

Phase behavior of system methane + hydrogen sulfide

Stefano Langé, Marco Campestrini, Paolo Stringari

▶ To cite this version:

Stefano Langé, Marco Campestrini, Paolo Stringari. Phase behavior of system methane + hydrogen sulfide. AIChE Journal, 2016, 62 (11), pp.4090-4108. 10.1002/aic.15311 . hal-01455405

HAL Id: hal-01455405 https://minesparis-psl.hal.science/hal-01455405

Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Phase Behavior of System Methane + Hydrogen Sulfide

Stefano Langè^a, Marco Campestrini^b, Paolo Stringari^{b,*}

^aPolitecnico di Milano– Dipartimento di Chimica, Materiali e Ingegneria Chimica" Giulio Natta" , Piazza Leonardo da Vinci 32, I-20133, Milan, Italy

^bMINES ParisTech, PSL Research University, CTP – Centre of Thermodynamics of Processes, 35 rue St Honoré 77300 Fontainebleau, France

Abstract

An accurate description of the phase behavior of the CH₄+H₂S system is given for temperatures from 70 K to the critical temperature of H₂S and pressures up to 250 MPa. The study includes the solid phases of CH₄ and H₂S. A global pressure-temperature diagram is presented. The types of temperature-composition and pressure-composition phase diagrams that can be encountered in the studied temperature and pressure ranges have been described. The temperature and pressure ranges where the phase behavior of the system changes have been identified and a representative phase diagram is presented for each range. Phase diagrams have been obtained through the solid-liquid-vapor equation of state proposed by Yokozeki. The parameters of the equation of state have been regressed on all the available phase equilibrium data for the considered system.

Keywords: Natural gas purification, Methane-hydrogen sulfide mixture, Equation of state, Phase diagram, Solid-liquid-vapor equilibrium

Introduction

The global energy demand is expected to increase rapidly over the next twenty years. The rise of the primary energy demand is predicted to be 41% between 2012 and 2035. Among fossil fuels consumptions, the natural gas ones are projected to have the most rapid growth trend.

Recent studies have shown that 40% of the remaining natural gas reserves are sour² and/or with high CO_2 content³ (15%-80%). In these low quality gas fields, the hydrogen sulfide content in certain gas reservoirs could be high, even up to about 15%.⁴

In this scenario, a detailed description of the phase behavior of systems containing methane and hydrogen sulfide is necessary to perform the correct process design of new gas purification technologies⁵⁻¹⁹ that are required to allow the profitable production of commercial-grade gas from low quality natural gas reserves.²⁰⁻²¹

In the range of temperature and pressure investigated in this work (T from 70 K to the critical temperature of H_2S and P up to 250 MPa), the system CH_4 (1) + H_2S (2) can present two liquid phases (L_1 , rich in CH_4 , and L_2 , rich in H_2S) and two solid phases (S_1 , rich in CH_4 , and S_2 , rich in H_2S) in addition to the vapor phase (V).

Several authors have studied the methane - hydrogen sulfide system from the experimental point of view. The first literature work presenting experimental values for the methane - hydrogen sulfide mixture was published by Reamer et al.²² in 1951. The authors investigated the critical locus and the vapor-liquid equilibrium of the mixture at 277.59 K, 310.93 K and 344.26 K.²²

A total of 6 experimental values of VL₂E were measured by Robinson and coauthors: the correspondent temperatures are 310 K, Robinson and Bailey,²³ and 277 K, Robinson et al.²⁴

A more complete experimental investigation of the phase behavior of the system down to 170 K was carried out by Kohn and Kurata in 1958.²⁵ The different mixture compositions under study leaded the authors inferring the presence of two different solid₂-liquid-vapor equilibrium loci and a solid₂-liquid₂-liquid₁-vapor Quadruple Point (QP). The first S₂LVE locus has a methane rich liquid phase (S₂L₁VE), the second a hydrogen sulfide rich liquid phase (S₂L₂VE). From the QP, a

 L_2L_1VE and a $S_2L_2L_1E$ curves originate. The L_2L_1VE curve ends to a first Upper Critical EndPoint (UCEP₁), $L_2(L_1=V)$. Kohn and Kurata treated the solid phase S_2 as pure H_2S .²⁵

Furthermore, Kohn and Kurata argued the presence of a L_2 =V critical locus, which is continuous with a L_1 = L_2 critical locus at high pressure. This latter ends to a second Upper Critical EndPoint at high pressure (UCEP₂), $S_2(L_1$ = L_2), where the critical curve meets the $S_2L_1L_2E$ curve. In addition to these points, same authors claimed the presence of a second quadruple point at a temperature close to the triple point temperature of methane, where two solid phases (S_1 and S_2), a CH_4 -rich liquid phase, and a vapor phase coexist in equilibrium.²⁵

The system described by Kohn and Kurata is then of Type - III according to the classification of phase diagrams of Van Konynenburg and Scott,²⁶ or 1^P AlnQ according to the one by Bolz et al.²⁷ Furthermore, the mixture presents two totally immiscible solid phases (S₁ and S₂) in the low temperature region.

Cheung and Zander²⁸ reported few experimental points for the S_2L_1E region, while in 1991 supplementary VL_2E values were obtained by Yarim-Agaev et al.²⁹ for temperatures ranging from 222 K up to 273 K. More recently, Coquelet et al.³⁰ have experimentally investigated the VL_2E behavior together with the immiscibility gap in the liquid phase at 186.25 K and 203.4 K, thus proposing the first literature values of L_1L_2E .

From the modeling point of view, different approaches have been used in the literature to represent the phase behavior of the mixture of interest in this work. Equations of state have been largely used to this scope. Examples are the works by Huron et al.,³¹ Adachi et al.,³² Mohsen-Nia et al.,³³ and Sakoda and Uematsu.³⁴⁻³⁵

Huron et al.³¹ used the Soave-Redlich-Kwong Equation of State (EoS); Adachi et al.³² adopted a cubic EoS with four parameters; Mohsen-Nia et al.³³ made use of a two constant cubic EoS; an EoS in the Helmholtz free energy form was used by Sakoda and Uematsu³⁴⁻³⁵ for representing the phase behavior and thermal properties of the system. Same authors investigated the Pressure-Temperature

(PT) diagram including only equilibria between fluid phases (namely VL_2E , L_2L_1VE and the critical locus of the system), without any extension to phase equilibria involving solid phases.³⁴⁻³⁵

Privat et al.³⁶ used a temperature dependent k_{ij} parameter within the group contribution model PPR78 and compared the calculated values with literature data of equilibria involving fluid phases.

Tsivintzelis et al.³⁷ studied the methane-hydrogen sulfide system with the CPA EoS considering four different association schemes for H_2S . As in the works by Sakoda and Uematsu,³⁴⁻³⁵ and Privat et al.,³⁶ Tsivintzelis et al.³⁷ represented only fluid phases.

