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ABSTRACT 

Designing plus energy buildings, at lower 

environmental impact and lower cost, is a complex 

optimisation problem. In this context, this paper 

presents an ecodesign approach of a plus-energy 

house assisted by multicriteria optimisation. 

Illustrated by a real case, this approach uses a genetic 

algorithm to find a set of solutions as close as 

possible to the theoretical Pareto front, corresponding 

to the best compromises for the formulated problem. 

The solutions’ performance was evaluated using a 

dynamic building energy model (COMFIE), a life 

cycle analysis model (novaEQUER), and a 

construction cost database. In order to study the 

solutions’ robustness, the diversity of occupants’ 

behaviour was stochastically modelled. The proposed 

approach is thus contributing to the decision making 

process, beyond simple evaluation by simulation. 

INTRODUCTION 

’Plus energy’ buildings (Heinze and Voss 2009) are 

considered as possible solutions for climate change 

mitigation. If an official definition is still expected, 

’plus-energy’ generally refers to a building which 

produces more primary energy than it consumes in a 

year, assuming a typical behaviour scenario and 

meteorological year. Designing such buildings at 

suitable cost for the market constitutes a challenge. 

The environmental aspect can be integrated by means 

of an ecodesign approach (Peuportier 2015). The 

stake in design phase is thus to explore a large range 

of solutions in a limited time, in order to optimise the 

performance of the studied concepts according to 

several criteria which can be antagonistic. We 

include in this study the annual energy balance, an 

environmental criterion evaluated by life cycle 

assessment (LCA), and construction cost, which is 

very important for the concerned professionals. 

Interactions between the building, its environment, 

and its occupants constitute another element to take 

into account by designers.  

In this context, the traditional approach that tries to 

encompass the globality of the problem by simple 

parametric variations is no more sufficient. To 

address this issue, an ecodesign approach of a plus-

energy house assisted by multicriteria optimisation is 

presented in this paper. Following existing works in 

this fast-growing research area (Attia et al. 2013; 

Evins 2013), it uses the concept of Pareto’s 

dominance to look for the best set of compromises in 

a multicriteria problem (called Pareto front) with a 

genetic optimisation algorithm.  

METHODOLOGY 

Selection of the design variables 

The optimisation purpose is to explore the most 

revelant search space within a limited time, in order 

to find the best possible solutions. Because an 

optimisation study could be computationaly 

expensive, selecting suitable design variables is an 

essential preparatory stage of optimisation 

(Machairas et al. 2014). Indeed, it allows to reduce 

the search space’s size. This selection stage can be 

carried out using sensivity analysis, e.g. Morris 

screening method (Morris 1991). Expert judgment 

can also be used to simplify the optimisation 

problem. The two approches are complementary for 

identifying the most influential design variables in 

relation to the considered performance criteria. At a 

first step in this study, we selected the design 

variables based on an expert judgment.  

Optimisation algorithm: NSGA-II 

Genetic algorithms, particularly the NSGA-II one 

(Deb et al. 2002), correspond to a simplified 

computing transposition of Darwin’s theory. Their 

purpose is to mimic a living organism’s population 

adapting itself to its surroundings over generations. 

The principle consists of manipulating a population 

(composed of individuals, each one corresponding to 

a solution of the considered optimisation problem) 

using stochastic operators in order to improve it. This 

evolution is managed on the one hand by selection, 

linked to population individuals’ performance (which 

corresponds to environment pressure on the 

population), and on the other hand by genetic 

operators (namely crossover and mutation operators) 

which generate the next generation of individuals. 

The evolving population tends to converge towards 

the best solution(s) of the problem (according to the 

number of optimisation criteria).  

Genetic information (or genome) is usually binary 

encoded. It presents the advantage of dealing with 

crossovers and mutations into genes, emphasising in 

this way genetic mixing and enlarging search space 



exploration. Without any condition on the considered 

function’s properties such as continuity and 

derivability (only the function’s evaluation on 

sampled points is required), genetic algorithms are 

particularly well adapted to complex functions as the 

ones arising in building energy models. 

The general principle of genetic algorithms is based 

on a generational loop (Figure 1). After the creation 

of an initial population of µ individuals, step 1 

consists in detecting and selecting λ individuals in the 

current population (called parents), which are 

allowed to breed. At step 2, parents generate λ 
descendants (called children) via crossover and 

mutation operators. These operators are applied 

randomly using two parameters, the pc crossover 

probability and the pm mutation probability. 

