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Abstract

This paper focuses on the modeling of a hydrogen arc column at very high pressure (20 bar).
The problem is solved from Elenbaas-Heller equation where radiation is carefully considered with
the net emission coe�cient. The absorption spectrum requires the integration of background
continuum, molecular bands and line spectra. This work directly aims to predict the electric
current-voltage characteristics which is key for the design of new processes. We propose also a
new analytic solution which generalizes the channel model of electric arc to the case when the
volume radiation makes a signi�cant contribution to the energy balance. The presented formalism
allows a better determination of the plasma thickness parameter Rp for net emission coe�cient
method in cylindrical arcs and gives satisfactory results in comparison to earlier experimental
works on high pressure hydrogen plasma.

Keywords: channel arc model, radiation, hydrogen plasma, very high pressure

Introduction

With the present context of fossil fuel depletion, global warming and other major environmental
impacts, the energy sector de�nitively remains one of the most critical. The future of humanity
will certainly depend on our ability, during the next decades, to develop new and sustainable
solutions in the �eld of energy.
In the perspective of a foreseeable large scale deployment of renewable energy for electricity
production, plasma processes could lead to breakthroughs with new and environmental-friendly
processes likely to answer tomorrow's challenges through the replacement of a number of com-
bustion based processes. Indeed, plasma can favorably act as a robust tunable enthalpy source
without direct CO2 emissions while signi�cantly improving the reactivity of number of chemical
reactions.
PERSEE group at MINES ParisTech has been working on the plasma-assisted conversion of
hydrocarbons. This led to the development of a three-phase AC plasma torch which attains pre-
industrial size and runs at atmospheric pressure with di�erent pure and mixture gases (argon,
helium, nitrogen, air,...) [1�3]. Studies are also conducted for its improvement toward a very
high operational pressure (up to 20 bar) with pure hydrogen.
Very few works has been done on very high pressure thermal plasmas running with hydrogen.
To the authors' knowledge, their use refers back to the 70's when the arc heater was developed
for the simulation of high temperature re-entry of ballistic missiles in USA [4]. Such scarcity can
be explained by the necessity, at 20 bar for example, to design an appropriate power supply, to
better calculate the radiative contribution and have materials that resist to high thermal and
mechanical constraints.
Deriving the electric characteristic of the arc for power supply speci�cations is then one �rst
challenge when using hydrogen, known to have a higher voltage than argon, nitrogen, etc. While
advanced computational methods as CFD, MHD are costly, there are simpli�ed models such
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as channel arc models that give reliable results and have proven to compare well with experi-
ments [5�7].
The approach developed in this paper is crucial when one is willing to derive the current/voltage
characteristic of the arc, for a better speci�cation of the power supply at very high pressure. A
particular attention is paid to the radiative heat transfer through costly but precise computations
of the absorption coe�cients [8] used in net emission coe�cient (NEC) method.
As in most numerical approaches, physical parameters must be assigned de�nite values before
the program can be run. The plasma thickness appearing in NEC approach was observed to have
a great e�ect on the electric characteristic. Then, for design purposes, a clear understanding of
how the input values a�ect the end result is of great importance. There will be a much greater
understanding on this score with an analytic solving. Consequently, one purpose of this paper
is also to �x the aforementioned radiative parameter through a new and original formalism for
an analytic solution of the energy balance equation. Such modeling of the divergence of the
radiative �ux as function of the heat �ux potential enables to treat almost totally by analytic
means the Elenbaas-Heller equation, notwithstanding its severe non-linearities. Finally, the key
outcome of this work is the validation of the pressure e�ect on the arc voltage with previous
works on hydrogen plasma [4,9].

1. General assumptions

At the outset it should be mentioned that the theory of the arc as developed here entirely dis-
regards any phenomena that are due to the presence of electrodes. Hence we assume that the
positive column voltage is much bigger than cathode and anode drops and, as for most situa-
tions, this column part of the discharge determines the operational characteristics of the arc.
In plasma using inert gases like argon, the electron-neutral energy exchange is less e�ective and
requires high currents and electron densities to reach quasi equilibrium whereas in molecular
gases such as hydrogen, the local thermodynamic equilibrium (LTE) is easier to reach, thanks
to su�cient electronic densities and moderated temperature and density gradients for small dif-
fusive �uxes [10].