In 2010, Tang and $Gross^{28}$ have published the first modeling work involving also the apparition of the solid phase at low temperature. The authors used the PCP-SAFT EoS and the PC-SAFT EoS for the fluid phases and a fugacity equation for the solid phase considered as pure H_2S . Nevertheless, the presented study is limited to temperatures higher than the temperature of the $S_2L_2L_1V$ quadruple point. 38

In this work the detailed phase behavior of the $CH_4 + H_2S$ system has been investigated using the analytical equation of state for Solid, Liquid and Vapor phases, SLV EoS.³⁹ The phase diagram has been studied for temperatures from 70 K up to the critical temperature of H_2S and for pressures up to 250 MPa. The $CH_4 + H_2S$ phase behavior has been investigated for the first time in a so wide range of temperature and pressure. With respect to the cited literature works on the phase behavior of the $CH_4 + H_2S$ system, this work adds new information about the phase diagram, especially for the low temperature region and the high pressure region. Isothermal P-x diagrams and isobaric T-x diagrams are presented for all the P-T regions in which the system changes qualitatively the phase behavior. For a chosen temperature and pressure in the investigated P-T range, the reader can find a P-x or T-x diagram representative of the behavior of the system. In practice, this work provides a map of the $CH_4 + H_2S$ phase behavior that can be used for the process design, crystallization risk evaluation, or other purposes that need a reliable representation of the phase behavior of the system.

Solid Transitions in Pure CH₄ and H₂S

From the authors' knowledge, the work by Kohn and Kurata²⁵ is the first dealing with the solid phases of the methane-hydrogen sulfide system. As stated in the previous section, these authors described the phase diagram of the mixture taking into account two solid phases made of pure CH_4 (S₁) and pure H_2S (S₂), respectively.

Nevertheless, these components present different phase transitions in the solid phase. The orders and the types of the transitions that occur in the molecular crystals of methane and hydrogen sulfide have been widely discussed in the literature⁴⁰⁻⁴³, and agreements have been reached about the solid-solid transition temperatures and the related thermodynamic properties.

According to Colwell et al.⁴⁰ methane has two possible crystal lattices (α and β) resulting in a solid_{α}-solid_{β} transition and a related solid_{α}-solid_{β}-vapor triple point located at 20.5 K and vapor pressure (P≈0). Crystal lattices α and β have been stated to have a face-centered cubic (fcc) structure, and the solid transition involves uniquely changes in the degree of orientational order of the fcc structure.⁴⁰ In 1957, Stevenson⁴¹ used a strong cylindrical container for measuring pressure-volume isotherms and found two additional solid phases (γ and δ). As a consequence, the pressure-temperature diagram of pure methane presents other three solid-solid transition boundaries (β - γ , α - γ , and γ - δ) and a solid_{α}-solid_{β}-solid_{γ} triple point located at about 32 K and 260 MPa. In the low temperature region, the β - γ and γ - δ phase equilibrium curves do not match any other phase transition curve, and they go toward absolute zero at about 90 MPa and 210 MPa, respectively. Furthermore, the γ - δ boundary extends in the high pressure region remaining always located at temperatures lower than 35 K.⁴¹

In1936, Giauque and Blue 42 carried out experimental measurements for pure H_2S by means of a calorimetric apparatus and observed two solid-solid transitions in addition to the freezing transition. Authors observed a region of considerable energy absorption at 126 K and a sharp transition at 103.5 K. The former solid-solid transition was explained as an orientational ordering with respect to the rotational vibrations of the hydrogen atoms, whereas a drop in the dielectric constant was

associated to the latter. Giauque and Blue⁴² underlined then the presence of three fcc structures (α , β , and γ) for solid H_2S , and suggested three triple points (solid $_{\alpha}$ -liquid-vapor, solid $_{\alpha}$ -solid $_{\beta}$ -vapor, and solid $_{\beta}$ -solid $_{\gamma}$ -vapor) at vapor pressure (P \approx 0). Successively, Stevenson⁴³ showed the presence of other two solid phases (δ and κ) of H_2S in the high pressure region by a volume discontinuity method. The slopes of the related solid-solid boundaries are such as to originate four solid-solid-solid triple points between 110 K and 160 K, and 400 MPa and 900 MPa.⁴³

All the solid-solid-solid triple points of pure methane and hydrogen sulfide occur at pressures higher than 250 MPa, $^{40-43}$ then this limit has been considered for the application of the thermodynamic model used in this work. With respect to the low pressure region and the solid-solid-vapor triple points, only pure H_2S presents more than one solid phase in the range of temperature chosen in this work (70 – 373K). Nevertheless, these solid-solid transitions do not involve a meaningful change in the solid-fluid equilibria of the mixture seeing that the solid phase S_2 is always made of fcc crystals of pure H_2S . This aspect has been pointed out in the last section of this work, where the presence of two additional solid phases for pure H_2S have been qualitatively taken into account in a temperature-composition diagram and compared with the case of considering a single solid phase.

Thermodynamic Model

functional forms are given in Eqs. 2 and 3:

The pressure-explicit equation of state proposed by Yokozeki in 2003is presented in Eq. 1.³⁹

$$P(T, v) = \frac{RT}{v - b} \frac{v - d}{v - c} - \frac{a}{v^2 + qbv + rb^2}$$
(1)

In Eq. 1, P is the pressure, R is the gas constant, T is the temperature, v is the molar volume, a keeps into account the attractive forces among molecules, c is the liquid covolume, b is the solid covolume, d is molar volume for which the repulsive term in Eq. 1 is null, q and r are parameters of the attractive term. The van der Waals attractive term (q, r = 0) has been considered in this work. According to Yokozeki, parameters a and b in Eq. 1 are temperature dependent functions whose

$$a(T) = \frac{(RT_c)^2}{P_c} \left[a_0 + a_1 T_r \exp(-a_2 T_r^n) \right]$$
 (2)

$$b(T) = v_c \left[b_0 + b_1 \exp(-b_2 T_r^m) \right]$$
(3)

where $T_r = T/T_c$ is the reduced temperature, a_0 , a_1 , a_2 , n, b_0 , b_1 , b_2 , and m are parameters, R is the gas constant, and T_c , P_c , and v_c are temperature, pressure, and volume at the critical point.

The application of Eqs. 1-3 for the representation of the phase equilibrium behavior of a pure component requires the previous evaluation of 11 parameters (the critical volume v_c or equivalently the critical compressibility coefficient Z_c , a_0 , a_1 , a_2 , n, b_0 , b_1 , b_2 , m, c, and d). The procedure deeply illustrated by Stringari et al.⁴⁴ has been used to this scope.

This procedure is based on the analytical representation of the critical and triple points of a pure component, and on the minimization of an objective function based on the isofugacity conditions along the saturation, sublimation, and melting curves. The fugacities of the coexisting phases are evaluated at the experimental conditions (temperature and pressure) of equilibrium.

For CH₄, pseudo-experimental temperature-pressure couples for vapor-liquid, solid-vapor, and solid-liquid equilibria have been generated from accurate auxiliary equations⁴⁵ considering these values as true equilibrium values. Therefore, it has been considered that comparing the model with

the values obtained from the auxiliary equations (referred to as auxiliary values) is equivalent to compare the model to experimental data, seeing that these auxiliary equations are precise correlations of the available experimental data.