Performance of the generated λ descendants are 

evaluated at step 3. Finally, replacement (step 4) 

consists in creating the next generation operating a 

selection between the current population of 

µ individuals and the generated λ children in order to 

maintain a constant population size. The process is 

generally stopped when reaching a given number of 

generations, but can also be defined regarding the 

current population’s performance. Genetic algorithms 

require several internal parameters, namely the 

current population size, the parents’ number for 

reproduction, the crossover and mutation 

probabilities, and a stopping criterion. Like all 

metaheuristics, setting these parameters is not trivial 

and mainly based on values from existing literature 

and on experience gradually acquired. 
 

 
 

Figure 1 Illustration of the genetic algorithm process 

Performance assessment 

To design plus-energy buildings, at lower 

environmental impact and lower cost, several 

performance assessment models are necessary. 

The dynamic building energy simulation software 

COMFIE, created by Peuportier and Blanc-

Sommereux (1990), was used in this study. The 

model is based on the concept of ‘thermal zone’, 

considered at homogeneous temperature. The main 

modelling steps implemented in this tool are the 

meshing of the building envelop (by a volume finite 

method), the set-up of a continuous and invariant 

linear system for each thermal zone, the reduction of 

the system by modal analysis, and finally the 

coupling between the different thermal zones. The 

model simulation requires specifying driving forces, 

in particular heat gains from occupants and 

equipment, but also meteorological data (particularly 

outdoor temperature profile and solar radiation). 

Phenomena that are non-linear or involving variable 

parameters (ventilation, thermal resistance due to 

intermittent use of shutters, etc.) are taken into 

account through additional driving forces. On top of 

several validations (Peuportier 2005), the model’s 

reliability was studied in the particular context of a 

high energy performance house (Brun et al. 2009; 

Munaretto 2013; Recht et al. 2014). 

The building environmental performance was 

assessed with an LCA software (novaEQUER), 

created by Polster (1995) and coupled to COMFIE. 

The construction, exploitation, renovation, and 

demolition steps were taken into account. Life cycle 

simulation was run using an annual time step, and 

uses the ecoinvent database to establish an inventory 

of flows from and into the environment. Based on 

this inventory, 12 environmental indicators, initially 

proposed by Peuportier et al. (1997), were computed, 

including the greenhouse gases global warming 

potential at 100 years as well as human health, 

biodiversity, and ressources depletion, etc. 

As part of the COMEPOS French research and 

development project (for an optimised design of plus-

energy houses), construction cost was chosen as an 

additional evaluation criterion. Construction cost 

functions were developped from a database provided 

by a constructor partner. They take the form of affine 

or quadratic functions. Due to confidentiality 

reasons, coefficients associated to these functions 

cannot be disclosed.  

Being more and more insulated, very high energy 

performance buildings are significantly sensitive to 

external (meteorological data) and internal 

(metabolism, electrical appliances) loads. This 

concerns notably heat gains from equipment and 

occupants, generally modelled by conventional ratios 

(e.g. number of persons or kW per m²) and profiles. 

The Vorger et al.'s (2014) stochastic model for 

occupancy was applied to achieve a more realistic 

design. Calibrated on national socio-demographic 

and time-survey data, but also from measurement 

campaigns, this model can represent the diversity of 

inhabitants’ behaviours through a probabilistic 

approach. For each simulation, a different household 

was generated according to accommodation 

properties (house or apartment, number of rooms, 

etc.). Depending on the household socio-

demographic characteristics (age, gender, job status, 

etc.), appliances and activity scenarios were 

generated, allowing to simulate the occupants’ 

localisation inside the house and the use of electrical 

appliances and lighting. From several hundred 

simulations, it was possible to establish average 

occupancy scenarios (Figure 2 and Figure 3) via the 

obtained statistical distributions. These scenarios can 



advantageously replace those generally defined by 

deterministic ratios and rules. In addition, some 

model parameters can be manually set, that enables 

generating customised scenarios corresponding more 

precisely to the desired study context (accomodation 

type, household characteristics, range of electrical 

equipment performance, etc.). 

