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Abstract. This study investigates the characteristic time-scales of variability found in long-term time-series of
daily means of estimates of surface solar irradiance (SSI). The study is performed at various levels to better
understand the causes of variability in the SSI. First, the variability of the solar irradiance at the top of the
atmosphere is scrutinized. Then, estimates of the SSI in cloud-free conditions as provided by the McClear model
are dealt with, in order to reveal the influence of the clear atmosphere (aerosols, water vapour, etc.). Lastly,
the role of clouds on variability is inferred by the analysis of in-situ measurements. A description of how the
atmosphere affects SSI variability is thus obtained on a time-scale basis. The analysis is also performed with
estimates of the SSI provided by the satellite-derived HelioClim-3 database and by two numerical weather re-
analyses: ERA-Interim and MERRA2. It is found that HelioClim-3 estimates render an accurate picture of the
variability found in ground measurements, not only globally, but also with respect to individual characteristic
time-scales. On the contrary, the variability found in re-analyses correlates poorly with all scales of ground
measurements variability.

1 Introduction

The Sun is of the utmost importance for the planet Earth.
Not only does it play a central role in our solar system, but
it also represents the main power source for the Earth, be-
ing the main driver behind weather and climate (Trenberth
et al., 2009). As such, the Global Climate Observing Sys-
tem (GCOS) has defined the surface solar irradiance (SSI)
as an Essential Climate Variable (ECV), used for the char-
acterization of the state of the global climate system and for
long-term climate monitoring (GCOS2010).

The SSI is known to exhibit variations on a large dynamic
range with respect to both time and geographical position.
This is due to a wide array of factors. Some of these operate
at long time-scales, from decades to millennia and beyond,
and are related to the stellar variability of the Sun (Beer,
2000), or to changes in the orbital parameters of the Earth,
e.g. obliquity of the ecliptic, eccentricity of the orbit, and ax-
ial precession (Beer et al., 2006). The revolution of the Earth
around the Sun gives rise to the yearly cycle. Another well

known factor is the rotation of the Earth around its own axis,
that yields variations in the SSI with a period of 1 day. Atmo-
spheric effects such as scattering and absorption, mainly due
to O2 and stratospheric O3, clouds, and aerosols (Madronich
and Flocke, 1999) may exhibit even shorter time-scales. Oro-
graphic factors, such as shadowing effects due to relief, in-
fluence the SSI on a yearly to very short time-scale. The vari-
ability of the SSI at different time-scales is, thus, a leitmotif
of this study.

In order to analyse the temporal variability of the SSI,
measurements of this physical quantity are needed. A pri-
mary way of obtaining such data is recording the values of
the SSI at ground stations by using pyranometers or pyrhe-
liometers. Nevertheless, even sources of high quality solar
radiation measurements, such as the Baseline Surface Ra-
diation Network (BSRN), a worldwide radiometric network
providing accurate readings of the SSI at high temporal res-
olution (Ohmura et al., 1998), are spatially very sparse, cap-
ture only temporal variability on a very limited set of loca-
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tions and, in addition, have been found to have a data gap
percentage ranging from 4.4 to 13 % (Roesch et al., 2011).
Furthermore, measurements from point sources can only re-
veal information about the temporal variability of the solar
radiation at one particular site.

In practice, information about the SSI is often required at
geographical locations different from any measuring station.
But extending the representativity of ground station mea-
surements to surrounding areas cannot be applied to regions
where the physical and/or climatological distance between
stations is large (Zelenka et al., 1992). Using the nearest-
neighbour approximation, Zelenka et al. (1992) have found
that the relative root-mean-square error (relative RMSE) of
the estimates is proportional to the square root of the distance
between sites.

Another option is to make use of satellite based methods,
which are a good supplement in long term solar resource as-
sessment. Perez et al. (1997) have shown that when the dis-
tance from a station exceeds 50 km, in the case of daily ag-
gregates, or 34 km for hourly data, – Zelenka et al. (1999)
estimate this as low as 20 km – satellite-derived values of the
SSI are more accurate than estimating using the nearby mea-
suring point. Thus, given the scarcity and spatial sparsity of
long-term ground measurements of the SSI, satellite-derived
estimates of surface solar radiation remain a good comple-
ment to ground station data (Lefèvre et al., 2014).

Yet another possibility for estimating the solar radia-
tion at ground level is provided by global atmospheric re-
analyses from numerical weather models. The main bene-
fits are the wide, even global, coverage and the spanning of
multi-decennial time periods. However, some authors have
found a large uncertainty relative to satellite-based irradi-
ance estimates and advise against using data from re-analyses
(Lohmann et al., 2006; Boilley and Wald, 2015). Others nev-
ertheless find SSI datasets from re-analyses to be suitable for
photovoltaic applications (Richardson and Andrews, 2014).
Efforts to improve the adaptation of re-analyses solar radia-
tion datasets to a specific geographical site are also ongoing
(Polo et al., 2016).

In this context, we investigate and analyse here the tempo-
ral variability in time-series of daily means of SSI for two ge-
ographical locations, at different time-scales, as found in the
outputs of different models, satellite estimates, re-analyses,
and ground measurements. To gain better insight into the
causes of variability of the SSI, we follow the downwelling
solar shortwave irradiance along its path through the atmo-
sphere towards the surface. The modelled top of the atmo-
sphere (TOA) solar irradiance is first analysed as a clean in-
put signal, devoid of any atmospheric perturbations, in or-
der to reveal the natural variability of the exo-atmospheric
solar input. To account for variability owing to atmospheric
effects such as scattering or absorption due to water vapour
or aerosols, but excluding any influence of clouds, the out-
put of a clear-sky (i.e. cloud-free) model of the SSI is scru-
tinized. The role of clouds on variability is lastly inferred

by analysing pyranometric ground measurements. The fit-
ness for use of satellite estimates and re-analyses data is then
assessed, by comparison with the measured data.

The novelty of our work stems from the fact that, un-
like previous studies where global statistical indicators are
employed (Espinar et al., 2009), here we decompose the
datasets into their constituent characteristic time-scales be-
fore doing the analysis. To this end, we employ the adaptive,
data-driven Hilbert–Huang Transform (HHT) (Huang et al.,
1998), which has been shown to be a good analysis method
on solar radiation datasets (Duffy, 2004; Calif et al., 2013;
Bengulescu et al., 2016a, b, c). In this way, the fitness for use
of the modelled and estimated SSI can be assessed not only
at a global, whole dataset level, but also on an per time-scale
basis.