For H₂S, only the auxiliary equation for the vapor-liquid equilibrium is available⁴⁵. Experimental values of sublimation have been proposed by Stevenson,⁴³ and Clark et al.,⁴⁶ while temperature-pressure couples of solid-liquid equilibrium have been generated by means of Eq. 4.

$$P^{SLE} = P_t + \frac{\Delta H^{SLE}}{\Delta v^{SLE}} \left(1 + \frac{T_t}{T} \right) \tag{4}$$

Eq. 4 has been obtained from the expression relating the solid and the liquid fugacities of a pure component, also known as "classic approach".⁴⁷ In Eq. 4, P_t is the triple point pressure, T_t is the triple point temperature, $\Delta H^{SLE} = H_L - H_S$ and $\Delta v^{SLE} = v_L - v_S$ are latent heat of fusion and the volume change upon melting at the triple point, whose values are 2.377 kJ/mol,⁴⁸ and 3.892 cm³/mol,⁴⁹ respectively.

The references of VLE, SLE, and SVE data needed for the regression of parameters of the pure components are summarized in Table 1.

Table 1. Summary of the data sources used for SVE, SLE, and VLE of pure methane and hydrogen sulfide.

Substance	VLE	SLE	SVE
CH ₄	auxiliary values ⁴⁵	auxiliary values ⁴⁵	auxiliary values ⁴⁵
H_2S	auxiliary values ⁴⁵	generated values, Eq. 4	experimental values ^{43,46}

For sake of simplicity, the term data has been henceforth used to group all the kind of values: auxiliary values obtained from auxiliary equations, 45 experimental values of SVE for H_2S , 43,46 and SLE values calculated by Eq. 4 for H_2S , 47 .

Values of pressure and temperature at critical and triple points for methane and hydrogen sulfide are presented in Table 2.⁴⁵

Table 2. Temperature and pressure of triple and critical points of methane and hydrogen sulfide. 45

Substance	P_t/kPa	T_t/K	P_c/MPa	T_c/K
CH ₄	11.697	90.694	4.5992	190.56
H_2S	22.3	187.7	9	373.1

For each substance, the P-T range used for the regression of the parameters within the SLV EoS extends from a minimum on the sublimation branch to a maximum on the melting branch. These values are presented in Table 3.

Table 3. Temperature and pressure ranges for the regression of the parameters for methane and hydrogen sulfide.

Substance		SVE		SLE	
	$\overline{T_{min} / K}$	P_{min}/kPa	$\overline{T_{max}/K}$	P_{max}/MPa	
$\mathrm{CH_4}$	60	0.0164	200	594	
H_2S	130	0.0417	400	2741	

Regressed parameters are Z_c , a_0 , a_1 , a_2 , n, b_0 , b_1 , b_2 , m, c, and d for CH₄ and H₂S are reported in Table 4. Values for CH₄ are the same presented by Stringari et al.,⁴⁴ and here reported for the reader convenience.

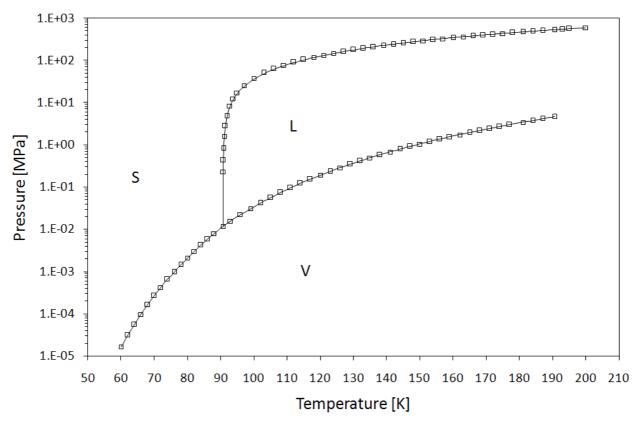
Table 4. Parameters of Eqs. 1-3 for methane and hydrogen sulfide.

Substance	$\frac{Z_c}{(x10^2)}$	$a_0 (x10^2)$	a_1	a_2	n	b_0	b_1	b_2	m	$c (x10^2)$	$d (x10^2)$
CH ₄	37.50400	3.903	21.983	4.051	0.381	0.335	-0.334	4.201	0.682	4.468	4.422
H_2S	37.50023	0.998	11.043	3.289	0.503	0.334	-0.236	5.160	1.370	4.430	4.426

The comparison of the phase equilibrium values calculated with Eq. 1 and data is presented in Table 5 in terms of Absolute Average Deviation, Bias, and Maximum Absolute Deviation. Table 5 represents the deviations obtained calculating the equilibrium pressure at fixed temperature; for each kind of equilibrium, N is the number of data used for the comparison. Values for CH₄ are the same presented by Stringari et al.⁴⁴

Table 5. Summary of the statistical errors in calculating equilibrium pressures at fixed temperatures for CH_4 and H_2S .

Errors are evaluated with respect to the auxiliary values of VLE, SLE, SVE of CH_4 and of VLE of H_2S , to the experimental values of SVE of H_2S , and to the values generated from Eq. 4 for SLE of H_2S .


_	$V\!L\!E$			SVE			SLE					
Substance	AAD %	Bias %	MAD %	N	AAD %	Bias %	MAD %	N	AAD %	Bias %	MAD %	N
CH ₄	0.11	-0.07	0.26	131	0.03	0.01	0.06	32	0.26	0.00	1.37	141
H_2S	0.19	0.85	4.08	118	4.08	1.99	12.38	18	8.08	7.20	13.32	215

According to Table 5, the SLV EoS agrees well with the auxiliary values⁴⁵ of melting, saturation, and sublimation obtained for CH₄. Considering all the kind of equilibrium, the AAD is always lower than 0.3%, the Bias is close to zero, and the highest MAD of about 1.4% is obtained for the SLE.

Similar results are related to the comparison between the SLV EoS and the auxiliary values⁴⁵ of saturation of H₂S; the AAD is 0.19%, the Bias lower than 1%, the MAD is about 4%.

Higher deviations are obtained for the quantitative comparison between calculated and experimental pressures of SVE and SLE of H_2S . With respect to the SVE, the highest deviation (12.38%) occurs at 130K where the experimental pressure is lower than 5×10^{-5} MPa. For the SLE, the AAD, Bias and MAD are about 8%, 7%, and 13%, respectively. It should be remembered that the pressure of melting have been calculated by means of Eq. 4, which is a simple approximation of the solid-liquid equilibrium.

Pressure-temperature equilibrium behaviors obtained with the SLV EoS are represented in Figures 1-2 for CH₄ and H₂S, respectively; empty symbols are selected data of VLE, SLE, and VLE.

Figure 1. Pressure-temperature phase diagram of CH4.—: SLV EoS; □: auxiliary values⁴⁵ for SVE, SLE, and VLE.

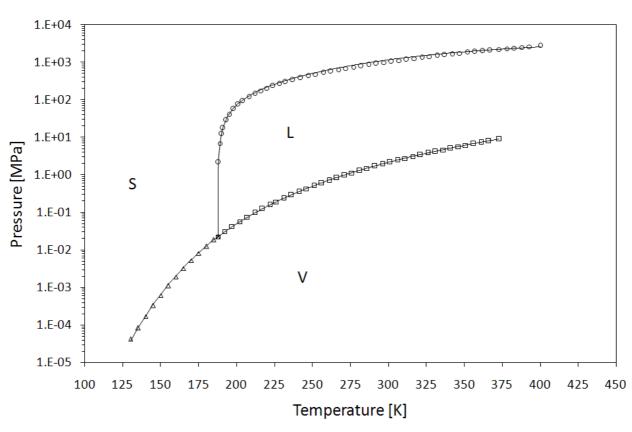


Figure 2. Pressure-temperature phase diagram of H_2S .

