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Abstract—The assessment of images of complex materials on
an absolute scale is difficult for a human observer. Comparing
physical and virtual samples side-by-side simplifies the task by
introducing a reference. The goal of this article is to study the
influence of image exposure on the perception of realism on
images of paint materials containing sparkling metallic flakes.
We use a radiometrically calibrated DSLR camera to acquire
high resolution raw photographs of our physical samples which
provide us with radiometric information from the samples. This
is combined with the data obtained from the calibration of a
stereoscopic display and shutter glasses to transform the raw
photographs into images that can be shown by the display,
controlling the colorimetric output signal. This ensures that we
can transform our data back and forth between a radiometric and
a colorimetric representation, minimizing the loss of information
throughout the chain of acquisition and visualization. In this
article we propose a paired comparison scenario that improves the
results from our previous work, focusing on three main aspects:
stereoscopy, exposure time, and dynamic range. Our results show
that observers consider stereoscopy as the most important factor
of the three for judging the similarity of these images to the
reference, followed by exposure time and dynamic range, which
supports our claims from previous research.

Keywords—Human visual system, Texture perception, Paired
comparison, Physically-based rendering, Perceptual quality metrics.

I. INTRODUCTION

This research takes place in the context of perceptually
realistic simulation of sparkling metallic paint materials for
industrial product design applications. Such applications rely
strongly on the aspect of the product, and so it is paramount to
ensure that a human observer perceives both the simulated and
the physical product as equal. Stereoscopy is used to provide a
more accurate simulation of the sparkling effect as explained
by Da Graça et al [1].

Physically-based image rendering (PBR)1 is a process that
implies reproducing on a computer the exact aspect of a real
object according to the laws of physics. Typically, the goal
of PBR is to produce physico-realistic images which, in our
context, means that the signal emitted by a screen displaying

1Here, we understand PBR in the sense of predictive rendering [2].

a virtual representation of a given scene is radiometrically
identical to that emitted by the real (physical) scene itself.
We use a PBR rendering engine to create computer-generated
(CG) simulations of the materials from a series of chemical,
mathematical, and optical models of their composition and
structure, and models of their interaction with the light.

The images generated by the rendering engine are ex-
pressed in terms of device-independent radiometric values
for each pixel in the image. Since they will ultimately be
shown on a computer display, those radiometric values must
be transformed into some device-dependent colorimetric space
before they can be visualized. The stereoscopic visualization
pipeline is formed by a series of different elements, namely the
computer display, the stereoscopic viewing device, and finally
the human visual system (HVS).

The amount of factors to take into account to obtain
a perfect PBR, along with the constraints and complexity
of the visualization pipeline, make difficult to render true
physically realistic images. An alternative approach is selective
rendering (SR), which uses human visual perception principles
to render images realistically from a perceptual point of
view [3], [4]; it is at this point that the perceptual validation
of the rendering engine becomes important. We know that
the capabilities of the HVS to perceive visual information
depend on many factors such as contrast, frequency, shape,
or illuminant [5] [6] [7] [8] [9]; the perceptual validation
stage helps us to improve the results in several ways. We
can identify and resolve aspects of the rendering process that
are not properly dealt with by the rendering engine, find per-
ceptually superfluous information that may be removed from
the computation —reducing the amount of image information
and the computation times— and assign weights to relevant
perceptual information in the images.

To study visual perception in our specific context of car
paint materials with sparkling metallic particles we have de-
signed a series of observation experiments under a controlled
environment. We have taken photographs of a reference paint
plate using different exposure times —resulting in a series
of images with known characteristics— to analyze the effect
of three main image aspects: stereoscopy, exposure time,
and dynamic range. Human observers were asked to look



at randomly-arranged pairs of these images and rate their
similarity to the physical reference paint plate, located beside
them.

In the following sections we describe the preparations
required prior to the actual experimentation (subsection II-A),
and present three possible scenarios to perform side-by-side
tests within our context of complex paint sample comparisons
(subsection II-B). We then show that our preferred choice —
consisting on using independent illuminations for the reference
and sample images— provides meaningful information about
the effect of the selected parameters in the perception of
this type of material images (section III), allowing us to sort
them by level of perceptual relevance. Finally, we discuss the
results (section IV) and propose some future work directions
(section V).