2. Arc modeling

One of the major issues to be dealt with arc plasma is its stability. The easiest solution is to
surround the arc with a well-cooled wall that should be able to absorb the energy losses without
being destroyed. Several investigators have studied the problem of the approach to the asymp-
totic column. One of the most striking formulations for tube arc problems is that of Stine [6]
which showed particularly good agreement with experiments. We consider here a positive column
of arc plasma burning and con�ned inside a cylindrical tube which walls are maintained at a con-
stant temperature. This boundary condition, with a rotationally symmetric geometry, allows us
to formulate the channel arc problem without involving the Steenbeck's minimum principle [11]
which mathematical meaning in gas discharge physics has also been questioned [12].
The stronger the con�nement, the larger the gradients in the plasma arc. We assume nevertheless
that the LTE prevails in the whole paper. This can be justi�ed retrospectively, with relatively
low densities and temperature gradients, inducing then small di�usive �uxes.

3. Equations

In order to provide a reasonable description of the manner in which the positive column of a DC
arc behaves, it is necessary and su�cient to derive the di�erential equation that describes the
energy-transfer processes within the arc column. The temperature distribution in a long cylindri-
cal steady-state thermal plasma column stabilized by tube walls is described by the well-known
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Elenbaas-Heller equation [13], derived in the following sections.

3.1 Electric �eld

For the steady-state arc, the Faraday's law in cylindrical coordinates (r, θ, z) gives

∇× E⃗ =
(1
r

∂Ez

∂θ
− ∂Eθ

∂z

)
e⃗r +

(∂Er

∂z
− ∂Ez

∂r

)
e⃗θ +

(1
r

∂(rEθ)

∂r
− 1

r

∂Er

∂θ

)
e⃗z = 0⃗ (1)

The Eθ component and the θ derivatives are null for a symmetry matter. Moreover, the arc
column refers to that part of the arc plasma axially invariant. Thus, Eq. (1) reduces to

∂Ez

∂r
= 0 (2)

Hence, for the positive column, the electric �eld is uniform.

3.2 Elenbaas-Heller equation

The DC positive column energy equation is given by

∇ · q⃗ +∇ ·
[
pv⃗ + ρ(e+

v2

2
)v⃗

]
− j⃗ · E⃗ +∇ · q⃗rad = 0 (3)

which contains from left to right one conductive term, two convection terms, the Joule heat term
and �nally the radiation term. q⃗, p, v⃗, e, j⃗, E⃗ and q⃗rad are respectively the conductive �ux,
pressure, velocity, enthalpy, electric �eld and radiative �ux. The transport through the electron
enthalpy and due to the electron drift is neglected.
Within the current range considered here (up to hundreds of amperes), the cathode jet due to
Maecker's e�ect [14] is negligible, so is the self-magnetic �eld. Thus any convective contribution
of the Lorentz force in the energy balance vanishes. The mean gas velocity v is set to zero due
to axisymmetric assumption. The Ohm law can be simply written as

j⃗ = σE⃗ (4)

The radiation term in Eq. (3) is computed using Lowke's approach of the net emission coe�cient
[15], with the divergence of the radiation �ux density q⃗rad given by

∇ · q⃗rad = 4πϵN (5)

More details for the computation of the coe�cient ϵN will be provided in the next section.
Assuming heat transfer by conduction with the Fourier law

q⃗ = −κ∇T (6)

we �nally obtain the energy balance of the steady-state column in cylindrical coordinates as

σE2 +
1

r

d

dr
(rκ

dT

dr
)− 4πϵN = 0 (7)

Eq. (7) is known as the Elenbaas-Heller equation. Its boundary conditions are dT/dr = 0 at
r=0, and T = Tw at the tube radius r=R. The walls' temperature is taken as 300 K in this whole
study. The electric control parameter here is the electric �eld rather than the current for the
sake of simplicity, derived using