—: SLV EoS; \Box : VLE auxiliary values⁴⁵; \circ : SLE generated values, Eq. 4; Δ : SVE experimental values, ^{43,46}.

Extension of Eq. 1 to the binary mixture has been considered using the mixing rules proposed by Yokozeki³⁹, Eqs. 5-8. The consistency test for the adopted mixing rules has been presented in Ref. 44.

$$a = \sum_{i,j=1}^{NC} \sqrt{a_i a_j} (1 - k_{ij}) x_i x_j$$
 (5)

$$b = \sum_{i=1}^{NC} b_i x_i \tag{6}$$

$$c = \sum_{i=1}^{NC} c_i x_i \tag{7}$$

$$d = \sum_{i=1}^{NC} d_i x_i \tag{8}$$

The binary interaction parameter k_{ij} has been regressed by minimization of an objective function defined as the sum of the absolute difference between the calculated and experimental methane compositions, averaged with respect to the total number N of VL_2E , L_2L_1E and S_2L_1E data, Eq. 9.

$$fob = \left[\frac{1}{N} \sum_{i=1}^{N} \left| x_{CH_4}^{calc} - x_{CH_4}^{exp} \right| \right]$$
 (9)

In Eq. 9, each calculated composition of methane refers to the equilibrium composition at VL_2E or L_2L_1E obtained by the model by means of a PT flash calculation at imposed experimental temperature and pressure.

In spite of the complex phase equilibrium behavior, a not temperature dependent value for k_{ij} (k_{ij} = 0.058) has been found to allow the complete description of the methane-hydrogen sulfide system from 70 K up to the critical temperature of H₂S.

Section 4 presents the comparisons between experimental values of equilibrium and the SLV EoS, while Section 5 illustrates the complete phase diagram of the binary mixture in the temperature and pressure ranges of this work.

As it is possible to observe in the figures presented in the following sections, the solid phases S_2 and S_1 calculated by the model are not always pure phases. This discrepancy with what is expected

according to the literature depends heavily on the functional form of Eqs. 5-8. Because the mixing rules used for the volumetric parameter b, c, and d are of the type developed for the fluid phase, it follows that the solid phase is treated as a liquid-like phase, which entails the solubility in the solid phase. The fact that the solid phases are not constituted by a pure component does not affect the quality of the representation of the temperature-pressure-composition data of the fluid phases in equilibrium with the solid.

Model Validation

This section has the scope to assess the accuracy and reliability of the developed SLV EoS in representing the existing phase equilibrium data. Once the SLV EoS validated, it will be used in Section 5 for predicting the phase equilibrium behavior of the $CH_4 + H_2S$ system in the considered range of temperature and pressure.

The quantitative comparison between the values calculated by means of Eq. 1, with the mixing rules of Eqs. 5-8, and the experimental values proposed in the literature is illustrated in Table 6.

The first part of Table 6 presents the comparison between calculated and experimental values of VL_2E , L_1L_2E , and S_2L_1E ; errors are in terms of the compositions of methane in the liquid and the vapor phase, obtained by means of a PT flash calculation at imposed experimental temperature and pressure.

The second part of Table 6 portrays the comparison with respect to the experimental values of temperature and pressure related to the three-phase equilibria S_2L_1VE , S_2L_2VE , L_2L_1VE , and $S_2L_2L_1E$. Errors in terms of temperature have been obtained comparing the experimental value with the temperature calculated imposing the experimental pressure of three-phase equilibrium. Errors in terms of pressure have been obtained comparing the experimental value with the pressure calculated imposing the experimental temperature of three-phase equilibrium.

Finally, the last two rows present the comparison along the Critical Curve (CC) of the mixture; errors have been evaluated comparing experimental and calculated values of temperature and pressure at fixed composition of methane.

Table 6. Quantitative comparison of equilibrium compositions, temperatures and pressures of three-phase equilibria, and critical temperatures and pressures for the system $xCH_4+(1-x)H_2S$.

D - f	N.T	Kind	T	P			P	Γ FLASH	
Reference	N	of data	K	MPa	x	у		X	y
							N calc	57	57
Reamer et al.	59	VL_2E	277-344	1.4-13.4	0.0057-0.55	0.059-0.73	AAD%	10.03	5.24
1951 ²²	39	TPxy	211-344	1.4-15.4	0.0037-0.33	0.039-0.73	Bias%	4.36	-1.43
							MAD%	33.70	28.17
Robinson and							N calc	3	3
Bailey	3	VL_2E	310	4.1-12.4	0.033-0.26	0.29-0.51	AAD%	16.48	5.38
1957 ²³	1057 ²³	TPxy	310	7.1-12.7	0.033-0.20	0.27-0.31	Bias%	9.83	-1.93
							MAD%	24.41	9.69
Kohn and							N calc	51	51
Kurata	54	VL_2E	188-344	1.4-11.0	0.005-0.24	0.10-0.97	AAD%	18.31	4.29
1958 ²⁵	51	TPxy	100 511	1.1 11.0	0.003 0.21	0.10 0.57	Bias%	13.62	-2.71
	_						MAD%	87.17	31.17
							N calc	3	3
Robinson et al.	3	VL_2E	277	2.8-11.0	0.023-0.26	0.51-0.72	AAD%	20.56	0.31
1959 ²⁴	5	TPxy	277	2.0 11.0	0.023 0.20	0.01 0.72	Bias%	20.56	-0.26
							MAD%	43.52	0.85
Cheung and							N calc	6	
Zander	6	S_2L_1E	119-162		0.98-0.99		AAD%	1.23	
1968 ²⁸	Ü	Tx	117 102		0.50 0.55		Bias%	-1.23	
	_						MAD%	2.57	
Yarim-Agaev							N calc	42	27
et al.	42	VL_2E		0.7-11.8	0.001-0.36	0.14-0.90	AAD%	16.34	3.53
1991 ²⁹		TPxy				0.11.000	Bias%	13.14	3.27
							MAD%	261.53	6.45
		VL₂E TPxy					N calc	13	13
	14		186-203	0.5-5.8	0.0091-0.13	0.86-0.98	AAD%	4.34	0.81
			100 203	0.5 5.0			Bias%	-4.11	0.71
Coquelet et al.	-						MAD%	13.17	1.77
2014^{30}					0.090-0.14		N calc	11	11
	10	L_1L_2E	186-203	6.7-10.8		0.85-0.98	AAD%	10.37	1.15
		TPxx					Bias%	-10.37	-0.92
							MAD%	16.56	5.75
Reference	N	Kind	T	P			THRE	E-PHASE	
		of data	K	MPa				T	P
							N calc	3	3
	3	$S_2L_1VE^1$	167-168	2.05-2.2			AAD%	0.56	3.16
		2 1					Bias%	0.56	-3.16
							MAD%	0.83	4.69
							N calc	8	8
	8	$S_2L_2VE^1$	184-186	0.04-2.01			AAD%	0.93	>100
Kohn and							Bias%	0.93	>100
Kurata							MAD%	1.46	>100
1958^{25}							N calc	3	3 1.99
	3	$L_2L_1VE^1$	186-200	3.6-5.3			AAD%	0.42	-1.32
							Bias% MAD%	0.27	2.93
							N calc	10	2.93
	10						AAD%	0.52	28.15
		$S_2L_2L_1E^1$	183-185	6.03-13.7			Bias%	0.52	-28.15
							MAD%	0.32	46.40
							MIAD 70	0.00	40.40