II. METHODOLOGY

Before designing the visualization experiments it is impor-
tant to analyze the characteristics of the devices involved in
the acquisition and visualization chain. The colorimetric signal
emitted by the display, the spectral power distribution of the
illuminant, or the luminance at each point on the surface of the
display are factors to be considered since they can determine
different aspects of the visualization such as the positioning
of the virtual samples on the display, the distance between the
two samples and the observer, or the ambient illumination in
the room.

A. Calibration

When we observe a sample, we perceive a series of radio-
metric signals emitted by the object, which hit the receptors
in our eyes. We can simulate the behavior of the HVS and
measure the signals arriving onto the receptors by replacing
the human observer with a DSLR (Digital Single-Lens Reflex)
camera. If we measure the radiance and color tristimulus values
for a large enough number of color samples —such as a color
chart— under some observation conditions, we can estimate a
transfer function that gives us the radiometric value for any
color pixel captured by the camera and vice versa; this is
known as radiometric calibration. We used a 24-patch Macbeth
color chart to calibrate a Nikon D800 camera. Fig. 1 shows the
correlation between radiometric values measured directly over
the sample and the values obtained with the estimated transfer
function; we can see that the resulting graph is almost a straight
line, which means that there is a very good correlation between
both values.

Since we want to analyze the effect of different exposure
times, it is important to calibrate for each exposure value
that we want to study. However, we must keep in mind
that the illumination intensity must be reduced or increased
according to the exposure duration to avoid oversaturation or
undersaturation, respectively.

In order to control the radiometric output of the display we
must know its transfer function, which gives us the colorimet-
ric input values (typically in the RGB color space) that must
be input to the display to produce the desired output signal.
The process required to obtain said transfer function is known
as colorimetric display calibration, and can be used to convert
RAW photographs obtained with the DSLR camera into images

Fig. 1. [a,b] Left (a): Correlation curve between measured and estimated XYZ
values using the camera calibration model for a exposure time of 1/8 seconds:
The horizontal axis represents radiometric values computed directly from
the sample with a spectroradiometer; the vertical axis represents radiometric
values computed using the estimated transfer function. The coefficient of
determination R2 for channels X, Y and Z is, respectively, 0.999, 0.999,
and 0.998. Right (b): Correlation curve between real RGB values and those
estimated with the colorimetric calibration of the display using a gain-offset-
gamma (GOG) model. The coefficient of determination R2 for channels R,
G and B is, respectively, 0.999, 0.998, and 0.998.

Fig. 2. Spectral transmittance (expressed as a percentage) of the Nvidia
3DVision shutter glasses.

within the color gamut of the display that are perceptually
equivalent to the photographed scene. Two display calibrations
were performed: in stereoscopic mode and monoscopic mode.
The stereoscopic calibration is performed similarly to the
monoscopic one, but enabling the stereoscopic mode in the
display and placing a pair of stereoscopic shutter glasses before
the spectroradiometer while measuring the color samples on
the display; this is important so that we can account for the
effect of visualizing the samples with stereoscopic glasses,
since not only do the filters on the glasses reduce drastically
the overall luminance, but they also modify the perceived color
by adding an overall greenish tint (see Fig. 2).

Typical LCD displays do not produce a very large color
gamut due to the technology used; for that reason we chose
the ASUS VG248QE given its relatively high colorimetric
performance in benchmarks [10]. Fig. 3 shows the gamut
obtained for the settings used in our calibration, which were
chosen experimentally to obtain the largest color gamut. This
gamut was built measuring each primary color on the display
with an Xrite I1Display colorimeter and representing their
xy coordinates on the CIE 1931 color space chromaticity
diagram. Although the chosen settings do indeed provide a
large enough color gamut, initial results showed that they also
create some additional problems. Fig. 4 shows the spectral



Fig. 3. Color gamut of the display obtained with an Xrite i1Display
colorimeter. The display is a stereoscopic LCD ASUS VG248QE with White
LED Backlight.

Fig. 4. Spectral distribution curves of the three primaries of the display.

power distribution (SPD) of the three primaries measured with
a spectroradiometer under the same illumination conditions
used in our experiments. If we look at the graphs, we can
see there is a very large peak in the blue component that also
affects the green and red channels (see the small blue peak
around 450 nm).

Indeed, the occurrence of such peaks complicates the
estimation of the transfer function. To characterize the response
of the display we estimated three parametric models (one
for each color channel) from a set of 119 color samples,
which were then validated against the Macbeth color chart.
These parametric models were estimated by fitting the obtained
channel curves to a gain-offset-gamma (GOG) characterization
model and solving a nonlinear least squares regression, ob-
taining a high coefficient of determination R2 of 0.999, 0.998,
and 0.998, for the estimation of channels red, green and blue,
respectively.