I = 2πE

∫ R

0

σ(T )rdr (8)
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Any electric circuit model is needed since the arc impedance is assumed to be small compared to
the combined impedance of the rest of the circuit. Then, the Elenbaas-Heller equation together
with Eq. (8) permits calculations of the electric characteristic E(I) of the plasma column.
In addition to the net emission coe�cient ϵN and as shown in Eq. (7), this solution requires
knowing the following material functions: electrical conductivity σ(T ) and thermal conductivity
κ(T ), plotted in �gures 1a and 1b. The plasma characterization will consist �rstly in determining
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Figure 1: Electrical and thermal conductivities of hydrogen

these functions from the chemical composition: a calculation code TT Winner [16] based on the
Gibbs free energy minimization is used with the temperature ranging from 300 K to 20 000 K
and for 1 and 20 bar pressure. As a second step, the transport properties are computed from
the composition of the plasma with the Chapman-Enskog approach [17] which is based on the
solution of the integro-di�erential equation of Boltzmann. Corrections to ideal gas law are also
considered: a second order Viriel correction which uses Hirschfelder's formulation [18] and a
Debye correction to take into account appearing Coulomb interactions that cause a lowering of
pressure [18,19].
The numerical solutions of Eq. 7 were obtained using an ordinary di�erential solver in the soft-
ware MATLAB [20]. Once the dependencies of net emission coe�cient, thermal and electrical
conductivities on temperature are set up, the algorithm gives the temperature pro�le and the
resulting current for a given value of electric �eld and a guessed axial temperature T0. The
solution at the tube walls is compared to the speci�ed boundary temperature. If not equal, T0

is modi�ed and so on, until convergence is achieved.

3.3 Net emission coe�cient

In many plasma studies, radiation is neglected or estimated with empirical formulas [10]. How-
ever, at high current and/or pressure, it becomes the main heat transfer mechanism [16]. For
more accurate results, we consider the following Radiative Transfer Equation (RTE)

n⃗ · ∇Iν = k′ν(Bν − Iν) (9)
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where

k′ν = kν
[
1− exp(− hν

kT
)
]

(10)

Bν =
2hν3

c2
[
exp(

hν

kT
)− 1

]−1
(11)

Jν =
1

4π

∫
4π

Iν(r⃗, n⃗)dΩ (12)

k′ν is the absorption coe�cient corrected by the induced emission and correlated with the local
emission coe�cient by the Kirchho� law; Bν the Planck function; Jν the average radiation
intensity; Iν the radiation intensity in the r⃗ direction, through a surface unit of normal direction
n⃗.
As a simpli�cation, the method of the net emission coe�cient (NEC) developed by Lowke [15]
is used

4πϵN = ∇ · q⃗rad (13)

q⃗rad =

∫ ∞

0

∫
4π

Iν(r⃗, n⃗)n⃗dΩdν (14)

q⃗rad being the radiative �ux density.
Lowke and Liebermann [21] solved the RTE for two geometries and showed that one can replace,
as a �rst approximation and with 90% accuracy, the radiation calculated at the axis of an
isothermal cylinder by the emission at the center of an isothermal and homogeneous sphere of
radius Rp. This leads to

ϵN =

∫ ∞

0

k′νBν exp(−k′νRp)dν (15)

The derivation of the net emission coe�cient ϵN requires to �rst compute the spectrum of the
absorption coe�cient k′ν . This is achieved thanks to the recent work of T. Billoux [8]. It yields
to a huge database with a temperature range from 300 to 30.000 K and wavelengths from 0.209
µm to infrared, as shown in �gures 2 and 3 (database provided by the LAPLACE laboratory).
The radiation from background continuum, either molecular (H2) or atomic (H, H− and H+),
from molecular diatomic bands, and from 74 lines spectrum for hydrogen is considered. This
huge investigation allows having a more precise calculation of the radiative contribution.

The net emission coe�cient method gives a very good estimation of the radiation losses from the
hot zones [22]. Self-absorption should be taken into account through the parameter Rp appearing
in Eq. (15). ϵN corresponds then to the di�erence between the local emitted radiation and that
emitted somewhere else and absorbed locally. Hence, it decreases when the plasma thickness
increases as shown in �gure 4. However, the authors are aware of certain inherent limitations of
NEC approach: the divergence of radiative �ux is always positive whereas the radiation will be
absorbed by the cold gas surrounding the arc whenever the arc radiation is principally in the far
ultraviolet region of the spectrum. At this region, the value of net emission coe�cient will be
negative [23].
In addition, the determination of the plasma thickness Rp is not straightforward and appears
to be a limit when treating the absorption spectrum with either a geometrical simpli�cation
through the net emission coe�cient or with a spectral simpli�cation like the Planck band-
averaged method [24].
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Figure 2: Absorption coe�cient of hydro-
gen plasma at 1 bar
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Figure 3: Absorption coe�cient of hydro-
gen plasma at 20 bar
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and for di�erent plasma thicknesses
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Figure 5: NEC of hydrogen plasma at 20
bar and for di�erent plasma thicknesses