Reference	N	Kind	Tc	Pc	V		CRITICAL POINTS		
Kelefelice	11	of data	K	MPa	x			Tc	Pc
					0.1-0.6		N calc	5	5
Reamer et al.	6	CC	267-361	10.2-13.4			AAD%	1.22	1.60
1951 ²²	6	TPx	207-301	10.2-13.4			Bias%	1.05	-0.02
							MAD%	2.00	3.09
TZ 1 1				40.400	0.067-0.97		N calc	4	4
Kohn and	4	CC	102.264				AAD%	1.89	4.58
Kurata 1958 ²⁵	4	TPx	193-364	4.8-12.0			Bias%	1.89	1.01
						MAD%	2.70	6.32	

¹ Values evaluated from pressure-temperature diagrams prepared from experimental isotherms by cross-plotting at constant percentage of liquid.

According to Table 6, the critical values of Reamer et al. and Kohn and Kurata²⁵ are well represented by the model; the maximum MAD considering the two sources of experimental values is about 6%.

The model agrees well also with the values of S_2L_1E of Cheung and Zander,²⁸ and the L_2L_1E values of Coquelet et al.³⁰ In this last case, a MAD of about 17% is found at 186 K and 3.7 MPa for a composition of methane in the liquid phase lower than 0.1.

Considering all the VL_2E experimental values, the methane composition in the vapor phase is represented within an overall AAD of about 5%, the Bias% is between about -3% and 4%, while the highest values of MAD of about 30% are found with respect to the data of Reamer et al.²² and Kohn and Kurata²⁵ for two compositions lower than 0.1. Taking into account the deviations in Table 6 related to the composition of the liquid phase mole fraction, it is possible to state that the AAD is always lower than about 21%, and that the MAD is higher than in the vapor phase. Higher percentage deviations are encountered in the liquid phase because of the low CH_4 mole fraction. For instance, the MAD of about 34% (Reamer et al.²²), 87% (Kohn and Kurata²⁵), and 260% (Yarim-Agaev²⁹) are related to experimental liquid compositions of methane of 0.0057, 0.0125, and 0.001, respectively.

With respect to phase equilibria involving three phases, a good agreement is achieved along the S_2L_1VE and L_2L_1VE boundaries. The extent to which the pressures of $S_2L_2L_1E$ and S_2L_2VE calculated by the SLV EoS deviate from the experimental pressures is a direct consequence of the

difference between the calculated and the experimental temperature at the quadruple point, as discussed later in this section.

Table 7 presents the quantitative comparison between the SLV EoS and the experimental values (composition of methane, temperature, and pressure) proposed by Kohn and Kurata²⁵ concerning the Quadruple Point ($S_2L_2L_1VE$) and the Upper Critical EndPoint $L_2(L_1=V)$.

With respect to the QP, the relative percentage errors between calculated and literature values are about -0.6%, -32%, and 2% for the composition of CH_4 in the liquid L_1 , liquid L_2 , and vapor phase, respectively; the temperature and pressure of the QP are reproduced by the model within 1% of deviation. It should be noted that in Ref. 25 the solid phase S_2 is treated as pure H_2S , whereas the calculated mole fraction of methane in the S_2 phase is 0.046.

With respect to the UCEP₁, the deviations related to the experimental temperature and pressure are about 1.3% and 2.6%, respectively. For the composition of methane, the errors are -1.28% for the $L_1=V$ phase and 14% for the L_2 phase.

Improved representations could have been obtained using more complex mixing rules involving binary interaction parameters instead of Eqs. 6-8 and/or introducing temperature dependent binary interaction parameters, but authors decided to use a single binary interaction parameter, k_{ij} , constant with temperature, to increase the prediction capability of the model. The model is applied in the next section for representing the whole and complex phase diagram of the mixture in a wide range of temperature and pressure even for regions where data are scarce or not at all available. The chosen parameterization of the SLV EoS is then a compromise between the accuracy in representing the existing experimental values and the robustness of the model with respect to extrapolation for predicting the phase diagrams at temperatures and pressures for which experimental values are not available.

Table 7. Comparison between calculated and the experimental²⁵ singular points for the methane-hydrogen sulfide system.

7	are all areas					
	xCH_4 in S_2	xCH_4 in L_1	xCH_4 in L_2	xCH_4 in V	T/K	P/MPa
			$QP(S_2L_1L_2VE)$	ı		
Ref. 25	0	0.935	0.104	0.967	182.21	3.38
SLV EoS	0.046	0.929	0.071	0.988	183.92	3.40
err%	/	-0.64	-31.73	2.17	0.94	0.59
		1	$UCEP_1 L_2(L_1=V)$			
Ref. 25	/	0.935	0.1	0.935	199.76	5.30
SLV EoS	/	0.923	0.114	0.923	202.25	5.44
err%	/	-1.28%	14.00	-1.28%	1.25	2.64

Figures 3-7 portray some qualitative comparisons between selected experimental values and the model.

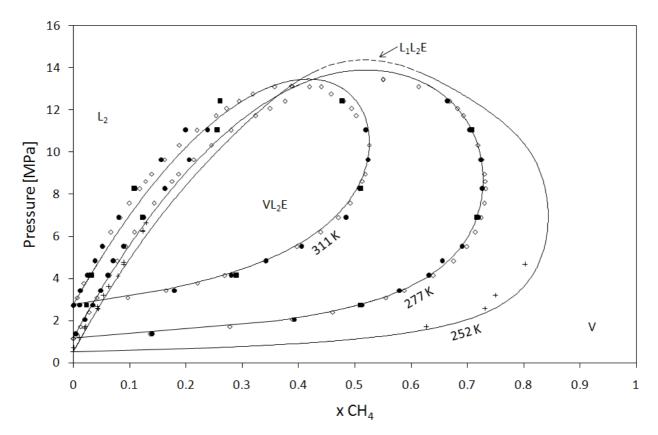


Figure 3. Pressure-composition diagram at 252K, 277 K, and 311 K. Data: \diamond : Reamer et al.²²; \bullet : Kohn and Kurata²⁵; \blacksquare : Robinson et al.²⁴, Robinson and Bailey²³; +: Yarim-Agaev²⁹. SLV EoS: —: VL₂E, —: L₁L₂E.

The pressure-composition cross sections in Figure 3 show the agreement of the SLV EoS with VL_2E data in the range 252 - 311 K. Data in Figure 3 are rather consistent among them, and the

model slightly deviates from the experimental composition of methane in the L_2 phase when the temperature increases approaching the critical temperature of pure H_2S .

