. α is given by :

α = 5
Lref

m
max
i=1
‖s(xbi)− s‖, where s =

m∑
i=1

.s(xbi) and Ai = Ai
m∑

j=1
Aj

The weighting function is designed such that it preserves a rigid body motion of nodes close to
the boundaries, in addition to ensuring a smooth deformation transition through the mesh.

In order to increase the robustness and lower computational cost, this method was coupled in
[47] to the so-called Moving Submesh Approach (MSA) proposed in [24]. It consists in interpolating
the displacement to the �ne computational mesh from the solved motion of a coarse mesh which is
obtained by the IDW method.

In contrast to RBF interpolation, IDW method is an explicit mesh deformation method which
does not require solving a system of equations for deforming the volume mesh. In fact, it results
in an algebraic expression for the nodes displacements as function of the boundary deformation.
This explicit evaluation reduces the computational costs and simpli�es the implementation and the
parallelization of the mesh deformation routines and can handle translations, rotations and arbitrary
mesh topologies.

2 Post-treatment using local remeshing operations

While moving, the quality of the mesh decreases. Rather than generating a new mesh, some local
remeshing operations can be performed in order to maintain a good mesh quality.

The standard mesh motion algorithms are able to move the mesh points. Then some kind of
mesh smoothing can be applied to the mesh in order to maintain a reasonable mesh quality. Using
this kind of operations, the topology of the mesh is not modi�ed, which means that the underlying
graph of the mesh remains unchanged. However, this approach fails for even simple motions such as
large rigid body translation and rotation. Moreover, although the mesh topology may be preserved
for simple mesh motions, such a procedure gives little control of the mesh size, hence, some cells may
be compressed or stretched undesirably due to the mesh motion and smoothing, which results in a
large error in the solution.

H-adaptation methods can be used to improve the quality of the mesh by modifying its topology[8].
They consist in locally coarsening or re�ning the mesh by the inclusion or deletion of mesh nodes

or in changing the connectivities between the existing nodes. But, since these operations change the
topology of the mesh, once performed they have to be followed by an interpolation step.

If no attention is paid, local remeshing operations may invalidate the mesh. Consequently, ad-
equate checks of the mesh quality have to be performed. In [39], after moving the mesh swap
operations are performed to optimize the mesh.

Edge swap operation (Figure3a) plays an important role in improving the mesh quality and
acts only on the connectivities of the mesh leaving the vertices' positions unchanged. In 2D, edge
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swapping is a simple operation which consists in �ipping an edge shared by two triangles. In 2D,
this operation changes neither the number of triangles nor the number of edges of the mesh. Face
swapping (Figure3b) consists in suppressing face F of a tetrahedron K.

(a) edge swap operation [7] (b) face swap operation [7]

In [9] the authors used, in addition to the swapping operations, edge collapse operation (Figure3d)
which is used to remove one vertex from the mesh. Collapsing an edge pq consists in merging its two
end points to a single one. They also used edge split (Figure3c) that consists in splitting one edge
pq by introducting a new point m in the mesh.

(c) edge split operation [7] (d) edge collapse operation [7]

Usually, swap operators (edge swaps and face swaps) aim at improving locally the quality of the
elements. Splits and collapses are there to control the mesh size: long edges are split whereas one of
the two vertices of short edges is collapsed.

These operations are more e�cient than the �xed-topology optimization methods in maintaining
good mesh quality but, once used, local interpolations steps have to be performed. These interpola-
tions are time consuming and induce extra errors.

3 Resolution of equations in moving mesh framework

A fundamentally important consideration when developing a computer code for simulating time-
dependent physical or mechanical problems occurring in evolving domains is the choice of an appro-
priate kinematical description of the continuum. Actually, this choice determines the relationship
between the deforming continuum and the mesh. In the case of FSI problems two main classes of
methods are usually used depending on whether an implicit or explicit representation of the consid-
ered evolving domain is used.

As parts of the �rst class, Eulerian methods use a �xed mesh of a computational box. A Level-Set
function is used according to which the evolving domain is de�ned in the sense of implicit function.