The study develops as follows. Section 2 describes the
datasets and the analysis technique. Results are presented in
Sect. 3, discussion thereof being deferred to Sect. 4. The con-
clusions and outlook are given in Sect. 5. The availability of
the software code and the datasets needed to reproduce our
findings is indicated in Sects. 6 and 7, respectively.

2 Data and methods

2.1 Data

The data consists of multiple time-series of daily means of
solar irradiance corresponding to two geographical locations
in Europe: Vienna, Austria (48.25◦ N; 16.35◦ E; elevation
203 m), and Kishinev, Moldova (47.00◦ N; 28.82◦ E; eleva-
tion 205 m). The temporal coverage of the data is 9 years,
from 1 February 2004 to 31 January 2013. The number of
samples in each dataset is 9× 365= 3285 days (leap days
are omitted). The datasets for Vienna (VIE) are plotted in
Fig. 1. A similar plot for Kishinev (KIV) is provided in the
Supplement.

Six datasets are used for each location:

– modelled exo-atmospheric irradiance;

– modelled clear-sky irradiance at ground level;

– pyranometric measurements of the SSI;

– Meteosat satellite-based SSI estimates;

– radiation products from the ERA-Interim re-analysis;

– radiation products from the MERRA2 re-analysis.

Data availability and Digital Object Identifiers (DOIs) are in-
dicated in Sect. 7.

The top of the atmosphere (TOA) solar irradiance time-
series has been generated using the SG2 algorithm (Blanc
and Wald, 2012). This dataset is built using the constant value
of 1367 W m−2 for total solar irradiance, though it could have
made use of satellite measurements of this quantity. Recently,
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Figure 1. The six solar irradiance time-series for VIE investi-
gated in this study, spanning 1 February 2004 to 31 January 2013.
From top to bottom: TOA, McClear, ERA, MERRA2, HC3v5, and
WRDC. Each point corresponds to a daily mean of irradiance. Time
markers on the abscissa indicate the start of the corresponding year.

the yearly mean of the total solar irradiance has been revised
to 1361 W m−2 (Prša et al., 2016) or 1362 W m−2 (Meftah
et al., 2014). This discrepancy does not impact the validity of
our analysis.

The dataset of downwelling surface solar irradiance, un-
der clear-sky conditions (i.e. cloud-free), is generated us-
ing the McClear model (Lefèvre et al., 2013). The McClear
model is part of the Copernicus Atmosphere Monitoring Ser-
vice (CAMS) and its inputs comprise 3 h estimates of the
aerosol properties and total column contents of water vapour
and ozone also provided by CAMS.

Estimates of the SSI derived from Meteosat satellite im-
agery by the Heliosat-2 method, as described by Rigollier
et al. (2004) and modified by Qu et al. (2014), are ob-
tained from the HelioClim-3 (HC3v5) database (Blanc et al.,

2011). The daily means of TOA, McClear, and HC3v5 irra-
diance were obtained directly from the SoDa website (http:
//www.soda-pro.com).

Pyranometric ground measurements of the daily SSI were
obtained from the World Radiation Data Centre (WRDC)
(Tsvetkov et al., 1995) for the two stations. No detailed in-
formation on data quality is provided except for a quality
flag. Considering the high quality of maintenance of these
stations, we consider that the data obey the good quality level
set by the World Meteorological Organization (CIMO2014)
which specifies a 5 % uncertainty, expressed as the per-
centile 95 of the deviations (P95). If a normal law is assumed
for the deviations, then there is a 0.3 % chance that a devia-
tion exceeds 1.5 times P95, i.e. 7.5 % of the SSI. Given the
global means of SSI of the WRDC datasets, both greater than
135 W m−2, the 7.5 % uncertainty is 10.2 W m−2 for VIE and
11.3 W m−2 for KIV.

The ERA-Interim product “Surface Solar Radiation
Downwards” (ECMWF2009), from 2004 to 2014, was re-
trieved using the ecmwfapi python library on the Meteo-
rological Archival and Retrieval System (MARS). The raw
ERA-Interim data is a forecast of accumulated SSI expressed
in J m−2, and has a spatial resolution of 0.75◦× 0.75◦. Both
the H+12 forecast from 00:00 UT re-analysis and from
12:00 UT re-analysis were summed and then divided by 24
to obtain a daily SSI value in W m−2 for the 4 nearest points
around the location. These values were then bi-linearly inter-
polated at the exact location.

The 1 h radiation diagnostics M2T1NXRAD from
MERRA2 have been extracted for the four nearest points and
bi-linearly interpolated to generate the time series at the ex-
act location. The MERRA2 data are in W m−2 directly and
have a spatial resolution of 0.5◦× 0.65◦ in latitude and lon-
gitude. Values were then summed over each day and divided
by 24 to obtain a daily SSI value in W m−2.

2.2 The Hilbert–Huang transform (HHT)

The goal of the study at hand is to first decompose the scruti-
nized time-series into uncorrelated sub-constituents that have
distinct characteristic time-scales. Analysis then ensues at
each distinct scale of intrinsic variability. These time-scales,
or characteristic periods, are nothing more than the inverse of
the frequency of the various processes from which the data
stems. As such, analysis techniques that depict the changes
with respect to time of the spectral content of a time-series
are to be favoured, since they enable both the identification
of periodicities and the following of the dynamic evolution of
the processes generating the data. For a review of such regu-
larly employed methods in geophysical signal processing see
Tary et al. (2014).

The non-linear and non-stationary characteristics of the
SSI (Zeng et al., 2013) are also worth consideration. Han-
dling such data issued from the non-linear interaction of
physical processes, often also found under the influence of
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non-stationary external forcings calls for an adaptive data
analysis approach (Wu et al., 2011). The ideal analysis tech-
nique must make no a priori assumptions regarding the char-
acter of the data, i.e. neither linearity, nor stationarity should
be presumed, since the nature of the processes that have gen-
erated the data is not usually known before the analysis is
carried out. Adaptivity to the analysed data is also a de-
sirable feature, i.e. letting the data itself decompose onto a
set of basis functions determined by its local characteristic
time scales, instead of a projection onto a predefined set of
patterns. This ensures that the extracted components carry
physical meaning, and that the influence of method-inherent
mathematical artefacts on the rendered picture of temporal
variability is kept to a minimum (Wu et al., 2011).