In Figure 3, the isotherms at 277 K and 311 K end at a $V=L_2$ critical point. To the contrary, at 252 K the VL_2E becomes a L_1L_2E at about 13.8 MPa and the isotherm ends at a $L_1=L_2$ critical point, thus explaining the odd shape of the isotherm at this temperature with respect to the behaviors at the higher temperatures shown in Figure 3. The dashed line in Figure 3 represents the L_1L_2E at 252 K.

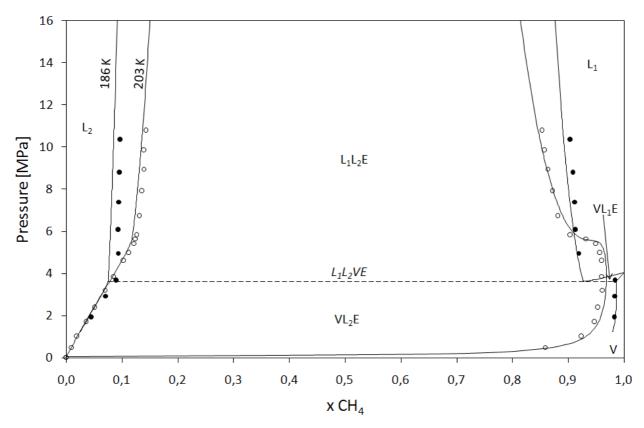
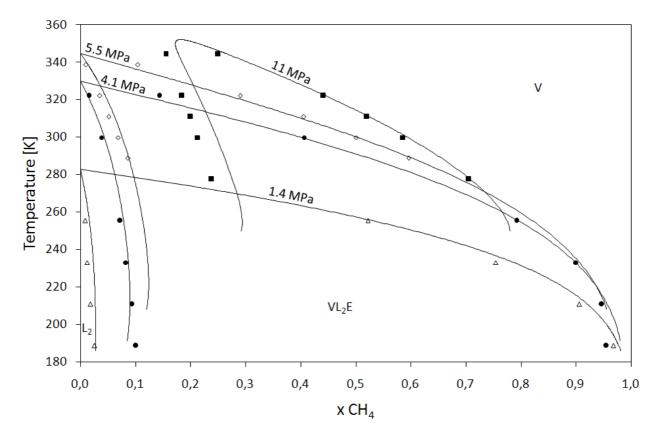



Figure 4. Pressure-composition diagram at 186 K and 203 K. SLV EoS: —: VL_1E , VL_2E , and L_2L_1E ; — : L_2L_1VE . Data of Coquelet et al.³⁰: •: 186 K; \circ : 203 K.

Figure 4 presents the qualitative comparison at 186 and 203 K; data are from Coquelet et al.³⁰ At 203 K the system presents immiscibility between two liquid phases (L_1 and L_2), and the one rich in methane (L_1) becomes a vapor phase in the low pressure region. Being this temperature higher than the calculated temperature of the UCEP₁ (202.25 K from Table 7), the transition from L_1 to the vapor does not involve neither a VL_1E nor a critical point $L_1=V$.

A VL₁E occurs at any temperature lower than the critical temperature of methane (190.56 K) and higher than the calculated temperature of the quadruple point QP₁ (183.92 K from Table 7), as for 186 K in Figure 4. Furthermore, a L_2L_1VE appears because of the immiscibility gap in the liquid phase. The isotherm at 186K has not been presented in Figure 4 in the low pressure region seeing that a solid phase and related solid-fluid equilibria are involved there. Nevertheless, next section presents the complete phase equilibrium behavior.

Figure 5. Temperature-composition diagram at 1.4, 4.1, 5.5, and 11 MPa.—: SLV EoS. Data of Kohn and Kurata²⁵: ■: 11 MPa; ◊: 5.5 MPa; •: 4.1 MPa; Δ: 1.4 MPa.

The temperature-composition cross sections of Figure 5 show the phase equilibrium behavior of the CH₄+H₂S system between 1.4 MPa and 11 MPa. Only the VL₂E has been presented in Figure 5, whereas the low temperature equilibria have been added and discussed in the next section. According to Figure 5, the SLV EoS is in a quite good agreement with data, except for the deviation with respect to the composition of methane in the L₂ phase at 11 MPa. As a consequence, the

calculated L_2 =V critical point appears to have a higher methane content than what can be inferred from the experimental values.

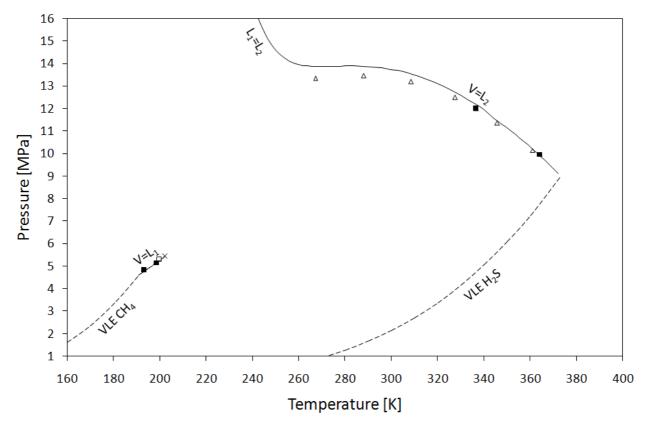


Figure 6. Vapor-liquid and liquid-liquid critical loci for the CH_4+H_2S system. Data: $V=L_1$ and $V=L_2$: \blacksquare : Kohn and Kurata²⁵; Δ : Reamer et al.²²; $L_2(L_1=V)$: \square : Kohn and Kurata²⁵. SLV EoS: --: VLE of CH_4 and H_2S ; --: $V=L_1$, $V=L_2$ and $L_1=L_2$; \times : $L_2(L_1=V)$.

Figure 6 illustrates the comparison between calculated and experimental values of the critical points of the mixture. Considering the left-branch of the critical curve (mixtures at higher methane content), deviations concerning the calculated (cross) and experimental (empty square) UCEP₁ have been already presented in Table 7. The calculated L_1 =V critical curve exits the critical point of methane (see Table 2) and rises up to the UCEP₁.

The calculated $L_2=V$ critical curve originates from the critical point of H_2S (see Table 2) and reaches firstly a local maximum and then a local minimum in pressure while extending toward the low temperature region. These values (respectively 13.9 MPa and 13.87 MPa) are located at temperatures higher than about 266 K, temperature where, in the critical curve, the vapor phase

becomes a liquid phase rich in methane (phase L_1). As a consequence, the L_2 = L_1 critical curve replaces the L_2 =V one for temperature lower than 266 K, and it develops in the high pressure region for decreasing temperatures. This L_2 = L_1 critical curve ends in the singular point $S_2(L_2$ = $L_1)$, UCEP₂, as discussed in the next section.

With respect to the data of Reamer et al.,²² the calculated critical curve develops at pressures slightly higher than the experimental values before reaching the inflection point and the $L_2=L_1-L_2=V$ transition.

