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Abstract

The present paper addresses the challenge of conducting Finite Element (FE)

micromechanical simulations based on 3D X-ray data, and quantifying errors

between simulations and experiments. This is of great interest, for example, in

the study of ductile fracture as local comparisons and error indicators would help

understanding the limitations of current plasticity and damage models. Stan-

dard methods used in the literature to conduct FE simulations at the microscale

are often based on multiscale schemes. Relevant mechanical fields computed in

an FE simulation at the specimen scale are used as boundary conditions for the

micromechanical simulation, where the real microstructure is meshed from 3D

X-ray images. These methods hence rely on an identification of material be-

havior at the macroscale, say, using force measurements and 2D surface images.

In an earlier work by the authors, a method for conducting micromechanical

simulations using measured boundary conditions thanks to Digital Volume Cor-

relation (DVC) was proposed. The interest of this DVC-FE approach is that

it uses solely 3D X-ray images acquired in-situ during the experiments. Thus,
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FE simulations are directly conducted at the microscale, with no dependence

on specimen scale simulations or multiscale schemes. This method also includes

a methodology to perform local error measurements with respect to experi-

mental observations. In this paper, both multiscale schemes and this DVC-FE

approach are applied to new experimental results on a nodular cast iron spec-

imen with machined holes. Ductile fracture due to the nucleation, growth and

coalescence of microscopic voids between the machined holes is observed in-situ

thanks to synchrotron 3D imaging. The objective of this paper is to assess the

accuracy of boundary conditions for each approach and conclude on the optimal

choice. Based on both average and local error measurements, it is shown that

void growth is underestimated with multiscale schemes, while predictions are

significantly improved with the DVC-FE approach.

Keywords: Digital Volume correlation; Ductile fracture; Level set; Multiscale

analysis; Micromechanical modeling; Microstructure meshing; X-ray

laminography

1. Introduction

In the aim for understanding the physical nature of any phenomenon, com-

parison between experiments and theoretical models is used extensively [1]. In

the case of ductile fracture, difficulties arise due to the competition between lo-

calization and softening events occurring at different scales [2, 3]. In particular,

investigations of ductile fracture mechanisms, namely, void nucleation, growth

and coalescence at the microscale require 3D observations at this scale. On the

numerical side, being able to simulate these mechanisms with comparable geo-

metric and loading conditions is still an open research topic, which is once again

due to the scale at which the geometry and the loading have to be identified.

Although 3D in-situ experimental observations (e.g., X-ray tomography and

laminography) have provided valuable information for ductile fracture model-

ing [4, 5, 6, 7, 8, 9], numerous questions regarding comparisons between models

and experiments are still to be answered. For instance, the well-known work
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of Gurson [10] has motivated researchers to rely extensively on homogeniza-

tion theory to model ductile fracture based on analytical [10, 11, 12, 13] or

numerical procedures [14, 12, 13, 15, 16]. Even though interesting results can

be obtained on average values, the applicability of these homogenized models

to real 3D microstructures is quite limited due to the assumptions of idealistic

microstructures and boundary conditions on which they are based [17, 18, 6, 9].

Numerical procedures at the microscale could be applied given that 3D X-

ray images of the microstructure are acquired in-situ, that a microstructure

meshing technique is available, and that boundary conditions are applied. This

is a critical piece of information that will be analyzed herein. There are different

ways of performing such microscale simulations:

• The most straightforward approach is Direct Numerical Simulation (DNS),

where the microstructure of the whole specimen has to be meshed, hence

taking into account only microscale constitutive models. Since the whole

specimen is simulated, boundary conditions are applied directly at pins,

as in the experiment. However, depending on specimen size, DNS can

have a huge cost regarding both experiments and simulations. Scanning

the whole specimen could require multiple scans at each loading step, and

this large set of 3D data would then have to be meshed.

• To avoid this huge computational cost, full specimen Finite Element (FE)

simulations only partially taking into account the microstructure have

been considered [19, 20, 21, 22, 23, 24]. Microscale constitutive models

are used in the ROI where the microstructure is meshed, while macro-

scopic homogeneity is assumed in the remainder of the specimen. Thus,

an appropriate macroscale constitutive model has to be defined and iden-

tified for this out-of-ROI homogeneous material. This approach will be

referred to as strong FE (sFE) coupling.

• Opposed to the previous approach in which the ROI mesh is directly em-

bedded within the specimen mesh, the two FE calculations can be weakly

coupled. In this weak FE (wFE) approach [25, 26, 27], the specimen scale
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simulation assumes a homogeneous material in the whole domain. A rel-

evant mechanical field is then transferred from this first simulation to the

second simulation at the ROI scale, where the microstructure is meshed.

This mechanical field defines the boundary conditions for the microme-

chanical simulation. These conditions can use displacements, forces, or a

combination of both.

• In a recent work [28], an alternative option for performing microscale

simulations was proposed. Digital Volume Correlation (DVC) was used

in order to measure displacement fields between 3D X-ray images taken

at consecutive loading steps [29, 30, 31]. The DVC technique is based

on tracking the natural image contrast, herein originating from the het-

erogeneous microstructure. FE simulations were conducted by applying

measured DVC displacements to the boundaries of the meshed ROI. The

difference between FE results and DVC displacement fields inside the FE

domain could be assessed. Additionally, a better quantification of the error

produced by FE models was obtained by computing gray level residuals

based on FE and DVC displacement fields. An advantage of this so-called

DVC-FE method is that no specimen scale simulation is required, thus

no macroscale constitutive model has to be identified. Yet, it requires a

thorough uncertainty assessment regarding DVC measurements.

The present paper aims at showing the interest of the DVC-FE approach and

compare its predictive capability with simulations at the microscale based upon

either weak or strong FE couplings. One key aspect is related to the boundary

conditions that are applied to the simulated ROI where the microstructure is

meshed. This investigation is conducted with new experimental results using

nodular graphite cast iron specimens with a geometry inspired from Ref. [5].