In the COMEPOS project, average statistical 

scenarios were created for detached houses with high 

performance appliances and lighting, whose 

occupants are first-time buyers (S1), specifically a 

couple of young active people with a young child. 

From the average profile of activities, we used 

people’s absence time to determine an hourly ratio of 

presence in the house. Concerning the hourly heating 

setpoint temperature scenario     , we conditioned it 

from the hourly presence ratio     : 

                     (1) 

The hourly ventilation rates       are the sum of a 

nominal value of 90 m
3
/h (     ) and an additional air 

flow of 75 m
3
/h (     ) during    (two) hours per day 

(in accordance with the French regulation). In order 

to allocate this additional air flow, the two activities 

which mainly contribute to moisture production were 

taken into account, namely cooking/washing up 

(n° 3) and dressing/personal care (n° 8): 

                              (2) 

where    (resp.   ) is the average hourly rate of 

activity n° 3 (resp. 8).    is the additional air flow 

per activity rate, averaged over a week: 

    
              

                      
   

  (3) 

The hourly internal heat gains scenario was directly 

obtained from the occupancy model outputs. 

In addition, a retired couple (S2) and a single person 

(S3) average statistical scenarios were generated, 

allowing to study the robustness of the optimisation 

solutions regarding different possible inhabitants 

along the building’s life cycle. Table 1 summarises 

the annual energy characteristics of the three 

households. Values are given in final energy. The 

conversion factor from final energy to primary 

energy is 2.58 for electricity (French thermal 

regulation value). 

 
 

 
 

Figure 2 Average daily profile of the activities for a population of 15 441 individuals 

 
 

Figure 3 Average daily specific electrical load curve for 100 random young family households 

 



Table 1 Annual final energy characteristics for the 

three average statistical households (in kWh/m²) 

 S1 S2 S3 

Metabolic heat 10.2 10.3 3.7 

Heating load 22.7 25.3 28.7 

Domestic hot water 10.5 8.3 4.2 

Electricity for appliances  20.3 17.9 13.0 

CASE STUDY 

General description and information 

The proposed methodology was applied during the 

design process of a plus-energy house (Figure 4). The 

target was to elaborate a prototype with a positive 

annual primary energy balance minimising both 

construction cost and greenhouse gases emissions (in 

CO2 equivalent).  

The house has a wooden structure, mainly composed 

of certified spruce and OSB panels. The walls and 

the roof are insulated by glass wool, and the floor by 

polystyrene. Windows are made of PVC with double 

glazing and are mainly located on south-east and 

south-west facades. The house surface area is 101 m². 

It has an electrical heating system, and a 

thermodynamic water heater with an outdoor air heat 

pump. The average coefficient of performance (COP) 

is 2.77. The photovoltaic (PV) modules (1.6 m² each) 

are made of polycrystalline cells. Concerning LCA 

simulation, the building’s lifetime was assumed to be 

100 years. Table 2 presents the life span of the 

building’s elements, according to corresponding 

environmental product declarations. In order to take 

into account the variability of energy production 

during the year (winter/summer, day/night), a 

dynamic hourly energy mix was used (Peuportier and 

Herfray 2012). 

Design variables 

To explore the performance of different concepts of 

plus-energy houses, 11 design variables were 

considered in the optimisation problem. This search 

space was established in collaboration with the 

architect in order to integrate constraints and degrees 

of freedom of the project (Table 3). 

Algorithm parameters 

Specific parameters of the NSGA-II algorithm were 

set at the following values: 400 for the current 

population size  , 400 for the number   of parents 

individuals for reproduction, 0.80 for the pc crossover 

probability, 0.15 for the pm mutation probability and 

20 generations for the stopping criterion. 

 
 

Figure 4 3D model of the case study house near 

Orléans, France (source: Fousse Constructions) 
 

Table 2 Lifetime of materials and equipment 

MATERIALS LIFETIME (IN YEARS) 

Doors and windows 30 

Coating 10 

Greywater recovery system 50 

Hot water tank 20 

Ventilation system 20 

Photovoltaic system 30 

Other materials 100 

RESULTS 

The optimisation process results are a source of 

diverse information that cannot be totally synthesised 

in this paper. We propose firstly to display the 

compromise surfaces between the construction cost 

and the global warming potential at 100 years, then 

to evaluate the algorithm convergence and to analyse 

observed trends regarding the design variables, and 

finally to study the robustness of the solutions. 