As such, this study employs the Hilbert–Huang Trans-
form, an adaptive, data-driven analysis technique. The HHT
is ideally suited for non-linear and non-stationary data and it
adaptively decomposes any time-series into basis functions
derived from the local properties of the data (Huang et al.,
1998). The method is used here to extract, depict and anal-
yse the characteristic time-scales of variability of solar ir-
radiance time-series. The data analysis method operates in
the time domain and makes no beforehand assumptions re-
garding the analysed dataset (stationarity or linearity). The
method is also adaptive, letting the data decompose itself
onto a finite number of locally derived data-driven basis func-
tions (Wu et al., 2011), in contrast with the Fourier or wavelet
transforms that impose a predefined set of functions for the
decomposition, such as trigonometric functions or wavelets
(Huang and Wu, 2008). Further details on how the HHT
compares to other spectral methods, the Fourier or wavelet
transforms included, can be found in Huang et al. (1998) and
Wu et al. (2011). A case study comparing the HHT and the
wavelet transform, as applied to surface solar radiation data,
is offered in Bengulescu et al. (2016a).

The HHT consists in two steps, the empirical mode de-
composition (EMD), followed by Hilbert spectral analy-
sis (HSA), both detailed hereafter.

2.2.1 Empirical mode decomposition (EMD)

The EMD is algorithmic in nature, and iteratively decom-
poses data into a series of oscillations; within a series, os-
cillations have a common local time-scale, called Intrinsic
Mode Function (IMF). An IMF is a function that satisfies two
criteria: (1) its number of zero crossings and number of ex-
trema differ at most by one; (2) at any point, the mean value
of its upper and lower envelopes is zero. The theoretical sig-
nal model for IMFs is an amplitude modulation–frequency
modulation (AM–FM) one. Given the adaptive nature of the
EMD, the IMFs represent the basis functions onto which the
data is projected during decomposition. Any two IMFs are
locally orthogonal for all practical purposes, however, given
the empirical nature of the method no theoretical guarantee
can be provided. In practice, it is found that the relative dif-

ference between the variance of the input signal and the sum
of variances of the IMFs (i.e. the spectral leakage) is typi-
cally less than 1 %; only for extremely short data ranges does
the leakage increase to 5 %, comparable to that of a collec-
tion of pure trigonometric functions having the same data
length (Huang et al., 1998). By design, IMFs have a well
behaved Hilbert transform (Huang et al., 1998). The EMD
can be sketched as follows:

1. let r(t) hold the data, initialize IMF counter k = 1;

2. let h(t)← r(t)

3. a. find the minima and maxima of h(t);

b. interpolate minima to find lower envelope: L(t);

c. interpolate maxima to find upper envelope: U (t);

d. find mean of envelopes: m(t)← L(t)+U (t)
2 ;

e. substract the mean: h(t)←h(t)−m(t);

4. if h(t) is not an IMF, repeat step 3;

5. store IMF: ck(t)←h(t)

6. update the residual: r(t)← r(t)− ck(t)

7. if r(t) is not monotonic, increment k and go to step 2;

8. return IMFs ck(t), k ∈ {1, . . . , N} and residual r(t).

Step 3 is called the sifting loop and it controls the fil-
ter character of the EMD. An infinite number of sifting
iterations would asymptotically approach the result of the
Fourier decomposition (i.e. constant amplitude envelopes)
(Wang et al., 2010). Flandrin et al. (2004) have shown the
wavelet-like dyadic filter bank character of the EMD and Wu
and Huang (2010) have found that this dyadic property is
enforced by keeping the number of sifting iterations small,
around 10, which also assures maximum component separa-
tion and minimum leakage. The IMFs can also be shown to
satisfy the envelope–carrier relationship, thus guaranteeing
the existence of a unique true intrinsic amplitude function
and of a unique phase function (Huang et al., 2013).

After all the IMFs are extracted, what is left of the data
is called a trend or residue, which can no longer be consid-
ered as an oscillation at the span of the data. Bengulescu
et al. (2016c) have shown that, for time-series of daily
means of solar irradiance, the trend approximates the yearly
mean. More generally, the trend can be interpreted as low-
pass filtered version of the data (Moghtaderi et al., 2013),
therefore it is excluded from this analysis. To illustrate the
EMD process, the IMFs obtained from the decomposition
of the WRDC time-series for VIE are plotted in Fig. 2. The
modes IMF1. . . IMF10 and the residual (Res.) are plotted as
YZ slices along the x axis, with time running on the y axis,
and amplitude on the z axis. The zero-centred oscillatory
nature of the IMFs can be clearly seen, as well as the lo-
cal time-scale increase with mode number. The IMF1 has a
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Figure 2. The IMFs obtained by decomposing the WRDC time-
series for VIE, plotted as YZ slices, with the x axis denoting their
number (IMF1. . . IMF10) and mean time-scales in days. For refer-
ence, the residual (Res.) is also included. The amplitude, or irra-
diance, of each IMF is plotted on the z axis, and time runs on the
y axis. Time markers denote 1 January of the corresponding year.

mean time-scale of 3.0 days and exhibits a large variability
in time. As the IMF rank increases, the time-scale increases
and the variability decreases. The exception is for IMF7 at
367 days which exhibits the greatest variability, as discussed
later. Edge effects in the EMD appear because of oscillations
of the interpolating splines and are usually contained within
a half-period of a component at data boundaries (Wu et al.,
2011).

This study uses a modified version of the original EMD al-
gorithm, the Improved Complete Ensemble Empirical Mode
Decomposition, introduced by Colominas et al. (2014). This
enables the exact decomposition of the data, i.e. the sum of
all IMFs, including the trend, reconstructs the original time
series, and is more robust with respect to noise. To decrease
computation time, the fast EMD routine proposed by Wang
et al. (2014) is employed. See Sect. 6 for code availability.