For the cylindrical arc of radius r0 and temperature Tarc, Nordborg et al. [24] achieved satis-
factory results compared to experiments by integrating the net emission over the volume of the
arc

2

r20

∫ r0

0

rdr∇ · q⃗rad =
2πBν

r0
Sexact(k

′
νr0) (16)

where 2πBν/r0 is the black body net emission, Sexact is the dimensionless form factor. The
computation of the latter is somewhat complicated, even for the cylindrical arc, but a reasonably
good approximation is found in Eq. 17

Sexact ≈ 1− exp(−2x) (17)

which is exactly valid for small and large x = k′νr (with the arc behaving as a black body when
the absorption is strong, Sexact → 1) and interpolates nicely for intermediate values.

Hence, Rp which helps better handling peaks in the absorption spectrum, can be fairly approx-
imated with 2r0 in this study, provided that the arc radius r0 can be obtained for a speci�ed
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pressure, current and the tube geometry. Besides experiments, this can be done in an original
way presented in the next lines.

3.4 Semi-analytic solution

In this section, we rewrite the Elenbaas-Heller equation Eq. (7) in order to �nd an analytic
solution and determine the arc radius (and consequently the plasma thickness Rp = 2r0) for a
better computation of the radiative term in cylindrical arcs. Analytic analysis of this equation
have been given in some papers: Maecker [25] for the constricted type arc where radiation
was neglected; Shaw [26] for the same case but using the regular perturbation theory up to
the second order whereas Kuiken [7] worked on a radiating wall-stabilized high-pressure gas
discharge arc with an asymptotic treatment to yield an explicit expression linking the arc current
to the maximum arc temperature. Unlike the previously cited authors, we do not consider the
electrical conductivity as a temperature rule based on the Saha equation (with the accounting
of its nonlinear characteristics by Arrhenius-type function), neither the thermal conductivity in
a power form of temperature.
The use of heat �ux potential has greatly simpli�ed analytic investigations on arc problems [26,27]
.

S(T ) =

∫ T

Tref

κ(α)dα (18)

All other thermodynamic, radiative and transport properties should be expressed in terms of S.
For the electric conductivity σ , Schmidt [28] suggested to take it zero until a cut-o� value S1

before it rises linearly with a best-�t slope to the highest value which occurs in the arc column.

σ = 0 if S ≤ S1

σ = B(S − S1) else (19)

This is in satisfactory agreement with �gure 6 and with the physics of the cooled arc. Indeed, a
piece-wise function for the conductivity refers naturally to an arc with a conductive zone close
to the axis (on an arc radius r0 ) and a non-conductive outer region where Joule heating can be
fairly neglected.

The energy equation is written as

E2B(S − S1) +
1

r

∂

∂r

(
r
∂S

∂r

)
− 4πϵN (S) = 0 for 0 ≤ r ≤ r0

1

r

∂

∂r

(
r
∂S

∂r

)
− 4πϵN (S) = 0 for r0 ≤ r ≤ R (20)

with the following auxiliary conditions

S(r+0 ) = S(r−0 ) = S1, S(R) = S2, Sr(r
+
0 ) = Sr(r

−
0 ) and Sr(0) = 0 (21)

where the superscripts - and + refer respectively to the solutions in the conductive and non-
conductive regions.
We �x the free boundary at the two regions by de�ning

x = r/r0 for 0 ≤ r ≤ r0

y = (R− r)/(R−R0) for r0 ≤ r ≤ R (22)

And we make the dependent variables dimensionless through

U = (S − S1)/(S1 − S2) for 0 ≤ r ≤ r0

V = (S1 − S)/(S1 − S2) for r0 ≤ r ≤ R (23)
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Figure 6: Electric conductivity with heat �ux potential of hydrogen

One can introduce �nally the dimensionless factors of the arc radius, the electric �eld strength,
the current and the net emission coe�cient respectively

ρ = r0/R, E∗ = B1/2RE, I∗ = I/(S1 − S2)RB1/2 and ϵ∗N = 4πR2ϵN/(S1 − S2) (24)

After some mathematical transformations, the previously described dimensional boundary value
problem becomes