Pareto fronts 

The base case, the initial population and rank 1 

Pareto front at the final 20
th

 generation are plotted in  

Table 3 Optimisation problem’s search space 

DESIGN VARIABLES UNIT 
BASE 

VALUE 

LOWER 

BOUND 

UPPER 

BOUND 

NUMBER 

OF LEVELS 

Thickness of glass wool (walls) cm 22 15 36 8 

Thickness of polystyrene (roof) cm 22 15 36 8 

Thickness of glass wool (floor) cm 26 12 28 8 

Area of window 1 (south-east) m² 3 2 5 4 

Area of window 2 (south-east) m² 1.46 1.46 2.92 2 

Area of window 3 (south-west) m² 6.88 0 10.50 4 

Area of window 4 (south- west) m² 2.71 2.71 5.42 2 

Type of glazing in north-east facade* - DG DG TG 2 

Ventilation system* - DF SF DF 2 

Greywater heat recovery system - No No Yes 2 

Number of photovoltaic modules* - 12 1 28 16 

*DG: double-glazed, TG: triple-glazed, SF: single-flow, DF: dual-flow, PV module surface area: 1.6 m² 



Figure 5. The majority (three-quarters) of the initial 

solutions do not have a positive annual energy 

balance (see off-peak points in Figure 5), that is why 

the final Pareto front is located in a limited region of 

the search space that respects this constraint. 

Regarding the base case, an additional economic cost 

is necessary to reach a positive annual energy 

balance that may on the other hand yield a reduction 

of greenhouse gas emissions. 

Figure 6 presents the rank 1 Pareto fronts evolution 

over successive generations. Graphically, a clear 

progression of the Pareto front is observable during 

the first generations, which slows down around the 

10
th

 generation. Up to the end of the process, the 

front gets denser without really progressing. 

Algorithm convergence 

In order to evaluate the genetic algorithm 

performances, the theoretical Pareto front was 

computed in a 4 194 304 combinations search space. 

In practice, a reduced number of dynamic thermal 

simulations were necessary because some variables 

do not influence the annual heating load. The results 

concerning the PV modules (16 levels) and the 

greywater heat recovery system (2 levels) can be 

obtained by independent and quick calculations. 

Using a computer with an Intel® Xeon® E5-1650 

(3.20 GHz) processor, a 35 h computation time is 

required to perform the 131 072 thermal simulations.  

A comparison between the theoretical Pareto front 

and the approached Pareto front found by the genetic 

algorithm is plotted in Figure 6. It took two hours 

approximately to compute the latter which consisted 

of 8 000 evaluations of the model. These were 

enough for the algorithm to effectively converge near 

to the theoretical Pareto front. However, the 

approached front is less dense particularly on the 

edges. Optimisation by metaheuristics being a 

balance between intensification and diversification of 

the exploration research space, the relatively quick 

convergence observed in the case study suggests that 

a higher mutation probability could improve the 

population diversity, and thus widen the Pareto front. 

Trends about design variables 

Figure 7 illustrates the statistical analysis of the 

characteristics of this 90 solutions set for the 

equipment. The levels of the photovoltaic system 

correspond to the number of modules. The upper 

bound (28) was mostly represented, and no solution 

had less than 22 modules (the case base: 12). 

Concerning the greywater heat recovery system, it 

appears in half of the cases. In contrast to these two 

systems, there is no compromise for the type of 

glazing and ventilation. Results highlight privileged 

solutions, namely only triple-glazed windows on 

north-east façade and a dual-flow ventilation system 

with an 80 % efficiency heat exchanger. It is a 

significant result in the sense that all solutions with 

double-glazing are dominated by others with triple 

glazing even for the cheapest ones. The same 

conclusion could be drawn for the type of ventilation. 

Another interesting information is the evolution of 

the characteristics solutions following the ranking of 

one of the two criteria, for instance decreasing GHG 

emissions. As we can see in Figure 8, a compromise 

exists for the insulation thicknesses. Firstly, the 

thicknesses increase slowly because the primary 

lever of the reduction of GHG emissions is mainly 

the number of PV modules. When its number reaches 

the upper bound, increasing the insulation 

thicknesses become a more pertinent action to 

implement in order to further reduce GHG emissions. 