2.2.2 Hilbert spectral analyis (HSA)

Once the EMD has decomposed the data into IMFs, the last
step of the HHT consists in the Hilbert spectral analysis. For
each IMF ck(t) its Hilbert transform is computed as given by
Eq. (1), where k designates the kth IMF, and P indicates the
Cauchy principal value.

σk(t)=H (ck(t))=
1
π
P

∞∫
−∞

ck(τ )
t − τ

dτ (1)

The pair can then be used to construct the complex-valued
analytic signal proposed by Gabor (1946), described by
an amplitude modulation–frequency modulation (AM–FM)
model, as in Eq. (2).

zk(t)= ck(t)+ i · σk(t)= ak(t) · ei·θk(t) (2)

In the AM–FM model, the instantaneous amplitude is given
by Eq. (3).

ak(t)=
√
c2
k(t)+ σ 2

k (t) (3)

The instantaneous phase can be derived from Eq. (4).

θk(t)= tan−1
(
σk(t)
ck(t)

)
(4)

The instantaneous frequency, i.e. the inverse of the local
time-scale, is then just the first time derivative of the instan-
taneous phase, as in Eq. (5).

ωk(t)=
1

2π
dθk(t)

dt
(5)

The role of HSA is to decompose each IMF into two time-
varying components, namely instantaneous amplitude and
instantaneous frequency, in order to determine, in a time-
dependent manner, how much power (amplitude squared)
occurs at which time-scales, as in Eq. (6). This representa-
tion, called the Hilbert energy spectrum, plots the data as
an energy density distribution overlaid on the time-frequency
space (Huang et al., 2011).

S(ω,t)=
N∑
k=1

a2
k (t) · ei

∫
ωk(τ )dτ (6)

The time-integrated version of Eq. (6), the Hilbert marginal
spectrum SM(ω), is similar, but not identical to, the tradi-
tional Fourier spectrum, and is given in Eq. (7).

SM(ω)=

T∫
0

S(ω,t)dt (7)

3 Results

The 12 datasets (6 datasets per station) have been decom-
posed by the EMD into 10 IMFs and a residual, as shown in
Fig. 2. Similar plots are available for the rest of the datasets
in the Supplement. To summarize the results, the mean char-
acteristic scales of variability for all the IMFs of the VIE
datasets have been compiled into Table 1, while the corre-
sponding mean amplitudes are given in Table 2. Similar sum-
maries for the KIV datasets are provided in Appendix A, as
Table A1 for time-scales and Table A2 for amplitude, respec-
tively.

www.adv-sci-res.net/14/35/2017/ Adv. Sci. Res., 14, 35–48, 2017
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Table 1. Mean IMF time-scales in days for the VIE datasets.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

TOA 6.5 9.3 17.0 30.8 344 366 366 1431 3134 3242
McClear 3.0 6.9 13.2 25.3 55.3 366 417 803 2971 3432
WRDC 3.0 6.8 13.1 25.9 48.8 159 367 490 1511 2836
HC3v5 3.0 6.7 13.2 26.2 49.8 156 368 475 914 1645
ERA 3.1 6.8 13.1 25.8 50.8 180 371 576 1042 2838
MERRA2 3.0 6.7 12.8 26.0 52.1 217 368 568 1536 3351

Table 2. Mean IMF amplitudes in W m−2 for the VIE datasets.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

TOA 0.1 0.1 0.1 0.1 3.1 186 5.4 1.2 2.0 0.4
McClear 6.4 4.6 3.7 3.0 3.2 128 10 1.6 1.7 0.4
WRDC 44 24 19 16 12 16 96 8.3 4.2 2.8
HC3v5 47 26 20 17 13 14 91 12 6.5 2.1
ERA 33 20 16 13 10 19 89 6.9 5.0 2.2
MERRA2 38 21 16 13 10 30 94 4.7 4.5 3.1

3.1 Intrinsic time-scales of variability

From Tables 1 and 2 it can be seen that the most significant
time-scale of variability present in the TOA time-series is
around the 1 year mark, as evidenced by IMF6. The mean
period of this component is 366 days and its mean amplitude
of 186 W m−2 is two orders of magnitude greater than the
other modes. From this, it can be inferred that this yearly
mode, a result of the revolution of the Earth around the
Sun, is the only significant scale of variability of the TOA.
This result is unsurprising, since it can also be inferred from
Fig. 1 top panel, where the TOA series does not exhibit any
other variability apart of this mode, i.e. it is almost a per-
fect sine wave with a period of one year. Adjacent to this
sixth mode, IMF5 and IMF7 also display similar time-scales
of 344 and 366 days, however their mean amplitudes are
3.1 and 5.4 W m−2 respectively, thus their origin is attributed
to spectral leakage from the main mode. The first four IMFs
have negligible amplitudes (0.1 W m−2) and are probably the
manifestation of residual noise. IMF8 has a mean time-scale
of 1431 days and its low amplitude of 1.2 W m−2 is an indi-
cation that it might be a numerical artefact. IMF9 and IMF10
are also assumed to be non-physical, because their large pe-
riods of over 3100 days are indication that these components
are entirely immersed in the time coverage where edge effect
are non-negligible. As a reminder, edge effects are important
at the half-period of a component at data boundaries, which
for these two latter IMFs yields 1550 days forward from
1 February 2004 and 1550 backwards from 31 January 2013,
spanning almost the entire data range.

For the McClear time-series, as well as for the
rest of the VIE datasets, IMF1. . . IMF5 display re-
markably similar features, such as monotonically de-

creasing amplitudes and time-scales that exhibit pe-
riod doubling, roughly following the dyadic scale:
3 days→ 6.8 days→ 13.1 days→ 26 days→ 51 days.
The amplitudes for McClear are 3 to 7 times less than in
other time-series, and less than 6.5 W m−2. The break in the
monotonic decrease of amplitude with scale for McClear –
3.2 W m−2 for IMF5 vs. 3 W m−2 for IMF4 – is considered
an artefact, since this monotonicity holds for the other
datasets and also for KIV (see Table A2). The presence of
these first five dyadic scales in all the datasets, with the
exception of TOA, allude to their possible origin as being
cloud-free atmospheric affects. This can also be observed in
Fig. 1, where, as opposed to the TOA, the raw McClear time-
series is seen to exhibit slight high-frequency variability,
and which tends to increase during the summer months. For
McClear, there is little to no variability in the 2–3 months
to 1 year band (see also Fig. 3, discussed later on). As for
TOA, IMF6 of the McClear time-series is clearly associated
with the yearly variability, by its mean period and amplitude
of 366 days and 128 W m−2, respectively. Here too, this is
the most energetic spectral component of the dataset. IMF7
of McClear has a median time-scale of 417 days and a
median amplitude of 10 W m−2. IMF8. . . IMF10 have very
low amplitudes of less than 1.8 W m−2, hence their origin
cannot be unambiguously determined. This is especially the
case with IMF9 and IMF10, which reside almost entirely in
the edge effect region because of their large periods of about
3000 days and greater.

