Statistical Threshold Selection for Path Openings to Detect Cracks - Mines Paris
Communication Dans Un Congrès Année : 2017

Statistical Threshold Selection for Path Openings to Detect Cracks

Petr Dokládal

Résumé

Inspired by the a contrario approach this paper proposes a way of setting the threshold when using parsimonious path filters to detect thin curvilinear structures in images. The a contrario approach, instead of modeling the structures to detect, models the noise to detect structures deviating from the model. In this scope, we assume noise composed of pixels that are independent random variables. Henceforth, cracks that are curvilinear sequences of bright pixels (not necessarily connected) are detected as abnormal sequences of bright pixels. In the second part, a fast approximation of the solution based on parsimonious path openings is shown.
Fichier principal
Vignette du fichier
main.pdf (666.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01478089 , version 1 (27-02-2017)

Identifiants

Citer

Petr Dokládal. Statistical Threshold Selection for Path Openings to Detect Cracks. International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, ISSM 2017, May 2017, Fontainebleau, France. pp.369-380, ⟨10.1007/978-3-319-57240-6_30⟩. ⟨hal-01478089⟩
389 Consultations
354 Téléchargements

Altmetric

Partager

More