A first test (A) was performed using small loading steps in order to obtain

accurate force measurements and 2D surface images to be exploited thanks to

global Digital Image Correlation (DIC). The second test (B) was performed

using larger loading steps since it was conducted in a synchrotron facility. For
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this second test, both 3D X-ray scans of the ROI and 2D surface images were

acquired (see Figure 1).
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Figure 1: Schematic view of the sample with zoomed region between the holes showing on the

right: DVC (blue) and FE (cyan) meshes plotted over the corresponding cast iron microstruc-

ture in isometric view. On the left: surface image with speckle pattern and DIC mesh from

test (B)

While the DVC-FE methodology presented above uses directly and solely

the 3D X-ray data, the two alternatives to obtain boundary conditions for ROI

calculations considered in this paper (i.e., wFE and sFE) rely on force mea-

surements and 2D surface images. Force measurements are used to identify the

behavior of the material at the specimen scale, as well as 2D surface images

thanks to a recent Integrated-DIC framework [32]. In the wFE method, an FE

simulation of the experiment at the specimen scale is conducted, and calculated

displacement fields are used to drive a second FE calculation at the ROI scale.

In the sFE method, the ROI is embedded and meshed directly inside the speci-

men mesh and only one FE simulation is conducted. In this second method, the

material behavior is modeled using microscale constitutive models in the ROI,

while macroscale constitutive models are used in the rest of the domain.

The aforementioned approaches with weak (wFE) and strong (sFE) cou-

plings between specimen and ROI calculations are applied to a real 3D mi-

crostructure observed thanks to 3D in-situ laminography experiments. To the
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best of the authors’ knowledge, this is the first time such simulations are con-

ducted and compared locally to experimental observations, this last point being

possible thanks to gray level residual computation. The results are then com-

pared to those obtained using the DVC-FE approach [28], showing the interest

of this methodology. Details regarding the material, the experiments and the

numerical method used for ROI calculations are presented in Section 2, while

the technical implementation of each approach for boundary conditions is de-

scribed in Section 3. The results are presented and compared based on error

measurements with respect to experimental images in Section 4.

2. Experimental and numerical framework

2.1. Experiments

The material used in this study is a commercial nodular graphite cast iron

with the serial code EN-GJS-400. It features a ferritic matrix and graphite

nodules at the microscale (see Figure 2), with no significant porosity in the

initial state. Under tensile loading, ductile fracture is known to be mainly

driven by early debonding of the nodules from the matrix and coalescence of

the subsequent nucleated voids [33, 34, 35]. Previous works [33, 36, 37, 34]

suggest to model the nodules as voids, as their load carrying capacity is very

low under tensile loading. This assumption is made herein meaning that at

the microscale the material is considered as a two-phase microstructure with a

ferritic matrix and voids.

The specimen geometry, which is inspired by the work of Weck et al. [5],

is shown in Figure 2. The holes have been machined via Electrical Discharge

Machining (EDM). The testing device applies the load by manually controlling

the displacement via screw rotation.
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Figure 2: (a) Sample geometry with the scanned region between the pin holes; (b) section of

the reconstructed volume with ROI position

Test (A) is conducted as a pre-test for test (B) to study in detail the partic-

ular sample behavior (i.e., to assess the load levels for the scanning procedure).

Therefore, identical sample geometry and material are used for test (B). The

load/displacement curve for test (A) is shown in Figure 5(b). Load data ac-

quired during test (A) refer to peak values. The time lapses between peak loads

and laminographic scans are less than 10 minutes for test (B).

In test (B) after applying each loading step, a scan is acquired while the

sample is rotated about the laminographic axis (i.e., parallel to the specimen

thickness direction). This axis is inclined with respect to the X-ray beam di-

rection by an angle θ ≈ 60◦. The 3D images used in this work were obtained

at beamline ID15A of the European Synchrotron Radiation Facility (ESRF,

Grenoble, France) with a 60-keV white beam, using 3,000 projections per scan.

The series of radiographs acquired is then used to reconstruct 3D volumes by

using a filtered-back projection algorithm [38]. The parameter optimization has

been performed automatically using a GPU-accelerated implementation of this

algorithm [39]. The reconstructed volume has a size of 1600×1600×1600 voxels.

The physical size (length) of 1 cubic voxel is equal to 1.1 µm. After scanning

the undeformed state (0), 12 additional scans are acquired during the stepwise
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loading procedure, where the last scan corresponds to the fully opened final

crack.

The scanned region incorporates two holes while the ROI employed in DVC

and FE calculations is mainly concentrated in the ligament between the holes

(see Figures 1 and 2). Since the two machined holes have diameters of 500 µm,

the nodule population (treated as voids in the FE calculations) in the ligament

area with the characteristic size of 60 µm can be considered as a secondary

void population. Hence, subsequent concurrent micro and macro plasticity and

damage localization phenomena can be observed. In Ref. [5], the authors used

machined holes of micrometer size, which made impossible the observation of

the secondary void population (this limitation on the size of observable voids

is actually due to current imaging techniques [40]). Here, the larger size of the

holes, and the large size of the graphite nodules allow for such observations.