The WRDC dataset unsurprisingly shares many features
with HC3v5, ERA and MERRA2 datasets, since the latter
three are intended to be accurate estimates of the former. The
rest of the results will be presented in a lumped form for
these four time-series. For IMF1. . . IMF5, HC3v5 agrees bet-
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Figure 3. The Hilbert marginal spectra for the VIE datasets: TOA,
McClear,WRDC, HC3v5, ERA, MERRA2. The abscissa indicates
the time-scale on a binary logarithm, and the ordinate denotes power
in dB.

ter with WRDC than the re-analyses in terms of mean ampli-
tudes and takes on only slightly higher values (1 to 3 W m−2

or less than 5 % on average, Table 2). This can also be seen
in Fig. 1, where the HC3v5 data exhibits a slight overesti-
mation of the low SSI values for WRDC during winter. For
the first five modes, both ERA and MERRA2 have mean am-
plitudes that are on average 17 % less than those of WRDC.
This is also apparent in Fig. 1, where fewer samples of less
that 150 W m−2 are occurring between spring and autumn
for the re-analyses time-series; this is mostly visible for the
year 2007. For IMF6, HC3v5 closely follows WRDC, both
in terms of time-scale: 156 days vs. 159 days, and amplitude:
14 W m−2 vs. 16 W m−2. For the same IMF6, both ERA and
MERRA2 exhibit significantly greater time-scales: 180 and
217 days, respectively, and amplitudes: 19 and 30 W m−2.
The first six modes are responsible for the high-frequency
variability, which is also manifest in Fig. 1, i.e. the estimates
and ground measurements of the SSI are significantly more
variable than the McClear time-series. For all these datasets
the yearly variability cycle is captured by IMF7, with gener-
ally good agreement across datasets in terms of both time-
scale (367 to 371 days) and amplitude (89 to 96 W m−2).
The greatest modes, IMF8. . . IMF10, have amplitudes less
than the uncertainty threshold, with the exception of IMF8
for HC3v5.

Generally similar results are also obtained for KIV, as
summarized in Tables A1 and A2. Apart minor differences
in numerical values, the only notable exception in the KIV
datasets are the significantly greater time-scales for IMF6 of
280 and 298 days respectively for ERA and MERRA2, as
opposed to 199 and 176 days for WRDC and HC3v5, re-
spectively.

Figure 4. The Hilbert marginal spectra for the KIV datasets: TOA,
McClear,WRDC, HC3v5, ERA, MERRA2. The abscissa indicates
the time-scale on a binary logarithm, and the ordinate denotes power
in dB.

3.2 Results of Hilbert spectral analysis

The previous summary of the results, although informative,
is static in the sense that only two features are used to charac-
terize, in an approximative manner, each time-evolving IMF:
the long-term average amplitude and time period. To make
use of the full potential of the HHT, which can follow both
the temporal and the spectral evolution of the data, Hilbert
spectra were also computed for all the datasets (not shown)
and are provided in the Supplement. From these Hilbert spec-
tra the marginal, time-integrated, versions were computed
and are presented in Fig. 3 for VIE and in Fig. 4 for KIV.

The TOA spectrum for VIE in Fig. 3 confirms the pre-
vious findings. For this dataset the only significant mode
of variability is found at the one year mark, and has a
power of about 63 dB. A slight peak of 17 dB is also present
around 1400 days, corresponding to IMF8. The end region
of the spectrum, from 2500 days onwards also contains some
power, but the respective IMFs have been shown to be heav-
ily affected by edge effects, thus the origin of this feature is
ambiguous at best.

The McClear dataset is seen to introduce variability in
the high-frequency regime, whose power decreases almost
monotonically from 30 dB at 2 days, to about 2 dB at roughly
300 days. Most of this variability occurs during summer, as
observed in Fig. 1 (see also the full Hilbert spectrum of Mc-
Clear in the Supplement). The yearly variability component
stands out again, this time with just less than 60 dB in power.
From here, power decreases to a minor spectral shoulder of
22 dB at 800 days (IMF8), after which it fades out towards
larger frequencies.

As previously shown, the high frequency variability
(IMF1. . . IMF5) of HC3v5 matches more closely that of
WRDC, while the re-analyses have slightly (2–5 dB) less
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power. The power of these features is 15 dB greater in the es-
timates and ground measurements of SSI than that found in
the clear-sky regime. From 170 days to 256 days, WRDC and
HC3v5 overpower the re-analyses. After 256 days, the power
in the re-analyses overcomes that of WRDC and HC3v5, un-
til approximately one year. This can also be seen from Ta-
bles 1 and 2, where IMF6 for the re-analyses is seen to be
greater than the other two time-series, both in terms of ampli-
tude and of time-scale. Again, the yearly variability compo-
nent is the largest spectral characteristic, with WRDC peak-
ing at 57 dB. Here, the other datasets closely agree with the
ground measurements as per the VIE results summary tables.
After the 500 days mark the interpretation of the different
spectral features is ambiguous, both because of their mean
amplitudes failing to rise above the uncertainty level, and
also because of the progressively large impact of the edge
effects, especially towards the end of the spectrum.