B. Exposure-time paired comparisons

We are interested in obtaining perceptually realistic results,
and paired comparisons are a good way to assess the aspect of

Fig. 6. Photograph of the experimentation room. We can see that the
illumination only affects the left side of the panel (reference plate).

these sparkling metallic paint textures. Given the complexity
of the sparkling effect, it is difficult for an observer to visually
assess these images on an absolute scale, so introducing a
reference that acts as ground truth simplifies the evaluation
task. At the same time, comparing the images side-by-side
reduces the time to move the eyes from the test image to
the reference and, therefore, the effects of low visual memory
persistence times in the comparisons.

In order for the photographs to be comparable to the
physical reference we must bare in mind three important
constraints: firstly, the photographs must be taken under the
same illumination conditions as those in the visualization ex-
periment; secondly, given the effect of contrast and luminance
on perception in general [7] and material texture perception
in particular [11], we must ensure similar contrast levels in
both the images and the physical samples; finally, if we want
to include both stereoscopic and monoscopic images in the
comparisons, observers must keep the stereoscopic glasses on
at all times, regardless of the type of image they are looking
at, to ensure similar colorimetric conditions.

The most straightforward scenario to compare a physical
and virtual sample under the same observation conditions
is to visualize the photographs and the physical reference
together, under the same illuminant (Figure 5.a). The idea
behind this test scenario is to equalize as much as possible the
observation conditions so that, if we hide everything outside
the samples, we can somehow make the observers forget
that they are looking at two samples on different supports
(physical and digital). However this solution has an important
downside to it: the display is an emissive surface and, as
such, it introduces additional light into the virtual sample
—the illumination already present in the photograph, plus
the one in the visualization environment, plus that of the
black point of the display. While we can correct for some
of the additional lighting, it is impossible to obtain similar
luminance levels on both samples because there will always be
a common factor, the ambient illumination in the visualization
environment, which will remain constant for both samples.

A possible workaround to this scenario, which should
resolve the problem with the additional lightness on the virtual
sample, is to take the photographs of the samples with a



Fig. 5. [a,b,c] Diagram of the setup in the three scenarios suggested. The test photographs are to the right and the real sample reference to the left. In the first
two scenarios the illumination is common to both sides of the comparison, whereas in the third case it only affects the physical sample. Notice the important
luminance difference between both sides of the comparison in the first scenario, due to the additional light emitted by the display. The use of paired comparisons
in the third scenario simplifies the assessment of the images.

lower exposure to compensate for the additional luminance
introduced by the display (Figure 5.b); this solution would in-
deed produce images with a similar luminance as the physical
samples when viewed under the same illumination. However,
as explained in our previous article [11], image exposure
plays an important role in our perception when observing
photographs of materials, so by reducing image exposure when
we capture the photographs we might inadvertently be favoring
certain aspects of the material and, therefore, biasing our
perception.

As a solution to the problems mentioned above we propose
to visualize the photographs and the reference side by side,
but using a different luminance —but the same illuminant
spectrum— on each side (Figure 5.c). This scenario is more
versatile because it allows for independent tuning of the illumi-
nation and reproduces more closely the observation conditions
in the reality given that the user will never be looking at the
simulated results next to the physical object. Since we seek
to produce a perceptually realistic simulation it is acceptable
for observers take a short time while switching their focus
from the reference to the photographs and vice versa. In this
work, we perform an experiment using this new methodology,
showing that it produces better results than those obtained with
the previous comparison scenarios.

III. RESULTS

We took photographs of a sample paint plate at several
exposure times, and chose three different values, short (1/15
seconds), medium (1/8 seconds), and long (1 second), trying
to minimize the amount of undersaturation and oversaturation
present in the images in the RGB color space after color
correcting for the display’s gamut (see Table I) and maximize
contrast. Indeed oversaturated and undersaturated pixels will
all be clipped upon display to the maximum and minimum
values, respectively, so some of the information above a
certain threshold is lost and cannot be recovered. Controlling
the amount of saturation is then crucial to keep as much
information from the RAW photographs as possible. In general,
the longer the exposure time the less contrast the images have,

because they use a narrower part of their potential dynamic
range.