This is illustrated in Figure 3 where mid-thickness sections of the reconstructed

volume for the three different load stages are shown. As a consequence of

the mentioned multiscale flow conditions, classical void coalescence mechanisms

are accompanied by sheet coalescence between the two machined holes that is

observed in the last loading step (deformed state (11)).

undeformed state (0) deformed state (7) deformed state (11)x

y

F

F

thickness

250 µm

Figure 3: Mid-thickness section of the reconstructed volume for three different loading steps

2.2. FE mesh of the microstructure

The framework used for microscale FE simulations is based on previous de-

velopments presented in Refs. [41, 42, 43, 44, 45]. As explained in Ref. [28], the

ROI used for FE simulations has to be included in all DVC domains through-
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out each loading step. Otherwise displacement fields would not be available as

boundary conditions on the whole boundary of the FE mesh. This requirement

is necessary for the DVC-FE approach but also for other approaches in order to

allow for comparisons with experimental observations. In practice, in order to

be as representative as possible, a 3D box as large as possible is chosen. This

3D box has to be small enough to remain in all scanned regions throughout

loading. The image meshing technique used to model the microstructure ob-

served in the experimental 3D images starts with standard image processing

operations [46, 47]. They consist of smoothing the data, applying a gray value

threshold to separate matrix and voids, and then converting these binary data

into a signed distance function. The latter is interpolated to a first mesh of

uniform size (i.e., 10 µm) of the FE ROI using trilinear FE interpolation (i.e.,

the image is considered as a hexahedral grid where the voxels are nodes). The

resulting signed distance function is then regularized based on a recently pro-

posed parallel reinitialization algorithm [43], and used as an intermediary to

locate the interface [45]. This mesh generation step is combined with an adap-

tion step taking into account the local maximum curvature of the interface [44].

These different steps are summarized in Figure 4.
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Figure 4: Image immersion and meshing. (a) Initial laminography 2D section, (b) signed

distance function computed thanks to image processing, (c) signed distance function interpo-

lated and reinitialized on the FE mesh [43], (d) conforming FE mesh generated and adapted

to interfaces and local maximum curvature, (e) zoom on the FE mesh, (f) comparison between

initial laminography 2D section and interfaces in the final FE mesh (in white)

Parameters of the final mesh are defined to have a size of 10 µm close to ma-

trix/void interfaces, and 50 µm at a distance of 100 µm from any interface, the

transition in this layer being linear. It can be observed qualitatively in Figure 4

that the FE approximation of the geometry is really close to experimental data.

A more thorough analysis of the sensitivity of the results to meshing parameters
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was assessed (not reported herein) and revealed this influence to be negligible,

as already validated in a previous study for a different experiment on the same

material [28].

2.3. Constitutive laws and parameters

2.3.1. Microscale model

The microscale simulations need material models for the graphite nodules

and the ferritic matrix. As stated in the introduction, graphite nodules are

modeled as voids [33, 36, 37, 34], while the ferritic matrix is considered as

elastoplastic with power law hardening

σ0(ε) = σy +K (ε)
n

(1)

where ε is the equivalent (von Mises) plastic strain, σy the yield stress, K

the plastic consistency and n the hardening exponent. A particularity of the

present numerical method is that voids are meshed and defined as a purely

elastic material with very low Young’s modulus with respect to the matrix. A

sensitivity analysis regarding this Young’s modulus was conducted [28] showing

that a ratio of 1, 000 between this modulus and that of the matrix was sufficient.

The properties of the matrix are deduced from stress/strain curves [36] and

presented in Table 1. These data are based on tensile experiments on a purely

ferritic material. Thus, it is possible that the actual behavior of the matrix

be more complex. An interesting perspective to the present work would be to

use micromechanical calculations and local error measurements to study more

appropriate microscale constitutive models and identify more realistic material

properties.

Table 1: Elasto plastic properties of the ferritic matrix

E (GPa) ν σy (MPa) K (MPa) n

210 0.30 290 382 0.35

Mechanical solution of the equilibrium equations is based on a mixed velocity-

pressure formulation solved using a P1+/P1 element to avoid locking issues [48].
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The nonlinear behavior of the matrix requires a Newton-Raphson scheme both

for numerical integration of the plastic law and global equilibrium [49]. In order

to handle large deformations, an updated Lagrangian scheme is used and the

velocity field resulting from the mechanical solution is applied to move mesh

nodes. An advanced mesh motion technique is necessary and plays a key role in

micromechanical simulations. Since the latter will be driven herein by boundary

conditions reproducing as accurately as possible what is observed in Figure 3,

large distortions will occur inside the ROI. As a result, mesh quality will dete-

riorate, thus affecting the accuracy of FE solutions. Flip of elements may also

occur. These issues are handled herein thanks to an automatic mesh motion

and adaption method developed in previous works [43, 44, 45]. This method

was designed to preserve at best the local distribution of volumes between the

matrix and the voids while handling large void growth and complex topological

events such as void coalescence.

2.3.2. Macroscale model

Both wFE and sFE methods require the identification of material parameters

{p} based on experimental measurements acquired during test (A). In the case of

wFE, these material parameters are used in the whole domain for the calculation

at the specimen scale of test (B). In the case of sFE, these parameters are

only used for the homogenized out-of-ROI material, while microscale material

parameters (Table 1) are used inside the ROI. The identification of material

parameters can be performed only using force measurements, or using both

force measurements and 2D surface images. The two approaches are detailed

hereafter.

Load data

A first identification is conducted using standard global optimization meth-

ods [50, 51], where the objective function is defined as [52]

E(F(u)) =

√∫U

0
(F(u)− Fexp(u))

2
du√∫U

0
Fexp(u)2du

(2)
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where the forces obtained in an FE simulation F are compared with the sum of

reaction forces measured during the experiment Fexp, with an integral on the

loading path [0,U]. Therefore, only load data acquired during test (A) are taken

into account. Note that the displacement u, and all displacements mentioned in

this paper, are measured via 2D DIC [53, 54, 55]. These values were determined

directly at the upper and lower parts of the mesh presented in Figure 5(a). The

force/displacement curve based on measurements and simulations is shown in

Figure 5(b). The experimental data were acquired up to final failure, but the

last loading steps of test (B) were discarded for this inverse analysis because

no micromechanical simulation is carried out up to final failure in Section 4.