The spectra for the KIV datasets in Fig. 4 are very sim-
ilar to their VIE counterparts. For KIV too, TOA exhibits
only a sharp yearly variability component (IMF6), while Mc-
Clear introduces an almost monotonically decreasing band
of high-frequency variability. Unlike for VIE, the McClear
does not drop abruptly up to one year, but exhibits a rebound
of 17 dB around 150 days. This is interpreted as an artefact,
induced by energetic oscillations in and near the left edge
effect boundary in the full Hilbert spectrum (see Supple-
ment). From 2 days to 2 years, the HC3v5 spectrum follows
the WRDC one more closely that the re-analyses. The latter
two exhibit large downward excursions of 5 to 10 dB, from
70 days to roughly 150 days. For the yearly variability com-
ponent, there is better agreement than for VIE between the
estimates and the ground measured SSI data, all four of them
peaking simultaneously at 57 dB. The large peak of 42 dB
found in ERA at 530 day should be ignored, since it is caused
by an energetic oscillation in the edge effect region (see Sup-
plement). As for the VIE datasets, after the 500 days mark
the interpretation spectral features becomes ambiguous.

3.3 Time-scale comparison of SSI estimates and
ground measurements

Still another possibility of investigating the data is to make
use of the adaptive, data-driven, time-domain filter charac-
ter of the EMD. Looking at pairs of IMFs in the time do-
main, it is possible to construct 2-D histograms of the satel-
lite and re-analyses estimates of SSI compared to the con-
comitant ground measurements. This gives a good overview
of the similarity, at each characteristic time-scale of variabil-
ity, between satellite estimates of the SSI or re-analyses ra-
diation products and the WRDC measurements, which serve
as ground truth.

Figure 5 illustrates the 2-D histogram for the second IMF
of the HC3v5 and WRDC datasets for the VIE station. The
colour of each pixel denotes the relative frequency of the
WRDC–HC3v5 irradiance pairs, as encoded on the colour-

Figure 5. The 2-D histogram for IMF2 of HC3v5 and WRDC for
VIE. Each pixel encodes relative frequency according to the colour-
bar on the right. The solid black line denotes the identity line and
the dash-dotted red line represents the best fit line. The linear re-
gression equation is indicated in the legend. The time-scale, root-
mean-square error and coefficient of determination are indicated in
the panel above the legend.

bar on the right. In Fig. 5, the pattern of dots has a pos-
itive slope which indicates a positive correlation between
the two variables. A robust best-fit linear regression has
been performed, with the resulting line shown in dash-dotted
red. Plotted in solid black is the identity line; were the two
datasets identical the scatters would fall exactly onto it. The
equations for the two lines are indicated in the legend. The
line describing the best-fit can be seen to deviate very lit-
tle from the identity line, with a slope of 1.021 indicating
that for IMF2 at VIE the satellite-derived SSI slightly over-
estimates the SSI measured at ground level, and an intercept
of −0.016, which is the expected mean irradiance value of
HC3v5 when then WRDC irradiance is zero. Indeed, the lin-
ear regression model manages to explain 92.4 % of the total
variability, as indicated by the coefficient of determination
(R2
= 0.924). The points do not fall exactly onto the best-fit

line and exhibit a small scattering, with a root-mean-square
error (RMSE) of 6.2 W m−2. The characteristic time-scale of
variability is also indicated on the plot, as 6.8 days.

Figure 6 presents a similar graph, but for ERA and WRDC
datasets. Here the best-fit line deviates significantly from the
identity line, with a slope of 0.647 and an intercept of 0.119.
This is also reflected in the coefficient of determination of
R2
= 0.636. The scatter is also significantly larger, with a

RMSE of 10.3 W m−2.
Similar plots to those in Figs. 5 and 6 have been com-

puted for IMF1. . . IMF5, IMF7 and globally, for the whole
time-series, for the ground measurements and for the satellite
and re-analysis estimates. Graphs are available in the Supple-
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Table 3. Statistical indicators for correlations at different time-scales between SSI estimates and ground measurements for VIE.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF7 Glob.

HC3v5
R2 0.937 0.924 0.945 0.938 0.934 0.992 0.979
RMSE∗ 9.1 6.2 4.2 3.6 2.8 5.7 14.1

ERA
R2 0.639 0.636 0.675 0.755 0.703 0.987 0.921
RMSE∗ 15.5 10.3 7.8 5.5 4.6 7.0 24.8

MERRA2
R2 0.684 0.686 0.697 0.732 0.762 0.985 0.928
RMSE∗ 16.1 9.7 7.5 5.6 4.3 8.4 26.4

∗ RMSE has units of W m−2.

Table 4. Statistical indicators for correlations at different time-scales between SSI estimates and ground measurements for KIV.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF7 Glob.

HC3v5
R2 0.926 0.924 0.929 0.921 0.885 0.992 0.984
RMSE∗ 8.5 5.7 4.5 4.0 3.1 6.3 12.6

ERA
R2 0.611 0.677 0.692 0.753 0.670 0.984 0.931
RMSE∗ 13.9 8.7 6.5 5.2 4.5 8.4 24.5

MERRA2
R2 0.621 0.643 0.671 0.800 0.590 0.982 0.934
RMSE∗ 16.4 10.1 7.4 5.1 4.8 8.5 26.2

∗ RMSE has units of W m−2.

Figure 6. The 2-D histogram for IMF2 of ERA and WRDC for
VIE. Each pixel encodes relative frequency according to the colour-
bar on the right. The solid black line denotes the identity line and
the dash-dotted red line represents the best fit line. The linear re-
gression equation is indicated in the legend. The time-scale, root-
mean-square error and coefficient of determination are indicated in
the panel above the legend.

ment. Results, in terms of root-mean-square error and coef-
ficient of determination, are indicated in Tables 3 and 4 for
VIE and KIV, respectively. IMF6 has been excluded, because
Tables 1 and A1 show that for the re-analyses the time-scale
of this mode deviates significantly from the ground measure-
ments, thus the comparison is meaningless. IMF8. . . IMF10
have also been excluded because the mean amplitudes are
below the uncertainty level (see Tables 2 and A2).