The so-called level set approach enables to represent the interface between two domains as a zero
level of a smooth function [15]. In practice, a signed distance function is used to localize the interface.
Let Wi1, Wi2 and Gi represent, respectively, the �rst domain, the second domain and the interface.
They verify:

Ωi1 ∪ Ωi2 = Ω and Ωi1 ∩ Ωi2 = Γi
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For each node of the computational domain W, the level set function a which is the signed distance
from the interface reads:

α(x) =


> 0 x ∈ Ωi1

0 x ∈ Γi

< 0 x ∈ Ωi2

Thanks to this implicit representation, the domain evolution can easily be accounted using the
following advection equation[23]:

∂α

∂t
+ v.∇α = 0

α(t = 0, x) = α0(x)

In this case, any modi�cation of the mesh that aims at following the movement of the moving
body has to be followed by an interpolation step.

In our case, we use the so-called �immersed Volume method�. This approach is of a great �exibility
since it allows us to solve one set of equations in the whole domain. It consists in generating one
unique volume mesh in which the di�erent parts of the complex geometry are immersed and treated
as di�erent materials using Level-Set function and an anisotropic mesh adaptation at the interface
between two materials. In order to ensure a continuous variation of the material properties across
an interface, the so-called mixing laws are used [34].

On the opposite, Arbitrary-Lagrangian-Eulerian (ALE) methods [11] use an explicit discretization
of the considered evolving domain. So, an exact and conformal mesh to the domain has to be
generated.

In the ALE framework the nodes of the domain can move with the continuum and their velocity
is directly integrated in the conservation equations. In fact, when the mesh is deformed while keeping
its topology �xed, the equations are solved in a fully ALE manner so no interpolation step is needed.
But, due to the �xed-topology constraint imposed by the classical Arbitrary-Lagrangian-Eulerian
formulation, once the connectivity of the mesh changes between two time steps, local or global
interpolation operations have to be performed in order to get the solution on the new mesh. In order
to get rid of these interpolation operations, some attempts to get a true changing topology ALE
scheme have been done, but only in 2D [39].

In [9] the authors tried to combine the advantages of both methods; on the one hand they have
considered a conformal mesh to the interface (so an explicit representation of the interface) when
it comes to solving the mechanical problem and on the other hand, they considered an implicit
representation of the evolving geometry when it comes to compute its evolution using the Level-set
function described above.
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Conclusion and perspectives

We tried in this report to give a brief bibliographic overview of the main existing moving mesh
methods.

We started our study with the mechanical analogy approach which includes mainly the spring
and the elastic methods. In both approaches, the sti�ness of the springs or elastic material is varied
locally based on mesh cell size or proximity to the moving body. The choice of the parameters of
these methods is left to the user and is usually based on ad hoc rezoning about speci�c quality
objectives. These methods cannot handle all types of meshes and can have problems especially when
high aspect ratio meshes are used. They may also require many sub-iterations to complete the full
deformation of a mechanical time step which makes them time-consuming. These schemes are also
typically di�cult to implement.

We presented in the following paragraph the adaptive MMPDE-based methods that can also be
divided into two groups: the velocity-based and the location-based methods. One main di�erence
between the two methods is that with the velocity-based methods the adaptive mesh is the result
of time integration of the mesh velocity �elds. Thus, the mesh history for previous time steps will
in�uence the mesh behavior at the current instant and the mesh can become highly skew. For the
location-based methods , the adaptive mesh at a given time is determined by the monitor function
at that time.

We also presented an �original� method called the LMPDE method. This method is quite inter-
esting but, as mentioned before, it is still not clear how it may be extented to the use of unstructured
meshes.

An optimization method was also explained. The main idea is to generate at each time step a
mesh as close as possible to the Lagrangian mesh but with higher quality. This method is �exible,
generates high quality meshes and is also able to handle all types of meshes. One main drawback is
that it is time-consuming.

Finally, we presented two interpolation methods that treat the problem of mesh deformation as
a problem of interpolating the deformation between the moving geometry and the boundaries of the
computational domain. The RBF method seems to be an interesting method in terms of robustness.
The problem is that it is a quite costly method in terms of CPU time especially, when compared to
the IDW method. This latter seems to be a very e�cient method. Actually, it is an explicit mesh
deformation method that does not require solving a system of equations. This explicit formulation
reduces the computational cost and makes the parallelization easier. This method is also robust
especially when coupled to some mesh smoothing methods.

As a perspective, since the IDW seems to be an e�cient method, it will be implemented and
tested and probably coupled to some smoothing or local remeshing operations. In the case of using
some local remeshing operations, the use of a conservative interpolation step is also required [Phd
Thesis Chahrazade BAHBAH].
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