The force/displacement curves show that the numerical approximation is very

good, but here only the macroscopic force is compared. Local measurements

are considered in the sequel.

(a) (b)
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Figure 5: Identification of macroscopic material parameters based on test (A) data. (a) Mesh

used for specimen scale calculations, (b) comparison between the simulated force/displacement

curves and experimental data

Load data and pictures

In order to obtain more realistic material properties more advanced identi-

fication techniques can be considered. In Integrated-DIC or DVC [32, 56, 57],

both pictures (i.e., 2D surface images from test (A)) and load (i.e., force mea-

surements from test (A)) data are taken into account. Integrated DIC requires
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displacement fields to be fully mechanically admissible, i.e., satisfy equilibrium

for the chosen constitutive law. Since material parameters are sought, the cor-

responding sensitivity fields [58] are also needed. The displacement fields are

parameterized with the sought corrections {δp} to the current material param-

eters {p̂} over the whole loading history t

u(x, t, {p}) =
∑
t

∑
p

up({p}, t)Ψp(x) (3)

where the kinematic degrees of freedom up are linked to the sought material

parameters via sensitivities

up({p}, t) = up({p̂}, t) +

{
δup
δ{p}

({p̂}, t)
}T

{δp}. (4)

The kinematic sensitivities are collected in matrix [Su(t)] and evaluated for

each loading step t via FE simulations in which measured displacements are

prescribed on the top and bottom boundaries of the considered ROI. These

Dirichlet boundary conditions are measured a priori by conducting global DIC

on 2D images from test (A). Simultaneously, the load measurements gathered

in vector {Fexp} are compared with the resultant forces {FFE} from the corre-

sponding FE simulation. As for the kinematic part, the load sensitivity matrix

[SF (t)] to the sought material parameters is computed to update {δp} from

the current estimate {FFE({p̂})} of the reaction forces. Since both images and

loads are used in a single approach and due to different physical natures of the

data a Bayesian framework is considered herein, in which each piece of data is

weighted by its variance and covariance with all the other data [32, 57].

The Integrated-DIC code used herein is an in-house Matlab implementation

with C++ kernels (i.e., Correli 3.0 [59]) while the accompanying FE simulations

are performed using the commercial package Abaqus/Standard. More details

about mechanical correlation can be found in Ref. [32]. Due to very low sensi-

tivity the Poisson’s ratio had to be set in Integrated-DIC to its initial value of

0.28 while the other elastoplastic parameters have been identified.

Material parameters obtained using both identification procedures are given

in Table 2. Though these parameters may seem to differ notably, the influence
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of this difference is significant only at low (i.e., < 0.2) and very large (i.e.,

> 1) equivalent plastic strain, the latter not being experienced herein. Hence,

the results are not expected to strongly depend on the choice of identification

procedure apart from the first loading steps, as illustrated in Figure 5(b).

Table 2: Elastoplastic properties of nodular cast iron obtained using two inverse analyses on

test (A). The first one is only based on load data. Integrated-DIC also uses kinematic data

Method E (GPa) ν σy (MPa) K (MPa) n

Load data 187 0.28 64 520 0.19

Integrated-DIC 136 0.28 220 410 0.33

3. Boundary conditions

As explained in Section 1, three different techniques will be used to deter-

mine the boundary conditions of FE simulations at the microscopic scale. Two

procedures, namely, wFE and DVC-FE, consist of computing or measuring dis-

placement fields and then applying them as Dirichlet boundary conditions on

the whole boundary of the FE mesh of the ROI of the microscale calculations.

The third procedure (i.e., sFE) has the ROI mesh embedded within the sam-

ple geometry and the whole computation is run in a single step. The three

approaches and their implementation are detailed hereafter.

3.1. Weak Finite Element (wFE) technique

An application of the wFE technique to ductile fracture with meshed mi-

crostructure can be found in Ref. [27]. The objective of this study was to assess

the influence of macroscopic loading conditions on the microstructure, especially

regarding damage localization around inclusions. Although the real microstruc-

ture was meshed from a 3D X-ray image of the material, there was no comparison

with experiments regarding micromechanical calculations, as proposed herein.

In the present work, a first macroscopic simulation of test (B) is conducted

at the specimen scale. The material is considered as homogeneous and modeled
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using the same elastoplastic model with the power law hardening defined in

Equation (1) and the two sets of material parameters given in Table 2. Since

specimens used in tests (A) and (B) had identical geometries, the same mesh

as in Figure 5(a) is used. The displacement field between each consecutive

loading steps where 3D X-ray scans were acquired is stored in the reference

configuration. These displacements are then interpolated at the boundaries of

the ROI during a second FE simulation at the microscale by means of linear

interpolation (both meshes being exclusively composed of tetrahedra).

3.2. Strong Finite Element (sFE) technique

In the sFE method, a single FE simulation is carried out. The microstructure

is directly meshed within the specimen mesh, with a progressive mesh coarsening

from the very fine mesh close to the microstructure to the coarse mesh out of the

ROI. Such mesh can be quite complex to build with conventional meshing tools,

especially when a real microstructure is considered. This approach has been used

for small compact tension specimens in Refs. [19, 21, 24]. The microstructure

of the studied high strength steel featured two populations of particles and

voids, namely, one of micrometer size and one of sub-micrometer size. In these

studies, only the major population was meshed and simulated with the sFE

method. Promising results were obtained by using a damage model inside the

matrix material in order to account for sub-micrometer size voids. However,

in the absence of local error measurements and in-situ experiment, it was not

possible to quantify locally the accuracy of this micromechanical model.

In order to avoid the difficulties linked to real microstructures and their

randomness, experiments on tensile specimens with machined micrometer size

holes were proposed [5]. Simulations based on this experimental procedure were

performed [60, 22]. Because the position of the holes and their size was part

of the specimen geometry, generating meshes adapted to the microstructure

was simplified. However, these studies revealed an influence of a minor void

population, which could not be meshed.