Table 3 shows that for VIE, on a per time-scale basis as
well as globally, the closest estimate of ground measure-
ments of the SSI is the HC3v5 dataset, both in terms of ex-
plained variance, and in terms of scatter. The lowest coef-
ficient of determination for HC3v5 is 0.924 for the weekly
variability (IMF2), meaning that Fig. 5 represents the worst
case scenario for this particular dataset. The largest percent-
age of variance explained, 99.2 %, is attained for the yearly
variability (IMF7). Globally, the HC3v5 accounts for 97.9 %
of the observed variability (RMSE= 14.1 W m−2), outclass-
ing ERA with 92.1 % (RMSE= 24.8 W m−2) and MERRA2
with 92.8 % (RMSE= 26.4 W m−2). For IMF1. . . IMF5,
MERRA2 outperforms ERA in terms of R2 except for the
monthly variability (IMF4), as also reflected in the range of
this coefficient of [0.684; 0.762] for MERRA2 as opposed to
a range of [0.636; 0.755] for ERA. The yearly variability of
the ground measurements is better expressed by ERA than by
MERRA2, both in terms of coefficient of determination and
RMSE. Generally, all the datasets exhibit monotonically de-
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creasing RMSE for the first five modes and very good agree-
ment for the yearly variability (R2> 0.985).

Similar statements can be made about the results for KIV,
presented in Table 4. Here too, the HC3v5 dataset outper-
forms ERA and MERRA2 both in terms of coefficient of
determination and RMSE, across all time-scales and also at
the whole time-series level. The minimum R2 for HC3v5
is 0.885 for IMF5, while the minimum values of R2 for ERA
end MERRA occur for IMF1 and are 0.611 and 0.621, re-
spectively. As for VIE, all the datasets exhibit monotoni-
cally decreasing RMSE for the first five modes and very good
agreement for the yearly variability (R2> 0.982).

4 Discussion

The results in the previous section have highlighted some
features of the data that will be expanded upon here.

It has been inferred from the mean time-scales and mean
amplitudes of the decomposed data (Tables 1 and 2) as as
well as from the Hilbert marginal spectra (Figs. 3 and 4) that
the yearly mode of variability is the most prominent feature
of all the datasets. This result is unsurprising since both sta-
tions are situated at mid-latitude and it can be explained in
terms of orbital geometry through the yearly cycle of sea-
sons; it can also be inferred by visually inspecting the raw
data from Fig. 1 which shows large variability with period-
icity of one year. For WRDC, HC3v5, ERA and MERRA2,
there is good agreement with respect to this mode (IMF7)
both in terms of amplitude and of time-scale (see also Ta-
bles 3 and 4).

Apart from this yearly component, the TOA exhibits no
other form of significant variability, also in good agreement
with its trace from Fig. 1, which registers as an undisturbed
sinusoidal waveform.

High-frequency variability, from 2 days up to 2–3 months,
is manifest in McClear through its first five IMFs. This fea-
ture is also present in the rest of the datasets with greater
power when compared with McClear. Hence, this feature
can be attributed to clear-sky (no cloud) atmospheric effects
(scattering and absorption by ozone, water vapour, aerosols,
etc.). Looking at the McClear graph in Fig. 1, it becomes
evident that this high-frequency variability manifests itself
more strongly during the summer than during the winter
months. In other words, the yearly cycle modulates the power
of this high-frequency feature through a non-linear cross-
scale amplitude-phase coupling. This feature is also appar-
ent in the HC3v5, WRDC, ERA and MERRA2 datasets (see
Supplement) and is in agreement with the findings of Ben-
gulescu et al. (2016b) who underlined its stochastic nature.
The time-scales for the individual modes composing this
high-frequency feature agree well across these latter four
datasets. In terms of amplitudes, however, for VIE HC3v5
slightly overestimates the WRDC measurements while ERA
and MERRA2 underestimate more severely, while for KIV

all the SSI estimates yield lower values than the ground data,
although less so for HC3v5. This is also readily apparent in
Tables 3 and 4, where for the first five IMFs, HC3v5 out-
performs ERA and MERRA2 by a large margin. This re-
sult is a major contribution of the study, since Inman et al.
(2013) have proposed that the accuracy of SSI forecasts cru-
cially depends on the ability to forecast the stochastic com-
ponent. As such, practitioners interested in modelling and
forecasting the daily SSI are better off using satellite esti-
mates that radiation products from re-analyses, at least for
the two sites studied herein. This finding can be explained
by the fact that re-analyses assimilate state variables such as
temperature, moisture and wind, while the SSI is diagnostic.
Stated differently, in re-analyses, radiation and cloud prop-
erties are derived from a model and, as such, they include
the uncertainty of this model. Re-analyses often predict clear
sky conditions while the actual conditions are cloudy (Boil-
ley and Wald, 2015). HC3v5 is based on Meteosat imagery
(Sect. 2.1) and as such directly takes clouds into account.

Another significant result of this study is the fact that,
for both VIE and KIV, the McClear datasets do not have a
variability component in between this high-frequency feature
and the yearly cycle. In other words, IMF6 for the McClear
data represents the yearly cycle, unlike the ground measure-
ments or the SSI estimates, where IMF6 is an intermedi-
ate component before the yearly component represented by
IMF7. This has first been discussed as a “variability gap”
by Bengulescu et al. (2016a), when analysing a decennial
dataset of daily means of SSI measured by BSRN ground
station at Carpentras, France, that experiences clear-sky con-
ditions for most of the year. Subsequently, Bengulescu et al.
(2016b) have shown that this “variability gap” is also man-
ifest for a similar dataset of ground measurements taken at
Boulder, Colorado, USA, a location that also experiences a
high number of days with clear skies. Hence, this study con-
firms the fact that, indeed, a clear-sky atmosphere does not
introduce any spectral features in between 2–3 months and
1 year. Since the ground data for both VIE and KIV feature
such spectral components, it can be concluded that these two
locations do not experience so many cloud-free days and/or
that they experience a lot of broken clouds conditions. Here
too, ERA and MERRA2 are outperformed by HC3v5, since
the time-scale of this IMF6 in the re-analyses datasets is
greatly different form the true time-scale found in ground
measurements, and which is accurately reflected by the satel-
lite estimates.

Larger scales of variability (IMF8. . . IMF10) have been
discarded from this analysis because of their failing to stand
above the uncertainty threshold.

5 Conclusions and outlook

In this study we have investigated the characteristic time-
scales of variability found in long-term time-series of daily
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means of SSI. We have also studied the fitness for use
of satellite estimates of the SSI and radiation products re-
analyses as alternatives to pyranometric ground measure-
ments. The novelty of our work is the use of the adaptive,
data-driven Hilbert–Huang Transform (HHT) to decompose
the datasets into their distinct characteristic time-scales of
variability before undergoing analysis.