We color corrected the images so that the radiometric
signal emitted by the display matches that of the physical
sample when the photographs were taken. Using the medium
exposure image as reference, we created a modified version
of the short and long exposure images by scaling the XYZ
color tristimulus values by a factor such that the maximum
luminance (maximum Y) is as close as possible to that of
the medium-exposure image (see Figure 7), avoiding oversat-
urating more than a 0.3% of the RGB image pixels —this
percentage was chosen experimentally to obtain a reasonably
low amount of perceivable oversaturated pixels. By scaling the
XYZ tristimulus values of images taken at different exposure
times, using the luminance of the reference image as target,
we obtain a new set of images where they all have a similar
dynamic range but different contrast (see Figure 7), which
allows us to analyze the role of dynamic range and contrast in
perception as well.

For each of the five images listed in Table I we created two
versions, monoscopic and stereoscopic, to also test whether or
not the use of stereoscopy has any effect on the preference
for a given sample. Altogether, this resulted in a set of 10
different images (see Table II). We created series of 45 pairs of
images from the list —i.e. all possible combinations of the 10
images, excluding comparisons with themselves— combined
randomly, and asked a group of 30 observers to compare the
two images in each pair (test images) and say which one they
perceived as ”closer” to the reference paint plate —i.e. the
physical plate that we took the original photographs from.
The test images were arranged vertically on the right-hand
side, whereas the reference was positioned to their left, 42
centimeters away (see Figure 5.c and 6); both the test images
and the reference were observed through an aperture on a black
surface to isolate them from their surroundings. The reference
was illuminated independently from the test images during the
experiment by a similar illumination to that used when the
photographs were taken, to minimize the differences between
the images and the physical reference; at the same time this



Fig. 7. Luminance scaling process. When the maximum luminance is greater than the reference (Ymax2 > Ymax) the dynamic range is compressed, resulting
in a darker background color but higher contrast between the background and the sparkle of the metallic flakes. Similarly, when the maximum luminance is lower
than the reference (Ymax3 < Ymax) the dynamic range is expanded, resulting in a brighter background, which reduces the contrast between the background
and the sparkles.

Image Exposure
time (sec)

Luminance
scaling
factor

Max.
luminance

Pixel
saturation
(%)

1.1 Short
(1/15) 1 205.3

R = 0.158
G = 0.034
B = 0.032

1.2 Short
(1/15) 0.51 104.7

R = 0.039
G = 0.006
B = 0.007

2.1 Medium
(1/15) 1 104.7

R = 0.145
G = 0.028
B = 0.030

3.1 Long
(1) 1 15.65

R = 0.009
G = 0.000
B = 0.000

3.2 Long
(1) 1.78 27.85

R = 0.300
G = 0.000
B = 0.000

TABLE I. LIST OF IMAGES USED IN THE EXPERIMENT. THERE IS A
BASE VERSION OF EACH IMAGE AND A SCALED VERSION OF IMAGES 1
AND 3. THERE IS NO SCALED VERSION OF IMAGE 2 BECAUSE IT IS THE

REFERENCE IMAGE FOR LUMINANCE LEVELS. IMAGE 3.2 HAS A
MAXIMUM LUMINANCE LOWER THAN THE REFERENCE (104.7) BECAUSE

SCALING IT BY A HIGHER FACTOR WOULD RESULT IN A HIGH AMOUNT OF
OVERSATURATED PIXELS.

helps to control the amount of light incident on the plate, which
has an effect on the saturation of the cones in the eyes of an
observer looking at it, resulting in a better reproduction of
the photograph’s environment. The observers were seated in
a position between the test images and the reference, wearing
a pair of stereoscopic shutter glasses (NVidia 3DVision), at a
distance of approximately 57 centimeters.

From the responses obtained in the experiment —
responding to the question ”which image from the test pair
is closer to the reference?”— we computed the scores for
each sample, according to the Bradley-Terry model [12].
These scores indicate the probability of each sample being
chosen by an observer as closer to the reference over any
other. Representing these scores in a logarithm scale —which
represents better the relative nature of visual perception— we
can group our ten samples into different similarity classes.
Figure 8 shows five classes designated by colors green (1),
blue (2), yellow (3), brown (4), and red (5).

In this experiment we are analyzing the effect of three

Fig. 8. Experiment results. The ordinates indicate the sample number (see
Table II) and the abscissas indicate the Bradley-Terry scores in logarithmic
scale.