The specimen geometry with two machined holes used in the present work
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is directly inspired from Ref. [5]. Thanks to the millimeter size of the ma-

chined holes, and the micrometer resolution of synchrotron laminography, it is

proposed herein to mesh both void populations, namely, the machined holes

and the nodules (considered as voids herein). This is illustrated in Figure 6.

This mesh is similar to that shown in Figure 5(a), with the difference that this

time it incorporates the ROI with its microstructure. In the ROI, the material

properties correspond to those of Table 1, while in the rest of the specimen the

two sets of material properties given in Table 2 are considered. Compared to

other approaches, this method adds significant computation time, as illustrated

by the used mesh of ≈ 1.5 million elements in Figure 6. However, it has the

advantage that ductile fracture can be studied simultaneously at two scales.

(a) (b)

Figure 6: Inside view of the mesh used in sFE calculations. (a) Full specimen, (b) zoom on the

ROI. The three shades of blue represent, from lighter to darker, the homogenized out-of-ROI

material, the matrix, and the voids

3.3. Digital Volume Correlation - Finite Element (DVC-FE) technique

DVC used herein is an extension of global 2D DIC [53, 54]. The reconstructed

volume is represented by a discrete gray level field of the spatial (voxel) coordi-

nate x. The principle of DVC lies in matching the gray levels f in the reference

configuration with those of the deformed volume g such that their conservation

is obtained

f(x) = g[x + u(x)] (5)

where u is the displacement field with respect to the reference volume. In real

experiments the strict conservation of gray levels is not satisfied, especially in
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laminography where deviations appear not just due to acquisition noise but

also due to reconstruction artifacts because of missing information [61]. Con-

sequently, the solution consists in minimizing the gray level residual ρ(x) =

f(x) − g[x + u(x)] by considering its L2-norm with respect to kinematic un-

knowns associated with the parameterization of the displacement field. Since a

global approach is used in this work, the whole ROI is considered, the global

residual Φ2
c

Φ2
c =

∑
ROI

ρ2(x) (6)

is minimized with respect to the unknown degrees of freedom up, the displace-

ment field being written as

u(x) =
∑
p

upΨp(x) (7)

where Ψp(x) are the chosen displacement fields for the parameterization of u(x).

Among a whole range of available fields, finite element shape functions are par-

ticularly attractive because of the link they provide between the measurement

of the displacement field and numerical models. Thus, a weak formulation based

on hexahedral finite elements with trilinear shape functions is chosen [62].

Conducting DVC analyses with the full size reconstructed volumes is com-

putationally too demanding. Therefore only a part of the reconstructed volume

called DVC ROI is considered herein, as shown in Figure 2. Additionally, to

be able to keep large DVC ROI sizes, the original reconstructed volumes are

a priori coarsened, i.e., each 8 neighboring voxels are averaged to form one

supervoxel. By doing this, file sizes are decreased by a factor of 8.

The DVC resolution is evaluated by correlating two scans of the unloaded

sample (0) with (denoted “rbm”) and without (denoted “bis”) a rigid body mo-

tion (RBM) applied between the acquisitions. Due to the noise contribution

and reconstruction artifacts, these two volumes are not identical. Therefore,

the measured displacement field accounts for the cumulated effects of laminog-

raphy and DVC on the measurement uncertainty [63]. The uncertainty values

are evaluated by the standard deviation of measured displacement fields. Fig-
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ure 7 shows the standard resolution levels for different element sizes ` expressed

in supervoxels. Decreasing the element size is followed by an increase of the

displacement resolution [53, 1, 54, 64]. The element size used in this work is

` = 16 supervoxels (length) for all three directions, which yields a standard dis-

placement resolution of 0.25 supervoxel. This value represents the limit below

which the estimated displacement levels are not trustworthy.
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Figure 7: Standard displacement resolutions as functions of the element size ` expressed in

supervoxels for two different scans

Successful DVC registrations have been obtained for the first 9 incremental

(i.e., between Step n− 1 and Step n) loading steps and they have been used for

DVC-FE boundary conditions. The DVC displacement fields are interpolated

at each loading step onto the FE mesh of the ROI using trilinear interpolation

(i.e., identical to shape functions of DVC measurements).

4. Results

In this section, results using the DVC-FE approach are first presented and

discussed, as comparisons with experiments are qualitatively and quantitatively

possible. Then, comparisons with other approaches are proposed.

All micromechanical simulations (wFE, sFE, and DVC-FE) were performed

on a cluster of two nodes with a 1.2 GHz Intel Xeon 20-core processor and 64 GB
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RAM each. These simulations included ≈ 100 voids meshed with ≈ 1 million el-

ements (≈ 1.5 million elements for the sFE simulation). The computation time

remained close to one hour even for the sFE simulation. This quite low com-

putation time is very promising in the perspective of applying inverse analyses

at the microscale to identify micromechanical properties, especially regarding

coalescence modeling. This is helped by the fact that the three approaches

avoid the requirement of meshing the microstructure of the whole specimen,

as in DNS. In the present case, considering the ratio between the volume of

the out-of-ROI material and the volume of the ROI in Figure 6, the number

of elements that a DNS calculation would require can be estimated at ≈ 100

million elements. Although such calculation is not conducted herein, the afore-

mentioned computation time shows that it could be in the very near future, at

least regarding the numerical part, thanks to the proposed methods and High

Performance Computing (HPC) capabilities demonstrated in this paper. How-

ever, the wFE, sFE, and DVC-FE approaches are, by far, more efficient, as the

microstructure has to be modeled only inside the ROI in the FE simulations.

