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In numerical simulations, the transfer of fields between the different meshes is a 
key step. Interpolation is probably the most popular method for transferring data 
between meshes. Actually, it must ensure the consistency, the continuity and the 
accuracy of the solutions among the meshes. We present in this research report 
several conservative interpolation methods from a donor mesh to a target mesh. 
We start by introducing the basics of the transfer of fields, then we present the 
common mapping methods used nowadays and finally we give a detailed 
comparative study of the conservative interpolation methods found in the 
literature. 

ABSTRACT



CONTENTS

Contents
1 Introduction 2

2 Common mapping methods 3
2.1 Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Moving least-squares approximation . . . . . . . . . . . . . . . . . . . . . 5
2.3 Patch recovery methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Conclusions and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Conservative interpolation methods 7
3.1 Conservative interpolation via intermediate mesh building . . . . . . . . . 7

3.1.1 P1-conservative technique by mesh intersection . . . . . . . . . . . 7
3.1.2 Interpolation via common-refinement or supermesh construction . 8

3.2 Conservative redistribution via local remapping . . . . . . . . . . . . . . . 10
3.3 Matrix based conservative interpolation with restrictions . . . . . . . . . . 11

4 Conclusion and perspectives 14

5 Annex : Localization algorithms 15

1 Chahrazade BAHBAH



1 Introduction
Thermal Treatment describes the multifaceted operations in heating furnaces and quenching
tanks, performed on a material in the solid state, for the purpose of altering its microstruc-
ture and properties. The output of this step is the input of all the following manufacturing
steps such as forging, rolling processes and even the prediction of microstructure evolution.
Therefore, any lack of control in this upstream operation will affect the global manufac-
turing chain, and the consequences are then immediate such as prohibiting better quality,
higher availability and adaptability of products. In particular, during quenching process, the
boiling phenomena taking place is a concentrate of various physical phenomena (see Fig 1)
that cannot be modeled as a simple global heat exchange coefficient. The process realism
implies an advanced fluid-solid coupling. This subtle step needs to be efficiently reproduced
to reach a predictive and exploitable numerical result.

Figure 1: Different steps of the quenching process

Thus, the main purpose of this project is to develop numerical tools in order to simulate
the evolution of both the thermal and mechanic properties of the immersed solid during the
quenching at an industrial scale. This project will be done in collaboration with Montupet,
an industry leader in the manufacture of complex cast aluminium components for the au-
tomotive industry worldwide. Recall also that the developed framework will be validated
using experimental results given by Montupet.

The initial approach is to consider two domains, see Fig 2. First of all, the fluid-solid
domain in which the solid is totally immersed in the fluid. For that, we will refer to the use
of our immersed volume framework [1]. Indeed, a full Eulerian framework that simulates
the quenching process has been established. It takes into account three ingredients that can
be resumed to : (i) geometric : flexibility for multidomain simulation,(ii) fluid mechanics:
accounting for turbulent boiling, (iii) physics : phase change and phase transformation, [2].
As for the solid part, we recall that the quenching leads to important deformations such as
cracks and defects inside the solid, so we want to study the effect of the residual stresses.
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2 COMMON MAPPING METHODS

Fluid
T = 25 ◦C

Solid
T = 1200 ◦C

Transfer of fields
Solid

Figure 2: Division into two domains : Fluid-Solid and Solid

Montupet is using Zset, a software dedicated to the solid that is able to simulate the
heat treatment of mechanical pieces with phase change and analyze the residual stresses.
The fluid mechanical part and the turbulent boiling will be handled during my PhD and im-
plemented in the library CimLib-CFD, that handles different fields of applications : finite
element solvers for heat transfer simulations ([3], [4]), anisotropic mesh adaptation ([5],
[6], [7], [8], [9]) and high parallel computing ([10], [11]). Thus, a coupling between the
two codes and therefore interpolation of fields and fluxes of temperature must be done in an
accurate and conservative manner.
The first step of this project consists in transferring the fields of the first fluid-solid domain
to the solid domain. Indeed, the two domains are completely different and interpolation is
required. Moreover, during adaptive numerical simulations, we use the interpolation of the
fields not only when we wish to transfer from a donor mesh to a target mesh, but also when
we adapt the mesh following the evolution of the physical properties. However, one serious
drawback of many mesh adaptivity algorithms on unstructured meshes is the necessity of
interpolating solution fields from the initial mesh to the newly adapted mesh. Such inter-
polation destroys conservation of important physical quantities and leads to errors in the
solution fields.