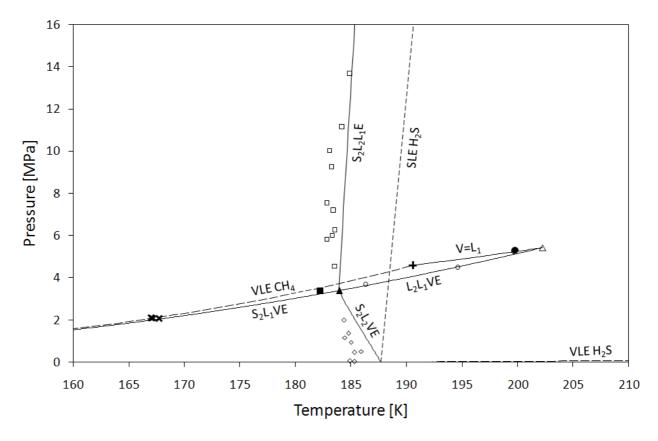


Figure 7. Pressure-temperature phase diagram of the CH_4+H_2S system in proximity of the QP_1 . Data of Kohn and Kurata²⁵: $\Diamond: S_2L_2VE$; $\bigcirc: L_2L_1VE$; $\square: S_2L_2L_1E$; $\times: S_2L_1VE$; $\blacksquare: QP_1$; $\bullet: UCEP_1$. SLV EoS: —: three-phase equilibrium and $V=L_1$ curve; --: VLE of CH_4 , SLE and VLE of H_2S ; +: critical point of CH_4 ; \bigvee : triple point of H_2S ; $\triangle: QP_1$; $\triangle: UCEP_1$.

Figure 7 groups all the three-phase equilibria of the binary mixture occurring at temperatures higher than 160 K and pressures up to 16 MPa. It should be remarked that being the data in Figure 7 not available numerically, they have been obtained from graphs²⁵ by means of a specific software.

Filled square and circle represent the experimental temperature-pressure couples for the quadruple point and the UCEP₁, respectively; correspondent calculated values are the filled triangle and the empty triangle. The dashed curves in Figure 7 are the saturation curves of CH₄ and H₂S, and the melting curve of H₂S as calculated by the SLV EoS.

Four three-phase boundaries originate from the calculated QP; the S_2L_1VE curve which extends down to 160 K remaining close to the saturation curve of methane; the L_2L_1VE curve ending at the calculated UCEP₁; the $S_2L_2L_1E$ curve which rapidly extends in the high pressure region; the S_2L_2VE curve which joins the triple point of H_2S (\P). For sake of completeness, the $V=L_1$ critical curve has been added in Figure 7; it exits the critical point of CH_4 (+) and joins the UCEP₁ (Δ). The deviation between the calculated $S_2L_2L_1E$ and S_2L_2VE boundaries and the experimental trends which can be inferred from the correspondent available data (respectively empty squares and diamonds) can be related to the deviation between the calculated and experimental temperature of the QP (see Table 7). Furthermore, the S_2L_2VE data²⁵ seem not to extend in the low pressure region towards the triple point temperature of pure H_2S (187.7 K, 22.3 kPa). In fact, the experimental

remarkable deviations for the $S_2L_2L_1E$ and S_2L_2VE presented in Table 7. As previously stated, next section aims at presenting an overview of the phase equilibrium behavior of the CH_4+H_2S system by means of several isotherms and isobars. With respect to this section, solid phases and correspondent equilibria have been added in cross sections and P-T diagrams in

order to present the whole phase equilibrium behavior.

points tend to a temperature of about 185 K in the zero-pressure limit, temperature that is about 3

degrees lower than the triple point temperature of H₂S proposed in Ref. 45. This explains the

Description of the Phase Diagram of the Methane-Hydrogen Sulfide System

This section has the scope of describing the pressure-temperature phase diagram and all the possible types of pressure-composition and temperature-composition phase diagrams that can be encountered in the investigated range of temperature and pressure. This analysis aims to be helpful to the process engineer who needs to understand how the CH₄+H₂S system behaves at a certain temperature and pressure.

Figure 8 presents the pressure-temperature phase diagram of the CH₄+H₂S mixture for temperatures from 70 K up to the critical temperature of H₂S and pressures up to 250 MPa.

According to the available experimental values and the results of the SLV EoS, in these ranges the mixture presents two Quadruple Points and two Upper Critical EndPoints. The QPs are related to the $S_2S_1L_1VE$ (QP₂) and the $S_2L_2L_1VE$ (QP₁); the UCEPs are related to the singular points $L_2(L_1=V)$, UCEP₁, and the $S_2(L_2=L_1)$, UCEP₂.

The phase equilibrium behavior involves then 7 three-phase equilibrium boundaries (S_2S_1VE , $S_2S_1L_1E$, S_1L_1VE , S_2L_1VE , S_2L_2VE , $S_2L_2L_1E$, and L_2L_1VE) and 5 phases (S_2 , S_1 , L_2 , L_1 , and V).

Taking into account the huge range of pressure considered in this work, the *y*-axis in Figure 8 has been cut twice (at 0.5 MPa and 19 MPa) for easing the comprehension of the equilibria occurring in proximity of the QP₂, of the points QP₁-UCEP₁, and the high-pressure equilibria located near the UCEP₂. Furthermore, a zoom of Figure 8 has been presented in Figure 9 in order to show the phase equilibrium behavior in the low-pressure region, namely in proximity of the QP₂ and the triple point of CH₄.

In the low pressure region of Figure 8, 0-0.5 MPa, the QP₂ almost overlaps the triple point of pure methane, than the saturation, melting, and sublimation curves of pure CH_4 are not clearly visible being overlapped by the S_2S_1VE , $S_2S_1L_1E$, and S_2L_1VE curves. The S_2L_2VE curve originates at the triple point of H_2S , and extends at higher pressures with a negative slope.

The more complex part of the phase equilibrium behavior concentrates between 0.5 MPa and 19 MPa. The $S_2S_1L_1E$ remains close to the SLE of CH₄, while the S_2L_1VE boundary distances itself

from the saturation curve of CH_4 while approaching the filled triangle, which represents the QP_1 . The S_2L_2VE , curve originating at the triple point of H_2S , also ends at the QP_1 . The other three-phase equilibria joining the QP_1 are the L_2L_1VE and the $S_2L_2L_1E$. The former reaches the $UCEP_1$, namely the empty triangle in Figure 8, the latter extends rapidly at high pressures with a positive slope. In addition to that, two critical boundaries occur: the $V=L_1$ loci leaving the critical point of CH_4 to end in the $UCEP_1$, and the $V=L_2$ loci originating from the critical point of H_2S and becoming the $L_2=L_1$ loci at low temperatures.

In the high pressure region of Figure 8, the $S_2S_1L_1E$ starts to deviate from the SLE of CH₄, and the $L_2=L_1$ loci meets the $S_2L_2L_1E$ curve at the empty square, namely the UCEP₂ (208.98 K and 224.09 MPa). As a consequence, the L_2 and L_1 phases become a unique liquid phase for any pressure higher than the pressure at the UCEP₂, $S_2(L_2=L_1)$.