Robustness of the solutions 

In order to evaluate the robustness of the obtained 

solutions, the optimisation process was repeated with 

the S2 (retired couple) and S3 (single person) 

behaviour scenarios. The approached Pareto fronts 

are plotted in Figure 9. Obviously, GHG emissions 

are different for each household at equal construction 

cost. The front corresponding to the single person’s 

scenarios was the lowest one, mainly due to its low 

hot water and specific electricity consumptions. 

Despite an additional person (a child), the Pareto 

front of the young couple was relatively close to the 

retired couple’s. That can be explained by higher 

heating loads due to a more important occupancy 

ratio and a higher temperature setpoint for the retired 

couple. In terms of equipment characteristics, results 

are almost the same for the type of glazing (between 

99 % and 100 % of triple glazing) and the type of 

ventilation (between 98 % and 100 % of double 

flow). The cheapest two solutions in the S2 Pareto 

front have single-flow ventilation, contrary to S1 for 

which all theoritical solutions have a dual-flow 

ventilation system. For S3, either the genetic 

algorithm did not capture these solutions, or they do 

not exist. Because S3 presents relatively high heating 

loads combined to low internal gains, we believe that 

the simple-flow is not a feasible solution of the 

problem. On the other hand, differences are 

observable for the number of PV modules and the 

greywater heat recovery system (see Figure 10): the 

higher the global consumption, the higher the number 

of PV modules. Similarly, the lower the hot water 

consumption, the less relevant the greywater heat 

recovery system is. After obtaining these three Pareto 

fronts, we recalculated the 90 unique solutions of the 

S1 front with S2 and S3 behaviour scenarios in order 

to assess if these solutions would still be performant 

with different types of inhabitants. In Figure 9, 

results show that S1 solutions are globally robust, in 

particular with S2 scenarios, which are closer to S1’s 

than S3’s. When we compare S3 (resp. S2) Pareto 

front with S1 solutions calculated with S3 (resp. S2) 

scenarios, we observe that the cheapest solutions are 

lost. They mainly correspond to solutions with 

simple-flow ventilation for S2 and solutions with a 

lower number of PV modules for S3. The linear part



 

 
 

Figure 5 Base case, initial population and final rank 1 Pareto front 
 

 

Figure 6 Evolution of rank 1 approached Pareto fronts and theoretical Pareto front, zoom 
 

 

Figure 7 Equipment characteristics of approached and theoretical (blue contour rectangles) Pareto fronts  
 



 

Figure 8 Evolution of the insulation thicknesses for decreasing GHG emissions (Pareto solutions) 
 

 

 

Figure 9 Comparison of the approached fronts for the three considered households 
 

 
 

Figure 10 Comparison of Pareto front's characteristics for the three households 



of the Pareto front is mainly due to a variation of the 

number of PV modules which yields a linear 

variation of the cost and GHG emissions. For S3, 

some solutions appear distant from the approached 

Pareto front. They correspond to solutions with a 

greywater heat recovery system, which is not always 

pertinent. However, most of the solutions are very 

close to the S3 Pareto front. Therefore, in this case, 

the optimisation procedure appeared to be robust. 

CONCLUSION 

An ecodesign approach of a plus-energy house 

assisted by multicriteria optimisation was developed 

using a building energy model including a stochastic 

occupancy model in order to have more realistic 

scenarios (COMFIE), and an LCA model 

(novaEQUER). NSGA-II genetic algorithm was 

implemented to identify the best compromises in a 

multicriteria problem,. The proposed methodology 

was applied in the French research project 

COMEPOS, in order to design plus-energy house 

prototype. For illustration purposes, optimisation 

results aiming at minimising jointly the construction 

cost and greenhouse gas emissions, under a positive 

annual energy balance constraint, were presented 

showing a compromise surface whose characteristics’ 

analysis allowed to extract useful information to help 

in the decision making process. In a reasonable time 

(two hours), the algorithm identified a solutions set 

near the theoritical one, confirming its acknowledged 

performance and outlining perspectives for future 

more ambitious explorations, in terms of number of 

design variables, number of discretisation levels, but 

also number of performance criteria. In addition, the 

robusness of the solutions was studied comparing 

optimisation results for two other occupancy 

scenarios. In the case study, the optimisation process 

looks fairly robust inviting to ascertain its robustness 

on other similar cases. 
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