4.1. DVC-FE coupling

The results using the DVC-FE approach are shown in Figure 8, where both

void growth and plastic strain are observed.
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(a) (b)

(c) (d)

F
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thickness

Figure 8: ROI calculation results using the DVC-FE approach showing the 3D meshed voids

and the equivalent plastic strain on sections when: (a) u = 0 (undeformed state), (b) u =

83 µm, (c) u = 192 µm, (d) u = 321 µm

Errors are be assessed first qualitatively, for example by comparing the X

midsection of the ROI with experimental images, as shown in Figure 9. Since

DVC boundary conditions are expected to follow experimental images, the ma-

trix/void interfaces in the simulation (in white in the figure) can be superim-

posed on these images and compared. This figure reveals that interfaces are

overall very accurately meshed and tracked during the simulation, up to the

last loading step. However, there is an irregularity in the material, namely a

non spherical void in the top left region of Figure 9. In the undeformed state,

this defect is already poorly captured by the meshing technique due to its very

small size, and this error accumulates during loading. The same remark applies
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to small voids that can be seen in the experimental image in Figure 9(a), but

not in the numerical approximation. This figure shows that void growth in the

simulations compares well with what is observed in X-ray images.

(a) (b)

(c) (d)

thickness

F

F

250 µm

Figure 9: ROI (blue line) calculation results using the DVC-FE approach comparing the

numerical matrix/void interface (white line) with experimental images for the X midsection

when: (a) u = 0 (undeformed state), (b) u = 83 µm, (c) u = 192 µm, (d) u = 321 µm

For each pair of consecutive loading steps, the scan acquired for the second

step can be deformed back with the displacement field obtained by the ROI

calculation and the result can be compared with the scan acquired at the first

step. That is, by means of a newly developed tetrahedral-DVC code [59, 57] FE

solutions with corresponding tetrahedral meshes are directly imported in the

reconstructed volumes frame where the displacement results are interpolated

voxel-wise and the corresponding deformed volume g(x) is corrected by the
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computed displacement field uFE(x). The gray level residuals, i.e., differences

between the reference volume f(x) and corrected deformed volume g(x + u(x))

can then be compared for DVC and FE computations, enabling quantitative and

local error measurements. This is shown in Figure 10 as standard deviation of

residual fields (normalized by dynamic range of the volume, i.e., 256 gray levels)

for DVC and DVC-FE calculations. These residuals remain very close to those

observed in the resolution analysis for which no strains occurred. Therefore the

DVC results are deemed trustworthy.

Figure 10: Standard deviation for the dimensionless gray level residual fields for all loading

steps. For comparison purposes, the dashed line corresponds to the resolution analysis for the

so-called “bis” case (see Subsection 3.3)

Note that the DVC-FE curve is not expected to lie below the DVC one, since

the latter is used to drive the former. The error produced by micromechanical

models inside the DVC-FE domain is low and it slightly increases at late loading

steps (from ≈ 15% initially to ≈ 20% in late loading steps). A look at the Z

midsection in Figure 11(a-b) reveals that these differences between simulations

(DVC-FE) and experiments (DVC) are concentrated around interfaces. This is

expected due to plastic localization. The growth of a minor void population and

damage at a lower scale are certainly also an explanation. These minor voids

cannot be observed due to the resolution of the synchrotron imaging technique

used herein. In Ref. [34] they have been observed experimentally using scan-

ning electron microscopy of fractured surfaces for a similar material. Once the

minor voids are imaged with sufficient resolution, the present DVC-FE frame-
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work would allow to model them. Hence, the development and application of

higher resolution techniques, such as nanolaminography, would be interesting in

order to check these assumptions. Yet, the present error measurements already

serve as a basis for modeling and identification of more advanced plasticity and

damage models, which will be considered in future work.
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Figure 11: Absolute gray level differences at the Z midsection after correction with DVC (a),

DVC-FE (b), wFE (c) and sFE (d) displacements for the ninth loading step. Note that due

to different rigid body motions for each simulation, the Z midsections slightly differ

Once the absolute errors in terms of gray level residuals are estimated, rel-

ative comparisons can be shown. DVC displacement fields are applied to the

boundaries of the FE domain, but they are also available inside the domain.

Hence, DVC and FE kinematic fields can also be interpolated on the same mesh

and directly compared as shown in Figure 12(a). Again, it is confirmed that the

24



main differences are concentrated in the debonding zones, while the differences

close to the boundaries are mostly zero.
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Figure 12: Mid-section normal to z-direction showing absolute difference between: (a) DVC

and DVC-FE displacement fields, (b) DVC and wFE displacement fields for the ninth loading

step. The black area at the top of sub-figure (b) represents a zone out of the DVC ROI.

The color bar range is set according to the data set from sub-figure (a) in order to have

more convenient visual comparison. The displacement difference is expressed in supervoxels

(1 supervoxel ←→ 2.2 µm)

Although the results using the DVC-FE method are promising, several as-

pects remain to be improved. In particular, Figure 9 as qualitative and Fig-

ure 11(a-b) as quantitative comparisons show that there still is a significant gap

between DVC-FE and DVC results. This gap increases slowly by reaching the

ultimate loading steps. Similarly, the displacement difference is significantly

larger than the displacement resolution (see Figure 7). Locally, the differences

are mainly concentrated around debond areas (i.e., matrix-nodule interfaces).

It is hence important to consider more carefully the nodules and their impact

both on the load carrying capacity of the material, and void growth. Addition-

ally, the increase of the error at late loading steps indicates the inability of the

microscale constitutive models used for the matrix material to capture the accel-
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eration of void growth, and the subsequent void coalescence. This observation

calls for more advanced plasticity models at the microscale that can capture

the complex multiscale plastic flow localization in the matrix. The growth of

a minor void population and damage at a lower scale could also be a possible

explanation. Thus, additional material parameters should be introduced for the

matrix material, and the present procedure should be extended to allow for the

identification of these material parameters.