ρ2E∗2U +
1

x

∂

∂x

(
r
∂U

∂r

)
− ρ2ϵ∗N (U) = 0 for 0 ≤ x ≤ 1

d2V

dy2
− 1[

(1− ρ)−1 − y
] dV
dy

− (1− ρ2)ϵ∗N (U) = 0 for 0 ≤ y ≤ 1 (25)

with the following boundary conditions

U(1) = 0, Ux(0) = 0, V (1) = V (0) = 0, Ux(1) =
ρ

1− ρ
Vy(1) (26)

while Ohm's law reduces to

I∗ = 2πρ2E∗
∫ 1

0

xU(x)dx (27)

3.4.1 Radiation negligible

When radiation is negligible (small current and low pressure cases for instance), an analytic
solution is easily achievable. The dimensionless form of the energy equation in the inner region
results in a Bessel equation of the type

d2U

dx2
+

1

x

dU

dx
+

(
ρE∗

)2

U = 0 (28)
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and which solution is in the form

U(x) = aJ0(ρE
∗x) + bY0(ρE

∗x) (29)

where J0 and Y0 are respectively the �rst Bessel functions of �rst and second kinds. With the
boundary conditions, the inner solution is

U(x) = UmJ0(ρE
∗x) (30)

with

β = ρE∗ (31)

the �rst zero of the Bessel function J0 .
The solution at the outer region is straightforward

V (y) = UmβJ1(β) log

[
1− (1− ρ)y

ρ

]
(32)

Using the boundary condition at the edge of the conducting zone and Ohm's law, we have the
following expressions to close the problem

Um =
1

βJ1(β) log(1/ρ)
(33)

I∗ =
2π

β

ρ

log(1/ρ)
(34)

3.4.2 Radiation not negligible

The di�cult task for the radiative case is the modeling of the net emission coe�cient as a function
of the heat �ux potential. Such achievement represents one originality of this present work.
Figure 7 suggests a linear piece-wise function as for the electric conductivity. Radiation can
be taken zero in the non-conductive region that corresponds to low temperature and linearly
dependent of the heat �ux potential in the inner region.

Hence we rewrite the net emission coe�cient in the form

ϵ∗N = E∗
+
2U (35)

where the subscript+ refer to an additional contribution of radiation the electric �eld. Solutions
are still given by Eq. (30) and Eq. (32) but with new formulas for E∗, Um and I∗

E∗ =
β

ρ

√
1 +

(
ρE∗

+

β

)2

(36)

Um =
1

βJ1(β) log(1/ρ)
(37)

I∗ =
2π

β

ρ

log(1/ρ)

√
1 +

(
ρE∗

+

β

)2

(38)

In addition to this general expressions, we derive from Eq. (38) the arc radius r0 for a given
pressure, current and geometry. Actually, the slope of the dimensionless net emission coe�cient
E∗

+ is a function of
Rp ≈ 2r0 (39)
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Figure 8 shows that, for a current of 200 A, the arc diameter is nearly 6 mm at 1 bar whereas
at 20 bar, more constriction is observed with a 3 mm arc diameter. This is a well-known e�ect
of pressure in an arc and is in agreement with one can expect intuitively. It is also validated
by experimental works on hydrogen Huels-type arc heater done by Painter et al. [29] and which
give an arc radius of the order of millimeter for 20 atm operating pressure. The di�erence may
be explained by the fact that convection, which constricts the arc, is not considered in our study
whereas the arc was blown in the experimental case.
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4. Results

4.1 Temperature pro�les

With a homemade MATLAB code, we derive, from the Elenbaas-Heller equation, the temperature
pro�le for a given electric �eld and pressure. The di�cult part of the calculation was to enforce the
boundary condition at the wall as the latter is in fact a strong function of the core temperature.
Once a self-consistent solution was reached, we can generate a family of temperature pro�les
presented in �gure 9.
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Figure 9: Radial distribution of temperature of a wall stabilized arc column of 5 mm tube radius
at 1 bar and considering Rp=4 mm

It can be seen a surge in the core temperature when current increases up to 200 A. Moreover,
at high current and temperature, the distribution becomes much squarer, going from a core
pro�le with high gradient to a coreless form. This change can be interpreted going back to the
Elenbaas-Heller equation, with a changing mechanism of heat loss.
The primary information on the radial distribution of temperature follows from the di�erential
equation of energy at the axis:

−2κ
d2T

dr2
|r=0 = σ0E

2 − Srad0 (40)

where σ0 = σ(T0) , Srad0 = ∇ · q⃗rad(T0), T0 = T (r = 0).
Eq. (40) shows that the sign of σ0E

2 − Srad0 determines the one of the second derivative of
the temperature, hence the sign of the curvature of the pro�le in the immediate vicinity of the
arc axis. The assumption of the maximum temperature at the axis of the arc indicates that the
strength of the electrical �eld should satisfy the following condition

E2 > Srad0/σ0 (41)

The pro�le T (r) strongly depends on the nature of variation of the complex Srad0/σ0 with tem-
perature [15]. At low temperature, it is low due to small radiation losses and the temperature
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pro�le must have a large enough gradient to drive the conductive losses. The arc consists then of
a narrow central core with a sharp decrease of temperature, i.e. the constricted type arc. At high
temperatures, Srad0/σ0 is great and su�cient heat can be radiated without a large temperature
gradient. Thus, as the core temperature increases, the pro�le becomes �atter in the center and
squarer in shape.
It is also useful to note that, at current of hundreds amperes, a little change of the core tem-
perature can lead to a swing with a temperature increasing radially (that is a heat input is
required from the outside). This is probably due to the strong temperature dependence of the
radiative losses, especially at 20 bar where the condition stated by Eq. (41) implies to consider
absolutely auto-absorption (Rp di�erent of zero) to avoid this swing and have a physical solution.

4.2 Current-voltage characteristic

From the derived temperature pro�le, the computation of the current with Eq. (8) is a straight-
forward integration.
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Figure 10: Current-voltage characteristic and axis temperature of a wall stabilized arc column
of 10 mm radius: Rp = 6 mm at 1 bar and 4 mm at 20 bar when radiation is considered

It comes out from �gure 10.a that the electric �eld is decreasing with current. The hyperbolic
form of the plots suggests that the power per unit length EI is almost constant in the current
range considered here. At 1 bar pressure, radiation can be negligible until a current of the order
of one hundred amperes whereas at 20 bar, it becomes preponderant even at very low current. We
observe also from �gure 7.b that the temperature of the arc decreases with radiation, especially
at 20 bar.

These remarks on the pressure were regardless the con�nement. In fact, reducing it was only
responsible of a decrease in the electric �eld at a given current. This is due to the conjunction
of a cooling of the arc and a modi�cation in the temperature pro�le, from a constricted type arc
to an arc �atter at the center (see �gures 11 and 12).

For the hydrogen arc plasma at 20 bar and nearly 220 A current, we obtained a maximum
temperature of 11250 K and an electric �eld E= 3300 V.m−1 with ≈ 3.5 mm arc diameter. This
is a satisfactory agreement with the work of Painter [29] except for the electric �eld (see Table
1). The discrepancies are due to the fact that convection losses are not considered in this present
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Figure 11: Radial distribution of temperature of a wall stabilized arc column for di�erent radii,
I=195A and at 1 bar and 20 bar

I (A) 240 320 400
Arc temperature (K) 11475 11562 11662
Arc diameter (mm) 4.2 4.8 5.2
Electric �eld (V.m−1) 8300 8140 7951

Table 1: Performances for a 20 bar hydrogen plasma arc with a 0.375 inch (≈ 9.5 mm) constrictor
[29]

paper as they would have increase consequently the electric �eld.
On the pressure e�ect, it comes from �gures 10.a, 12 that changing operational conditions from
1 to 20 bar leads to an electric �eld multiplied by a factor between 2 and 3 (the upper limit was
obtained for the smallest value of tube radius 5 mm) for a current of 200 A (here we speak strictly
of pressure dependence; as already stated, the gas �ow rate obviously has its own dependency,
that is out of the scope of this paper). This is the order of magnitude found with empirical laws
given in the literature regarding the e�ect of pressure on hydrogen blown arcs [4,9] respectively:

E ∝ P 0.4 (42)

E = Alog(P ) +B (43)

and for which the multiplying factor is around 3.