Thus, this bibliographic report will investigate several conservative interpolation methods
from a donor mesh to a target mesh. We will start by introducing the basics of the transfer
of fields, we will present the common mapping methods used nowadays and then give a
detailed comparative study of the conservative interpolation methods found in the literature.

2 Common mapping methods
In numerical simulations, the transfer of fields between the different meshes is a key step. In-
terpolation (and sometimes extrapolation when a point falls outside the range of the source
mesh) is probably the most popular method for transferring data between meshes. Actu-
ally, it ensures the consistency, the continuity and the accuracy of the solutions among the
meshes. While resolving a mechanical problem, we distinguish for instance the nodal fields
of type P1 such as velocity, pressure and temperature, and P0 fields defined at the Gauss
points (stress and strain tensor), see Fig 3. While resolving the constitutive equations, we
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2 COMMON MAPPING METHODS

need to transfer the solutions which are defined on various discretisations using the transfer
of fields.

Figure 3: Left: nodal fields - Right: fields defined at Gauss points

It is possible to find in each point of the space, the value of a field discretized in the nodes
just by interpolating the nodal values. When applied to the transfer problem, we need to find
to which element of the donor mesh TD, the new node of the target mesh TT belongs, this
step is called the localization (see Annex in section 5), and then to use interpolation functions
in order to compute the value for the new node, see Fig 4.

Representation of the transfer of the fields
Left : Donor mesh TD - Right : Target mesh TT

Position of the new node in the donor mesh
Computation of the solution in this new node with interpolation

Figure 4: Interpolation method applied to a transfer of field

2.1 Linear interpolation
The most common interpolation functions are polynomial because they are easier to inte-
grate and to derive, unlike the trigonometric functions that lead to additional computational
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time [12]. The choice of the interpolation polynomial is based on the type and the degree of
the finite element defined in the initial mesh. Most of the time, the interpolation polynomials
are defined throughout the shape functions of the elements but are not necessary of the same
degree of the element at issue. Nowadays, the standard interpolation method is the linear
interpolation. It is a two-step procedure defined as follows : first of all, one needs to deter-
mine the position of the new node in the old mesh; for that, several localization algorithms
can be used and will be detailed in the annex of this report (section 5). For each node pT
∈ TT , a containing element KD is identified in the donor mesh TD using the localization
algorithm, and then the solution uD is evaluated at the physical location of the target node
pT . The linear interpolation uses the source functions, it assigns the value at the node pT of
the target mesh to be :

Π1u(pT ) = ∑
i

Φi(pT )u(pi) (1)

with Π1 the P1-interpolation operator, Φi the shape functions associated with the source
mesh and u(pi) the solution defined in the nodes of the element that contains the new vertex.

2.2 Moving least-squares approximation
The moving least square method developed by [13] is a method for reconstructing contin-
uous functions from a set of unorganized point samples via the calculation of a weighted
least squares measure around the point at which the reconstructed value is requested. The
approximation of the exact solution at a point is defined based on its nodal values at a limited
number of neighbor points : only the closest points to the current optimum are taken into
account. It is computed as follows:

uapp(x) = pT (x)a(x) (2)

with p the basis functions and a the adjusting coefficients that are computed by minimizing a
norm of the weighted difference between the estimated values at nodes and the nodal values
ui (see [14] for details):

J(a) = ∑
i

wi(‖xi− x‖)(pT (xi− x)a−ui)
2 (3)

The basic principle of this method is that the influence of a node is governed by a decreasing
weighting function wi, that is equal to zero outside the domain of influence of the node. The
weight function plays an important role, it gives a local character to the approximation by
influencing the way that the coefficients ai depend on the location of the designed point x.