Sample Image Type Score LOG
score

Perceptual
class

8 3.2 M 0.0296 -1.5287 5
2 1.2 M 0.0432 -1.3645 4
7 3.1 M 0.0543 -1.2652 3+4
1 1.1 M 0.0718 -1.1439 3
5 2.1 M 0.0740 -1.1307 3
9 3.2 S 0.0751 -1.1244 3
3 1.2 S 0.0762 -1.1180 3

10 3.1 S 0.1149 -0.9397 2
4 1.1 S 0.2036 -0.6912 1
6 2.1 S 0.2574 -0.5894 1

TABLE II. BRADLEY SCORES AND LOG SCORES FOR EACH OF THE
SAMPLES USED IN THE EXPERIMENT IN ASCENDING ORDER. THESE

SCORES REPRESENT THE PROBABILITY OF EACH SAMPLE BEING JUDGED
CLOSER TO THE REFERENCE OVER ANY OTHER. TYPES M AND S STAND

FOR MONOSCOPIC AND STEREOSCOPIC RESPECTIVELY.

different factors on the perception of images from our paint
samples: the use of stereoscopy, exposure time, and dynamic
range and contrast. From the information in Table II we can
see a tendency from observers to choose samples giving these
factors a clear order of preference. Indeed we can see that
stereoscopic samples are clearly preferred over monoscopic
ones; when both samples are of the same type, contrast comes
into play. Base images —i.e. those whose XYZ tristimulus
values have not been tampered with— are preferred over
the adjusted ones, with observers preferring medium-exposure
images over short-exposure (excessive contrast) and long-
exposure ones (low contrast). Based on these results we can



sort these three factors according to their relevance for the
average observer to choose the resemblance of an sample
image to the reference in the following order:

1) Stereoscopy over Monoscopy
2) Exposure time

a) Medium exposure
b) Short exposure (high contrast)
c) Long exposure (low contrast)

3) Dynamic range

finding in our work in image validation for it sets a solid
starting point towards the allocation of weights to image
features within potential future validation metrics to be used
as part of the material rendering model.

Our rendering model currently uses a generic perceptual
tone mapping operator [13], [14] to map the luminance of
pixels in multi-spectral high-dynamic range images to a low-
dynamic range display. Future works should benefit from
the results of these perceptual experiments to help find a
relationship between exposure time in the photographs and
total luminance in the images generated by the rendering
engine. In this regard, we propose to perform a new paired
comparison where photographs will be replaced by CG images
of the simulated materials in the comparisons with a physical
reference; the goal is to integrate these results into the current
rendering model to try to improve the performance of the tone
mapping process by adapting it to the specific characteristics
of the visualization of sparkling paint materials.
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This is consistent with the fact, explained earlier, that 
contrast is reduced for longer exposures times, and supports 
our previous claims [11] that image luminance and contrast —
strongly linked to the exposure time— can alter the perception 
of sparkling due to its effect on flake size.

IV. CONCLUSIONS

The goal of perceptual validations is twofold: on the one 
hand it identifies a nd r esolves a nomalies i n t he rendering 
process, and on the other hand it studies the properties of the 
available physical samples and analyzes the response of the 
HVS to different aspects of the materials when observing the 
samples. We can then use the results obtained during validation 
to assign weights to certain aspects of the materials and opti-
mize the rendering process by prioritizing the computations.

The comparison of virtual and physical samples provides 
us with important information regarding how human observers 
perceive each aspect of our complex paint samples. To be 
able to perform such comparisons we must be able to con-
trol at every moment the transformations performed over 
the data. The calibration of all the devices participating in 
the process is essential since it provides us with the tools 
to move between radiometric and colorimetric data and, in 
turn, between the physical and the colorimetric domain. The 
colorimetric transformations introduced by the devices must 
be taken into account to find t he r ight o bservation conditions 
for the experiment and estimate the resulting signal.

Based on our experience from several tests, we believe 
that the best way to compare physical and virtual samples 
side by side is to introduce some sort of separation be-
tween both samples so that the illumination intensity can 
be controlled independently for each sample, to compensate 
for any possible irregularities inherent to the experimentation 
conditions. Furthermore, the proposed comparison scenario, 
closer to the paradigm of perceptual comparison, represents 
in a much closer way the observation conditions in the actual 
environment of the final product.

The results from this experiment show that these new 
experimentation conditions do indeed resolve all of the issues 
found in our previous experiment, which helps provide much 
more robust and meaningful results.

V. FUTURE WORK

We have shown that for a large enough population of 
observers and a given series of known criteria we can use 
paired comparisons to find t he o rder i n w hich t hose criteria 
are considered by human observers when assessing the quality 
of images of sparkling metallic materials. This is an important
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