4.3 Semi-analytic solutions

While numerical solutions are widely used nowadays thanks to huge computational resources,
they generally have some parameters that can be set up thanks to analytic solutions. As afore-
mentioned, the plasma thickness Rp appearing in the net emission coe�cients calculation is one
these parameters and the semi-analytic solutions developed in section 3.4 for cylindrical arcs
enable to �x it more precisely.
Figure 13.a shows that the analytic results for the electric characteristic compare relatively well
with the numerical solutions. There is less than 5% di�erence in the axis temperature of the two
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Figure 12: Electric characteristic and temperature at the axis vs current for a wall stabilized arc
column: 1 bar (top) and 20 bar (bottom)

solutions.

In fact, the voltage of a wall-stabilized cylindrical arc is mainly dependent on the near axis
phenomena as shown in �gure 13.b. The arc radius model (as speci�ed in section 3.4 through a
conductive and a non-conductive zones) is su�cient to capture such phenomenon, with a good
estimation of the temperature distribution in the inner region despite discrepancies in the outer
zone.

Regarding the prediction of pressure e�ect on power per unit length, we obtain from Eq. 31, 34,
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Figure 13: Electric characteristic and temperature pro�le of a wall stabilized arc column of 10
mm radius at 1 bar and Rp = 6 mm

36 and 38 and after going back to dimensional values

(EI)20bar
(EI)1bar

=
log(1/ρ1)

log(1/ρ20)

[
1 +

(
ρ20(E

∗
+)20

β

)2][
1 +

(
ρ1(E

∗
+)1

β

)2]−1
(S1 − S2)20
(S1 − S2)1

(44)

with the notations given in section 3.4. With the values speci�ed in Table 2, we evaluate the ratio

S1 S2 ρ β E∗
+

1 bar 3.06e4 0 0.32 2.4048 7-8
20 bar 4.12e4 0 0.18 2.4048 34-37

Table 2: Values for analytic solutions of the hydrogen arc at 200 A in 10 mm cylindrical tube

of power per unit length when the pressure raises from 1 to 20 bar (Eq. 44): it ranges between
3.12 to 4.13, which is in satisfactory agreement with the results and the conclusions in section 4.2.

The e�ect of con�nement was also predictable analytically, with the change in the pro�le of
temperature from a constricted type arc to a �atter-at-the-center arc when radius R is increased
(�gure 14). This con�nement reaches a limit from which the arc radius does not vary much
despite an increased tube radius: twice less con�nement (with R from 15 to 30 mm) results in
less than 7% change in arc maximum temperature. Then one can consider the arc to burn freely
for R bigger than 15 mm (tube walls have no more substantial e�ect). This value is in agreement
with the results of experimental investigations on hydrogen plasma [9].
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Figure 14: Con�nement e�ect on analytic temperature pro�les of a wall stabilized arc column at
1 bar and I = 200 A

Concluding remarks

The arc column model developed in this paper gives numerical and analytic results that are
in satisfactory agreement with previous works on hydrogen current-voltage characteristic [4, 9].
It con�rms a multiplying factor of around 3 when pressure is raised from 1 to 20 bar and for
a current of around 200 A and corroborates the fact that, in high temperature plasma due to
current and/or pressure increase, the radiation induces an important energy loss that must be
taken into account in any model. It is thus crucial to have a proper treatment of the radiative
heat transfer in any high pressure/current simulations.
For the net emission coe�cient's method used to include radiation, the plasma thickness is a
parameter that one cannot always specify exactly and which a�ects the results. The analytic
solving of our cylindrical arc allows us to determine it more precisely. The modeling of electric
conductivity and net emission coe�cients by piece-wise linear functions of the heat �ux potential
is one originality of this research.
However, the method of net emission coe�cient reaches its limit when the arc is less and less
con�ned. Then, absorption at the edge has to be considered, through an exact 1D resolution of
the radiative transfer equation for instance. Work is in progress toward the integration of this
phenomenon and comparisons with results presented herein would be of great interest in a next
paper.
Finally, as with any physical modeling process, trade-o�s must be made between solving sim-
pler models that include the principal physical processes (and hence more cost-e�ective) and
solving more detailed models which may include parameters only vaguely known. Thus simpler
approaches, particularly when correlated with validated data, can often be adequate for engineer-
ing estimation purposes. Even if a plasma arc is in reality blown and not con�ned and undergoes
convective losses, this work based on a channel arc model and semi-analytic models can bring
very fruitful information for the scienti�c community at a lesser cost, particularly regarding basic
process design: it gives the appropriate tendencies for the electric characteristic, which is crucial
in the speci�cation of a plasma reactor power supply.
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