These developments will extensively rely on the DVC-FE method and its

ability to provide experimentally measured boundary conditions for microme-

chanical simulations, and then compute local and relevant error estimators to

assess the validity of these simulations. The extension of the Integrated-DIC

framework to 4D analyses [57] will also be considered to conduct inverse analy-

ses based on these error measurements and identify material parameters at the

microscale.

4.2. Comparisons with wFE and sFE results

For quantitative comparisons between the DVC-FE method and its two alter-

natives used in this paper, two approaches are proposed. In the first approach,

as commonly carried out by most authors, void growth curves are compared,

giving only average quantities and global error indicators [65, 17, 18, 6, 66, 8].

The second approach aims to study which method is closer to experimental

observations based on local differences. These local errors are computed by

reducing the kinematic data for each simulation back to gray level residuals.

This requires to extend the procedure already applied to DVC and DVC-FE

kinematic data to the wFE and sFE methods.

4.2.1. Global error indicators

Void growth is defined by the following relationships

f =
void volume

ROI volume
, void growth =

f

f0
(8)

where f0 denotes the initial void volume fraction. Void growth curves are shown

in Figure 13. The EXP curve is obtained by computing void growth in processed
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laminography images (i.e., images with smooth signed distance functions as in

Figure 4(b)). The 3D box where this experimental void growth is computed

remains fixed to the initial ROI. The wFE and sFE curves correspond to sim-

ulations using material properties based only on load data (first line of Table

2), while the wFE I-DIC and sFE I-DIC curves correspond to simulations using

material properties based on Integrated-DIC calibration (second line of Table

2).

Figure 13: Void volume change curves for all the approaches investigated in this paper

Many of the numerical results show an important decrease of the porosity

f at the first loading step, which is not observed for the experimental curve.

This is due to the fact that remeshing is extensively used for all simulations.

This remeshing has the consequence that interfaces can be slightly smoothened,

and void volume can be diffused. Apart from this numerical issue, the curves

reveal significant void growth with increasing load for DVC-FE and sFE results,

while nearly no void growth occurs in the wFE simulation. This effect can

be explained by the fact that the computation used to obtain displacement

boundary conditions for the wFE simulation does not take into account damage

and the subsequent volume change in the ROI. Hence, the displacement fields

that are transferred to the ROI in this case are incompressible in the plastic

regime, and neither the void volume nor the ROI volume can evolve. This

effect calls for more advanced models (i.e., including damage) to be used at the

macroscopic scale.
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Regarding comparisons with the experimental curve, void growth seems to

be overestimated with the DVC-FE method. This can be explained by the

fact that nodules are considered as voids in the simulations, while in reality

only the voids nucleated after debonding of nodule/matrix interfaces grow (see

Figure 9). Thus, it can be assumed that all curves would have a slightly lower

slope if nodules were taken into account. The DVC-FE method is the only one

that shows a void growth similar to that observed in the experiment.

The comparison between DVC-FE and sFE results using the proposed proce-

dure shows that although void growth and the compressibility effects induced by

the presence of voids are taken into account in the sFE method, this void growth

is not as significant as with the DVC-FE method. In particular, the slopes of

the wFE and sFE curves are clearly lower than what is observed experimentally.

Both results are not improved when using Integrated-DIC material parameters.

The influence of material parameters seems to be negligible in the present case.

This observation remains to be confirmed with local error measurements.

4.2.2. Local error indicators

In order to compare wFE and sFE kinematic fields with X-ray images, special

care is taken to subtract the rigid body motions from wFE/sFE calculated

displacement fields followed by applying the corresponding rigid body motions

measured by DVC. First, mean deformation gradients over the ROI for DVC

and FE displacement fields are calculated. By employing a polar decomposition

on the latter, FE and DVC rotations are evaluated while the mean values of

kinematic fields represent the corresponding translations. From the initial FE

displacement solutions then are subtracted mean FE translations and rotations

and added the corresponding mean DVC translations and rotations. Hence,

from the wFE/sFE displacements fields, rigid body motions originating from

the FE simulations are first eliminated, and then rigid body motions associated

with the experiment (i.e., measured with DVC) are applied. This is performed

in order to have equal conditions for all presented methods when reducing them

to gray level residual images. The resulting errors are shown in Figures 14
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and 11(c-d) while the displacement difference between DVC measurements and

wFE calculated fields is shown in Figure 12(b).

Figure 14: Standard deviation for the dimensionless gray level residual fields for all loading

steps and investigated cases

Surprisingly, although sFE yields slightly better results than wFE, indepen-

dently of the material parameters, this difference is negligible. This means that

although the sFE method predicts a void growth that is globally closer to ex-

perimental data, the shape of these voids is inexact. Therefore, errors that do

not appear in global measurements are revealed by local measurements, thereby

underlining the interest of the present methodology. The small difference be-

tween wFE and sFE results could mean that the constitutive model used at the

macroscale corresponds well to the homogenized mechanical response obtained

in the ROI, where microscale constitutive models are used.
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Figure 15: Cumulative distribution of gray level residuals at the last incremental loading step

considering to (a) all supervoxels, (c) only supervoxels with gray level residuals higher than

40. In (b), the absolute gray level differences for the sFE method with residuals higher than

40 are shown for the same Z midsection as Figure 11(d)

Regarding the comparison between sFE/wFE and DVC-FE, the gap is in-

creasing during the load history, ending with a deviation that is twice higher

with the sFE/wFE methods than with DVC-FE. This confirms the tendency

that was observed based on void growth curves. To have a more precise idea of

this gap, the cumulative gray level residuals distribution is shown in Figure 15(a)

for the last loading step. This difference does not seem important because it

takes into account a large number of supervoxels belonging to the matrix, where

contrast is low. This observation is illustrated in Figure 15(b), where only gray

level residuals higher than 40 are shown, hence discarding most supervoxels of

the matrix. The cumulative distribution taking into account only the remaining
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supervoxels (i.e., close to voids or nodules) is shown in Figure 15(c). It reveals

an important difference between the DVC-FE results and those obtained with

the sFE/wFE methods. The residual is doubled with the latter. This underlines

the inability of macro simulations to precisely describe all the micro localization

phenomena occurring in the ROI both between the machined holes and the nod-

ules, and between the nodules themselves with the chosen constitutive models.