We have shown that the TOA only presents variability
at the one year time-scale. The clear-sky atmosphere intro-
duces stochastic high frequency variability, from 2 days to
2–3 months, which exhibits non-linear cross-scale phase-
amplitude coupling with the yearly cycle. This feature is also
present, and amplified, in ground measurements, satellite es-
timates and re-analysis products. The fact that the cloud-free
atmosphere does not introduce variability from 2–3 months
to one year, i.e. the “variability gap” alluded to in previous
studies, has been confirmed. It has also been shown that,
HC3v5 outperforms ERA and MERRA2 by a large margin
in terms of estimating the measured SSI, not only at a global,
whole dataset level, but also on an per time-scale basis, and
especially with respect to the stochastic variability compo-
nent. This has implications on the forecast and modelling of
the SSI, where satellite estimates should be preferred instead
of re-analysis products. Our study, hence, refines the existing
methodology to assess the fitness for use of surrogate SSI
products, through an improved in-depth comparison of their
local time-scales of variability.

A limitation of our study needs to be pointed out. Be-
fore carrying out the analysis, we have used the EMD on
each time-series and have only compared modes with simi-
lar time-scales. That is, we have used the mono-variate ver-
sion of the EMD, where mode alignment (identical time-
scales for the IMFs across datasets) is not enforced. Nev-
ertheless the non-alignment of modes is not to be considered
a weakness of our approach. Because identical time-series
will be decomposed into identical modes, by not enforcing
similar time-scales across the modes of different datasets,
changes in the time-scales of the modes (e.g. IMF6 of HC3v5
matches WRDC unlike ERA or MERRA2) also provide sup-
plementary clues as to the fitness for use of the surrogate SSI
datasets in lieu of ground measurements. Mode alignment
can be enforced by more advanced, multi-variate versions of
the EMD. Two such techniques are the noise-assisted multi-
variate empirical mode decomposition (NA-MEMD) intro-
duced by Rehman et al. (2013) or the adaptive-projection
intrinsically transformed multivariate empirical mode de-
composition (APIT-MEMD) proposed by Hemakom et al.
(2016). The latter method is particularly of interest since it
is also able to deal with power imbalances and inter-channel
correlations found in multichannel data. With NA-MEMD
or APIT-MEMD, all the datasets would be treated in a uni-
tary manner as a single multi-variate signal, thus mode align-
ment would be enforced. This would also enable the use of
of more advanced descriptors, such as multi-scale measures
suitable for multi-variate datasets and inter-component mea-

sures, e.g. intrinsic correlation, intrinsic sample entropy or
intrinsic phase synchrony (Looney et al., 2015). However,
the exercise is significantly more technical and is proposed
as a future study.

Lastly we recognize the restrained geographical character
of the study and, as a future exercise, we propose its exten-
sion to many more geographical locations and possibly in-
cluding several different satellite estimates and re-analyses
radiation products, in order to determine whether the find-
ings reported herein also hold for different regions and for
different SSI surrogates.

6 Code availability

The software used for this study, comprising general EMD
and HSA routines is publicly available online, as follows.

The fast EMD routine used in this study is provided by
Wang et al. (2014) and can be downloaded at: http://rcada.
ncu.edu.tw/FEEMD.rar.

Methods pertaining to Hilbert spectral analysis are part
of a general HHT toolkit provided by Wu and Huang
(2009) and can be downloaded at: http://rcada.ncu.edu.tw/
Matlabruncode.zip.

The code for the ICEEMD(AN) algorithm (Colomi-
nas et al., 2014) is provided by María Eugenia Torres
on her personal webpage, and can be downloaded at:
http://bioingenieria.edu.ar/grupos/ldnlys/metorres/metorres_
files/ceemdan_v2014.m

7 Data availability

The data can be accessed as follows:
The ERA-Interim data set (ECMWF2009) can be accessed

at: https://doi.org/10.5065/D6CR5RD9.
The MERRA2 radiation diagnostics M2T1NXRAD

timeseries (GMAO2015) is available at:
doi:10.5067/Q9QMY5PBNV1T.

TOA and McClear data from Copernicus Atmosphere
Monitoring Service (Copernicus2015, Hoyer-Klick et al.,
2015) can be retrieved at: http://www.soda-pro.com/
web-services/radiation/mcclear.

The WRDC global radiation daily sums for Europe
(WRDC2014) can be accessed at: http://wrdc.mgo.rssi.ru/
wrdc_en.htm.

The HelioClim-3v5 dataset was downloaded from the
SoDa Service web site (http://www.soda-pro.com) managed
by the company Transvalor. Data are available to anyone for
free for years 2004–2006 as a GEOSS Data-CORE (GEOSS
Data Collection of Open Resources for Everyone) and for-
pay for the most recent years with charge depending on re-
quests and requester.
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Appendix A: Mean IMF time-scales and amplitudes
for KIV

Tables A1 and A2 present the mean time-scales and respec-
tively the mean amplitudes of the IMFs for the KIV datasets.

Table A1. Mean IMF time-scales in days for the KIV datasets.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

TOA 6.5 9.3 16.0 31.8 344 366 389 796 3157 3407
McClear 2.9 6.9 12.6 25.1 54.9 366 387 1054 2981 3813
WRDC 3.1 6.9 13.3 26.9 49.0 199 369 959 1552 1760
HC3v5 3.1 6.9 13.3 27.4 49.7 176 370 726 1639 2680
ERA 3.1 6.9 13.3 27.2 48.3 280 370 1015 1540 3367
MERRA2 3.0 6.9 13.4 26.8 48.3 298 374 746 1658 3533

Table A2. Mean IMF amplitudes in W m−2 for the KIV datasets.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

TOA 0.1 0.1 0.1 0.1 3.3 182 5.6 1.4 2.6 0.5
McClear 7.7 5.1 3.8 3.5 3.1 130 6.6 1.6 0.9 0.5
WRDC 42 25 20 18 12 22 103 6.6 5.4 0.6
HC3v5 40 24 19 17 11 19 103 7.4 6.6 1.2
ERA 29 18 14 13 9.3 31 91 4.9 4.5 2.3
MERRA2 36 21 16 14 9.3 41 89 5.5 5.9 0.6
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