2.3 Patch recovery methods
In finite element method, the use of numerical integration, approximation and interpolation
leads to an accumulation of the errors. We recall the concept of superconvergent patch re-
covery methods (SPR) that was first introduced by Zienkiewicz and Zhu [15],[16] in order
to estimate the errors made when using a finite element method. The use of a unique inter-
polation polynomial coupled with a patch recovering procedure was suggested. The basic
principle of this approach consists in recovering the value of the nodal fields by least square

5 Chahrazade BAHBAH



2 COMMON MAPPING METHODS

fit method and then interpolating the nodal values using standard shape functions. For that,
an element patch is defined at each node (see Fig 5), it contains all the elements to which
the node belongs to. For each node, an improved solution is computed by determining a
polynomial expansion over the patch.

Figure 5: Top, Example of an element patch in a regular mesh. Bottom : Sampling points
(triangles) on a patch, Right P1, Left P2

However, for a given patch, only the values on the integration points are conserved; the
derivatives values over the boundaries are not taken into account. For that, when an interpo-
lation point is located in the intersection between two patches, a weighted average procedure
of the different values must be done. Moreover, an error estimate is defined in order to min-
imize the error between the finite element solution gradient and the new improved solution
obtained using a least square projection of the gradient. A study developed by Zhang [17]
shows that the patch recovery technique of Zienkwicz and Zhu gives ultra convergent results
when finite element spaces have the same order and local uniform meshes are used.
Over the years, several techniques inspired from the SPR method were proposed. For in-
stance, the Recovery by Equilibrium in patches (REP) proposed by Boroomand and Zienkiewicz
[18], which avoids the use of superconvergent points and uses a weighted form of equilib-
rium equation to produce recovered solution. Gu and al. [19] increased the robustness and
the accuracy of the SPR approach for non linear problems using integration points as sam-
pling points and introducing additional nodes. The stress recovery method was later used to
recover nodal fields from integration points in order to transfer data between a donor and a
target mesh [20]. Kumar and Forment [21] proposed a consistent technique easier to imple-
ment in a parallel environment that deals with the boundary points with the same order of
accuracy as the interior points.

2.4 Conclusions and remarks
In fluid-solid interaction applications, when we wish to interpolate a field, the data transfer
must be numerically accurate and physically conservative. However, the mapping methods
listed above suffer from many drawbacks. First of all, conservation : the integral of the
interpolant on the target mesh is not the same as the integral of the field on the donor mesh :∫

TD

u 6=
∫
TT

π1u (4)

6 Chahrazade BAHBAH



3 CONSERVATIVE INTERPOLATION METHODS

Due to the accumulation of numerical errors during interpolation, the conservation of mass
and energy is not necessarily respected which is crucial for industrial applications.

Secondly, the maximum and the minimum of the solution will be lost during interpolation :

min
q∈TD

u(q)≤Π1u(pT )≤ max
q∈TD

u(q) (5)

Therefore, we will focus in the following section on the various methods found in the liter-
ature that answer the problem of conservation and maximum principle.

3 Conservative interpolation methods
Several conservative interpolation operators that preserve the global integrals of the solution
fields can be found in the literature. Some of them require building an auxiliary mesh, either
as the intersection between the elements of the different meshes or as the union of the donor
and target meshes in order to facilitate the use of projection operators. Some techniques
depend upon the use of a weighted averaging procedure and others on the resolution of an
optimization problem.

3.1 Conservative interpolation via intermediate mesh building
Many conservative interpolation methods based on the use of an auxiliary mesh can be found
in the literature, in the following section we decide to detail the most recent methods : the
P1-conservative algorithm and the one based on the construction of a supermesh.

3.1.1 P1-conservative technique by mesh intersection

In [22], the author proposes a P1-conservative interpolation operator that satisfies the max-
imum principle. This operator is based on local mesh intersections. The approach begins
with the localization procedure based on the barycentric coordinates presented in the previ-
ous section, then uses the mesh intersection algorithm. It is a local procedure that consists
in computing the intersection between an element of the target mesh and all the elements
of the donor mesh that it overlaps. This algorithm gives us a precise intersection list that
contains for each element of the new mesh, all the triangles of the background mesh that it
overlays. For each couple of triangles KT and K j

D, a new mesh of the intersection with the
following definition is introduced :

T j = KT ∩K j
D (6)

The solution is piecewise linear by element. For each triangle of the donor mesh, we know
the values of:

• The mass mKD =
∫

KD
u

• The constant gradient of the solution ∇uKD
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Hence, we use a quadrature formula in order to compute the exact quantity of mass and the
value of the gradient of the element KT on the target mesh :

mKT =
∫

KT

π
c
1u = ∑

j

∫
T j

u (7)

(∇π
c
1u)|KT =

∑ j
∫
T j

∇u

| KT |
(8)

This scheme is P1-exact, respects the mass conservation and fulfills the maximum principle
by reconstructing the mass field and its gradient with the elemental intersections between
both the donor and target mesh, see [23] for more details.
The obtained numerical results show the influence of the conservative interpolation method,
see Fig 6.