There are nearly zero differences in the center of the ROI in Figure 12(b), which

indicates that the position of the macroshear band (i.e., between the machined

holes) is properly captured by wFE simulations, as well as the kinematics within

that band. In the same figure, more significant differences are observed in the

rest of the ROI compared with DVC-FE simulations.

Overall, the use of Integrated-DIC material parameters for wFE and sFE

methods slightly improves the results. As expected in Section 2.3.2, this gain is

concentrated at lower strains while at higher strains the influence of these ma-

terial parameters is negligible. Paint cracking and subsequent DIC convergence

issues from 2D images (test (A)) could be responsible for decreasing Integrated-

DIC performance at late loading steps. This observation adds to the interest for

the DVC method, which relies directly on the contrast of the material. Thus,

the way the material parameters are identified herein improves the results but

only slightly.

Using more complex macroscale constitutive models would certainly improve

the results obtained using the wFE and sFE methods. This would also increase

the need for identification methods such as Integrated-DIC that take into ac-

count field measurements. For instance, the inability of both wFE and sFE

methods to correctly predict plastic localization could be linked to an anisotropy

of the yield surface at the macroscale, due to the presence of the nodules. Dam-

age and the subsequent volume changes of the homogenized material should also

be considered, due to debonding of the nodules from the matrix. These remarks

stress out the importance of understanding the influence of the microstructure

on the mechanical response of the homogenized material. Therefore, a numeri-

cal validation procedure for micromechanical simulations that does not rely on

31



any macroscopic constitutive model, such as the DVC-FE method, is of great

interest.

5. Conclusion

The present paper discusses different choices of boundary conditions for mi-

cromechanical Finite Element (FE) simulations based on 3D X-ray data. Be-

cause it would require meshes of more than 100 million elements, Direct Numer-

ical Simulation (DNS) is discarded and methods allowing the microstructure to

be meshed only in a small Region of Interest (ROI), instead of the whole speci-

men, are considered. The accuracy of these methods is analyzed based on global

and local error estimators relative to the 3D X-ray data acquired at consecutive

loading steps for the same microstructure. The latter corresponds to new exper-

imental results on a nodular cast iron specimen with two machined holes. Due

to the 45◦ alignment of the machined holes with respect to the tensile direction,

a macroscopic shear band develops between the holes. Within that macroscopic

shear band, ductile fracture due to the nucleation (i.e., by debonding of the

nodules), growth and coalescence of microscopic voids is observed.

• In an earlier work [28], it was proposed to measure boundary conditions

for micromechanical simulations via Digital Volume Correlation (DVC) di-

rectly from consecutive 3D X-ray images. Promising results were obtained

for a tensile experiment on a specimen with a central hole. The results

presented herein show that this DVC-FE method remains very accurate

with a shear band going traversing the ROI (Figure 8). Global gray level

residuals indicate an increase of the error at late loading steps, which is

due to void coalescence (Figure 13). Local residuals show that these errors

are located close to the debond areas around the nodules, hence calling

for more relevant micromechanical models.

• A second method, which is referred to as weak FE (wFE), consists of

first conducting an FE simulation at the specimen scale, considering a
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totally homogeneous material, and then using the displacement fields from

this first simulation to drive a second simulation at the ROI scale. It is

proposed to identify material parameters for the specimen scale simulation

based only on load data, and then on both load data and 2D surface

images. Independently of the identification method, results show that the

wFE method leads to a significant underestimation of void growth, as there

is no global void volume change in wFE results (Figure 13). The slight

improvement of the results when using a material parameter identification

method that also takes into account 2D surface images indicates that the

investigation of more relevant constitutive models for the specimen scale

simulation is worth considering.

• Another method, which is coined strong FE (sFE), consists of embedding

the ROI mesh in the specimen mesh. Macroscale constitutive models are

used for the out-of-ROI material where the microstructure is not meshed,

while microscale constitutive models are used inside the ROI where it is

meshed. Void volume change curves indicate a significantly increased void

growth compared to wFE results. However, local residuals indicate no sig-

nificant improvement. This proves that while voids in the sFE simulation

grow at a rate that is closer to the experimental observations than in wFE

results, the shape of these voids is not accurately predicted. Once again,

a slight improvement of the results is observed in the first loading steps

when using a material parameters identification method that also takes

into account 2D surface images.

As a conclusion, the dependence of both sFE and wFE methods on a spec-

imen scale simulation and a corresponding macroscale constitutive model con-

stitute their main limitation. Although the macroscale constitutive model used

herein could be improved, such task is not obvious, especially as large plastic

strains and complex damage phenomena are observed locally. This limitation of

both sFE and wFE methods is also the main advantage of the DVC-FE method

since DVC measurements avoid the use of a specimen scale simulation and a
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corresponding macroscale constitutive model.

It is worth mentioning that since the DVC-FE method requires in-situ 3D

X-ray imaging, it is hardly applicable to thick specimens and industrial applica-

tions. Future work will hence lean toward the use of this DVC-FE method for

small specimens in order to study more relevant micromechanical models and

identify material parameters for these models. These enhanced micromechanical

models could then be the basis for the investigation of more relevant constitu-

tive models to be used at the macroscale in, say, wFE and sFE methods. Such

approach is likely to be applicable to other materials where micromechanical

modeling is gaining an increasing interest, such as metallic foams and compos-

ite materials for instance.
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