Figure 6: Gaussian analytical function. Top left, 3D representation of the function. Top
right, the mass variation for the transfer TD→ TT . Bottom left, error for the transfer TD→
TT . Bottom right, error for the transfer TD→ TT → TD, [22]

The properties of this algorithm have been verified numerically on analytical examples
and adaptive simulations. While preserving the mass, the results with the P1-conservative
interpolation scheme are more accurate and ensure better conservation of the mass than
the ones obtained with the classical linear interpolation. However, the difficulty of this
algorithm lies in the construction of the list of intersections : many degenerated topological
cases can be encountered.

3.1.2 Interpolation via common-refinement or supermesh construction

Another recent technique is the construction of a common-refinement or supermesh. Grandy
[24] proceeds by mapping from donor to target mesh by calculating the intersection volume
of overlapping polyhedra between the donor and the target mesh, as opposed to Bailey [25]
that approximates the solution over the area of intersection using a Galerkin projection.
One of the main fields of application of conservative interpolation is the transmission of
loads between interfaces, for instance in coupled problems such as fluid structure. Cebral
and Lohner [26], proposed the conservation of the load along the interface using a node-
projection scheme, whereas Jiao and Heath [27] proposed a method also based on the use
of an auxiliary mesh that is highly recommended by Jamain et al [28]. The idea is to define
a common-refinement which is composed of the intersection of the fluid and solid meshes
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along the interface, the algorithms used for surface meshes are described in [29]. It is an
accurate, conservative data transfer algorithm based on the use of a common-refinement of
two non matching surface meshes in order to allow an efficient Galerkin projection of the
results, which minimizes the L2-norm of the interpolation error, see [27]. Several methods
are compared for transferring data once the common-refinement has been constructed, and it
has been shown that the common-refinement based scheme with L2 minimization on linear
basis functions leads to errors which grow more slowly with iteration number compared to
other interpolation methods.
On the other hand, Farell [30] was the first to present a minimally diffusive bounded inter-
polation algorithm between unrelated unstructured meshes that ensures the maintenance of
the maximum principle and mass conservation. It is based on building a supermesh as the
union of the original and the target mesh. The purpose of this union is to facilitate the use
of projection operators as mesh to mesh interpolators. An example of the construction of a
supermesh is shown in Fig 7. The supermesh must respect the following conditions :

NS ⊇ ND∪NT (9)

with NS the nodes of the supermesh TS, and ND, NT the nodes belonging to the parent
meshes, respectively TD and TT . By definition, if a node belongs to a parent mesh it has
to be in the supermesh; and for each element KS ∈ TS, the intersection of KS with any
element of the parent meshes, has to be either empty or the element itself. The utility of
this supermesh is that it provides a decomposition of elements in TD and TT as elements in
TS. This is done using mapping functions χSD and χT S that allow to determine the parent
element of KS ∈TS, in other words, whether it belongs to the donor or the target mesh, and
respectively the children, see [31] (section 2) for more details.

Figure 7: (a) and (b) Quadrilateral meshes, (c) A triangular supermesh of (a) and (b)
coloured to show the elements of (a) - (d) is the same supermesh coloured to show the
elements of (b), [31]
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Let us recall that u is the function whose integral need to be conserved :∫
TD

u =
∫
TT

π
cu (10)

Let us use a discrete form of eq. (11) over the meshes TD and TT :

∑
KD∈TD

∫
KD

u = ∑
KT∈TT

∫
KT

π
cu (11)

We express KT using the mapping functions, so the problem reduces to interpolating from
TD to TS in a conservative manner such that :

∑
KD∈TD

∫
KD

u = ∑
KS∈TS

∫
KS

π
cu (12)

We have the elemental integrals of the solution, the last step is to compute its nodal values
by means of a local Galerkin projection, [31]. We obtain the coming equation :

MT uT = MT DuD (13)

with uT , uD and MT respectively the discrete solutions on the target and donor meshes, and
the mass matrix composed of the basis functions of the target mesh. The difficulty arises
in computing the right hand-side of the equation (14). Indeed, the mixed matrix MT D is
composed of multiplications of basis functions on the donor and target meshes. The issue
that arises in the evaluation of this integral is that the donor mesh basis functions are only
guaranteed to be continuous over each element of the donor mesh. If the integral of the basis
functions is evaluated at Gauss quadrature points on the target mesh, it will lead to a loss
of conservation and accuracy. The use of the supermesh ensures the continuity of the basis
functions of the donor mesh. The mixed matrix is assembled by decomposing the elements
of TT into its children (elements belonging to the supermesh TS) using the mapping func-
tions presented earlier, hence by construction this scheme is conservative.
An example of the use of the supermesh construction and the Galerkin projection for con-
servative interpolation with control-volume meshes is given by Adam and al. [32]. It is
achieved by first mapping the control-volume field into a finite element representation on
the donor mesh by Galerkin projection, then interpolating onto the target mesh by con-
structing a finite element supermesh from the intersection of the donor and target meshes
and finally projecting back to a control-volume representation on the target mesh.

The algorithm based on the construction of a supermesh makes possible the use of Galerkin
projection between unrelated unstructured meshes. It was proved to be efficient and accurate
in three dimensions and also for adaptive meshing simulations.

3.2 Conservative redistribution via local remapping
The techniques for achieving the conservation of certain quantities during the interpolation
consist in either interpolating the results to a new random grid after computing the intersec-
tions between the target and donor mesh, as presented in the previous section, or by locally
modifying the original one, it is called local remapping. These methods grew out of the
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development of arbitrary Lagrangian-Eulerian (ALE) methods, [33]. In ALE settings, there
is a Langragian phase in which the nodes and the elements are advected with the flow, and
then a rezoning phase in which the nodes of the mesh are moved to a more optimal config-
uration, then a remapping phase in which the Lagrangian solution is interpolated onto the
rezoned grid.
Indeed, conservative remapping is a simple form of data transfer that consists in comput-
ing the value of an element of the target mesh by calculating the weighted average of the
values of the source elements in contact with it. Dukowicz [34] first introduced this remap-
ping method that computes the intersection between meshes with a surface integral and
then builds the interpolated field for quadrilateral meshes : the problem of computing the
volume intersection of old and new cells into a surface integral is simplified by using the
divergence theorem. The approach proposed by Grandy [24] differs from that of Dukowicz
[34] in the manner in which the volume of intersection is computed. J. D. Ramshaw [35]
extended this approach for all kind of 2D domains. In 1985, this method was modified with
not only considering the case with constant density cell, but also a more general case with a
linear density distribution, which improved the accuracy of the scheme (less diffusion), [36].
A conservative local interpolation step in ALE algorithms is given by Margolin and Shashkov
[37], it is based on estimating the mass exchanged between the neighboring cells at their
common interfaces. It is an accurate scheme that divides the new cells by taking into ac-
count the intersection with the old ones and guarantees the mass conservation along the
interfaces; the mass is exchanged between the neighboring cells. It was extended to 3D do-
mains by Garimella et al. [38]. The authors defined an underlying function that represents
the density throughout the domain; the only given information about this density function is
its mean value in each cell of the old mesh :

ḡ(KD) =

∫
KD

g(r)dV
V (KD)

(14)

with r = (x,y,z), KD an element of the donor mesh TD, g the underlying function, ḡ the
mean value of the function g, and V (KD) the volume of the cell KD.
This function will be used to define an efficient linearity and bound preserving remapping
method. Indeed, the first step of the algorithm is the reconstruction of the underlying func-
tion. The gradient of the function in all the cells of the old mesh is computed in order to
obtain a reconstructed piecewise linear function. Then, a quadrature formula is used to com-
pute the approximate integration of the reconstructed function onto the new mesh, in order to
obtain the mean values in the new cells (see section 4.2.1 of [38] for details). The last step is
the conservative redistribution of the mass in each cell in order to conserve the local bounds.
Kucharik and Shashkov [39] recommended the use of local remappers that are simpler and
computationally more efficient than global remappers. Indeed, all the possible coincidences
between donor ans target nodes, edges , and facets have been handled without altering the
position of nodes, thus allowing to conserve mass to nearly machine precision. Moreover,
the remapping methods can also be applied to unstructured meshes [40], however, they are
restricted to the use of an ALE framework.

3.3 Matrix based conservative interpolation with restrictions
A conservative formulation based on the projection of the physical properties has been pro-
posed by Chippada and al, [41]. It is not based on grid operations or algorithms but on the
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physics of the problem. In this article, the authors present the example of the transport of
the velocity field. The idea is to compute an approximation of the solution field defined
in the initial mesh; this approximated solution has to satisfy the mass conservation law. It
will not only depend on the initial solution but also on a corrector term that ensures mass
conservation without modifying the vorticity of the velocity field. Brancherie and al. [42]
presented an adaptive remeshing technique based on the diffusive approximation and pre-
serves local equilibrium and ensures conservation of dissipated and strain energy, whereas,
Chesshire and Henshaw [43] discussed conservative interpolation of fluxes between overlap-
ping strucutured meshes; the interpolation coefficients are assumed to be free parameters,
then constraints are applied to the integration weights and the interpolation coefficients.
Pont, Codina and Baiges, [44] proposed an approach so that one will not be restrained to
mass and momentum equations. Thus, the following formulation is proposed. First of all,
the dicretised solution field on the target mesh is computed using a classic interpolation. For
that, two choices are possible : either the use of a projection in the L2 norm, or of a standard
Lagrangian interpolation. Let us assume we computed the interpolated solution uh,T on the
target mesh. This solution has the drawback of being non-conservative. So, the idea pro-
posed by the authors consists in obtaining ũh,T by resolving an optimization problem with
Lagrange multipliers. A series of constraints, such as the conservation of the mass or energy
are applied to the interpolated field trough the Lagrange multipliers. The interpolated field
must satisfy the two following restrictions :

• ũh,T must be the nearest solution to uh,T in the L2 norm

• ũh,T must respect some physical properties of uh,D, solution on the donor mesh

In order to verify the second condition, restriction operators must be defined :

Rn,i : Vh,n→ R (15)

where n refers either to donor mesh or target mesh, i = 1, ...,m represents the restriction
counter. Vh,n is the subspace of discretised functions, Vh,n ⊂V , the space of functions where
the continuous solution lives. It is proposed to minimize this functional :

L : Vh,T × Rm→ R

L(vh,T ,µ) =
1
2

∥∥∥∥∥∑nT

NnT
T (V nT

T −UnT
T )

∥∥∥∥∥
2

L2(Ω)

−
m

∑
i=1

λi

(
∑
nT

RnT
T,iV

nT
T −∑

nD

RnD
D,iU

nD
D

)
(16)

where nD and nT are the nodes on the donor and target mesh and λi the Lagrange multipliers.
NnT

T represents the shapes functions on the target mesh; UnD
D ,UnT

T and V nT
T are respectively

the nodal values of uh,D, uh,T and vh,T . After differentiating the functional L with respect to
the unknowns , we obtain an algebraic system that is different whether we consider a linear
or non linear problem, more details in [44] (section 2.2 & 2.3). Solving the obtained system
of equations will allow determining the new solution ŨT that satisfies the conservation of
mass and energy.
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Figure 8: Top left, original function. Top right, final profile of the function after interpolating
without restrictions. Bottom left, final profile of the function after interpolating with the
restrictions. Bottom right, superposition of all the profiles at y = 0.5, [44]

Figure 8, shows how the imposition of momentum and L2 norm conservation reduces
most of the dissipation. These results are very encouraging. Indeed, the method is easy to
implement and general for different resolutions. However, its extension to mesh adaptation
as well as to anisotropic meshing remains a challenge.
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4 Conclusion and perspectives
The interpolation of numerical solutions between computational meshes is a well known
procedure used in many applications : mesh adaptivity to reduce the computational cost,
coupling between different physical domains or moving meshes which are used in order to
follow rigid bodies in their movement [Phd Thesis Wafa DALDOUL]. The accuracy of the
data transfer is the main concern since the accumulation of generalized diffusion can lead
to numerical errors and create convergence problems. Thus, this bibliographic reports gives
a concise review of the data transfer methods in the literature, both conservative and non
conservative.

Indeed, many conservative interpolation methods were introduced over the years. Among
them, the remapping methods that are appealing, but we are using an Eulerian framework
and these methods where only tested in ALE settings. Some approaches depend upon the
use of an auxiliary mesh, either as the intersection of the elements of the initial and final
mesh, or as a union of the elements. These methods have the advantage of being local,
and therefore easily parallelized. Moreover, they provide satisfying results when tested in
a context of adaptive meshing. Finally, another type of methods that are very attractive :
the matrix based with restrictions. Indeed, they are based on applying restrictions to in-
terpolated solutions, which can easily be implemented. Moreover, the interpolation with
restriction was only tested with simple cases that do not require mesh adaptation. There-
fore, it could be interesting to extend it to adaptive anisotropic meshing, [45].

In the context of this research project, the method that we will be implementing needs to
be operational in a parallel environment, robust and optimal in computational time. On the
other side, the conservative property is mandatory for industrial applications. Today, the lin-
ear interpolation scheme is used in CEMEF, it works in parallel and deals with triangular and
tetrahedral meshes. First of all, we will focus on modifying this method to increase the ac-
curacy and ensure a conservative transfer in terms of mass and energy. Different approaches
can be investigated. Indeed, the supermesh construction proposed by Farell ( section 3.1.2)
and the matrix based (section 3.3) will be analyzed, implemented and tested for different
applications. And finally, we will apply conservative interpolation to the industrial problem,
in order to transfer accurately the fields from a fluid-solid mesh to a solid mesh.

14 Chahrazade BAHBAH



5 ANNEX : LOCALIZATION ALGORITHMS

5 Annex : Localization algorithms
The localization algorithm consists in identifying the element of a mesh that contains a given
point. The localization of a point in a mesh is necessary when we shall transfer data from
one mesh to another. Hence, the algorithm consists in finding the elements of the old mesh
that contains the new nodes of the target mesh. For that, different approaches can be used,
a detailed comparison of the efficiency of the different methods can be found in [46]. We
recall here two major contributions.

Topological search method
Alauzet, [22] proposes a topological method based on the barycentric coordinates. Here,
for the sake of simplicity, we will consider a two dimensional space. Let us consider the
following situation: we have a node pT that belongs to the new mesh TT and we want to
find the element KD ∈ TD in which it is located. The element KD is defined by its three
vertices [P0, P1, P2], and the barycentric coordinates are computed as follows :

βi =
AKi

AK
(17)

with i = [0,1,2], AK the surface of the triangle KD and AKi , the surface of the triangle whose
vertex pi is replaced with the vertex of the new mesh pT .
The idea is to study the sign of βi (Fig 9), three cases are possible :

Figure 9: Sign of the barycentric coordinates

• if all the barycentric coordinates are positive, then the new node pT belongs to KD

• if only one βi is negative, then we have to move to the neighbor Ki that shares the edge
~ei with KD

• if two βi are negative, then we have to try the two neighbors.

We reiterate this process till all the coordinates are positive which means we found the trian-
gle in which pT is located, an example of the localization algorithm in a three dimensional
space is given in Fig 10.
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Figure 10: Left, a possible path to locate the vertex P of the new mesh starting from the
triangle K0 of the donor mesh. Right, cyclic path leading to an already checked element.
Starting from K0, triangles K1, K2, K3, K4 and K5 are visited, bringing us back to K0, [22]

Tree search algorithms
An alternative to the topological approach is the use of tree search algorithms. For instance,
the quadtree algorithm for a two dimensional case that consists in partitioning the two di-
mensional space into four quad (Fig 11) and the octree algorithm by subdividing the 3D
space into 8 regions..

Figure 11: Quadtree algorithm

We start with one rectangle, and then for each node of the new mesh we check :

• if that new node fits completely inside the rectangle

• if yes, we subdivide the rectangle into four children, then recursively do the first step

• if not, then continue to the next rectangle until there are no nodes left

The vertex of the new mesh is located in the smallest rectangle that can contain it. Here
in CEMEF, we use the octree algorithm but also the R-tree [47]. Indeed, the structure is
designed so that a spatial search requires visiting only a small number of nodes. In this
case, the rectangles are not regular, we group nearby elements and represent them with their
minimum bounding rectangle.
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