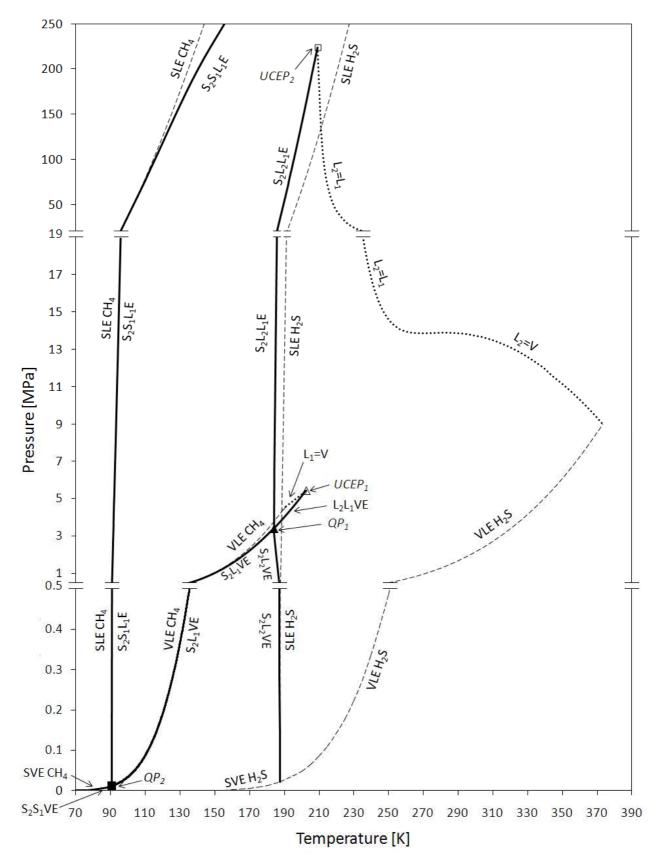


Figure 8. Calculated pressure-temperature phase diagram of the CH_4+H_2S system. —: three-phase equilibrium boundaries; ••• : critical curves; — - : SVE, VLE and SLE of CH_4 and H_2S ; $\blacksquare : QP_2; \ \triangle : QP_1; \ \triangle : UCEP_1; \ \Box : UCEP_2.$

The three-phase equilibrium boundaries related to the QP_2 , calculated at 90.75 K and 11.77 kPa, can be appreciated in Figure 9. From the QP_2 , the S_2S_1VE curve extends in the low temperature region, the $S_2S_1L_1E$ extends in the high pressure region, the S_2L_1VE curve develops in such a way to end in the QP_1 , the S_1L_1VE joins the triple point of CH_4 . Dashed curves represent the sublimation, saturation, and melting curves of pure CH_4 .

It should be stated that any experimental evidence has been provided in the literature concerning the precise position of the QP₂, thus the calculated QP₂ is a simple result of the SLV EoS with a binary interaction parameter regressed with respect to the available data at high temperatures. The calculated QP₂ is at a temperature slightly higher than the triple point temperature of methane, and this feature results in a solid-fluid equilibrium behavior of the peritectic type, as it has been discussed in the following.

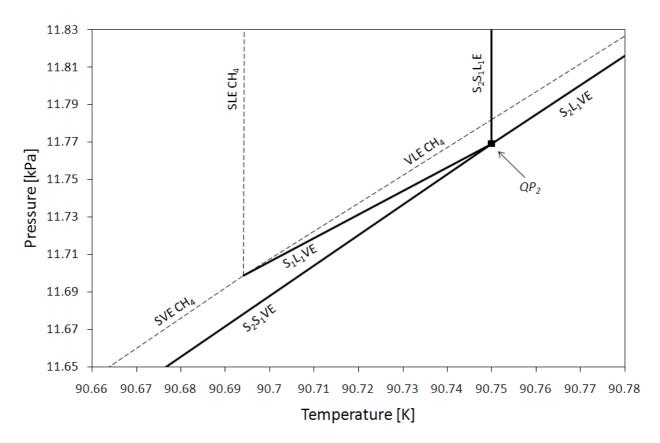


Figure 9. Calculated pressure-temperature phase diagram of the CH_4+H_2S system in proximity of the QP_2 .

 \blacksquare : QP₂; -: three-phase equilibrium boundaries; -: VLE, SVE, and SLE of CH₄.

Figures 10-15 present a series of cross sections at constant temperature and pressure that have been selected in the PT phase diagram (Figure 8) in order to describe all the phase equilibrium behaviors of the mixture in the wide ranges of temperature and pressure considered in this work.

As it has already been stated, the objective is to provide the reader with a mapping of the phase diagram and the possibility of rapidly obtaining an overview of the phase equilibrium behavior according to the system temperature and pressure.

A set of temperature and pressure couples has been selected in order to follow the qualitative changes of the phase behavior, as summarized in Tables 8 and 9.

Table 8 presents all the main regions of temperature (listed from 1T to 13T) where the correspondent pressure-composition cross section does not change from a qualitative point of view. A lower and an upper temperature limit have been fixed for each region of temperature, and a representative temperature (*Tref*) has been chosen for each interval in order to describe its qualitative phase diagram. The last column of Table 8 indicates the figure presenting the cross section correspondent to the chosen representative temperature. In some cases, either the lower or the upper limit or both temperature limits are represented by the temperature where two phase boundaries meet or cross each other. For instance for the region 4T, the lower limit is the temperature at the quadruple point QP₁, whereas the upper is the temperature where the saturation curve of CH₄ (VLE CH₄) crosses the S₂L₂L₁E curve.

Table 8. Temperature ranges presenting different qualitative pressure-composition phase equilibrium behaviors for the methane-hydrogen sulfide system, and the selected representative temperature (*Tref*).

Region	Lower limit (T/K)	Upper limit (T/K)	Tref / K	Figure
1T	Low-temperature limit (70)	T _t CH ₄ (90.694)	85	10A
2T	T _t CH ₄ (90.694)	T QP ₂ (90.75)	90.7	10B
3T	T QP ₂ (90.75)	T QP ₁ (183.92)	140	10C
4T	T QP ₁ (183.92)	T cross VLE CH ₄ /S ₂ L ₂ L ₁ E (184.13)	183.94	10D
5T	T cross VLE $CH_4/S_2L_2L_1E$ (184.13)	$T_t H_2 S (187.7)$	186.25	10E
6T	$T_t H_2 S (187.7)$	T cross SLE H_2S/L_2L_1VE (188.47)	188	10F
7T	T cross SLE H_2S/L_2L_1VE (188.47)	T cross VLE CH ₄ /SLE H ₂ S (188.56)	188.48	11A
8T	T cross VLE CH ₄ /SLE H ₂ S (188.56)	T _c CH ₄ (190.56)	189.5	11B
9T	T _c CH ₄ (190.56)	T UCEP ₁ (202.25)	195	11C
10T	T UCEP ₁ (202.25)	T UCEP ₂ (208.98)	203.4	11D
11T	T UCEP ₂ (208.98)	T cross SLE $H_2S/L_2=L_1$ (210.71)	210	11E
12T	- T cross SLE H ₂ S/L ₂ =L ₁ (210.71)	т н с (272 1)	230	11F
13T	= 1 closs SLE Π_2 S/L ₂ =L ₁ (210./1)	$T_c H_2 S (373.1)$	300	12

A S_2VE , a S_1VE , and a S_2S_1E occur at any temperature higher than 70 K and lower than the triple point temperature of methane, as shown in the Pressure-composition (Px) cross section at 85 K, Figure 10A. At this temperature, the binary mixture presents a region of S_2VE for all pressures lower than 4.911 kPa down to the sublimation pressure of pure H_2S . An equilibrium between the phases S_2 , S_1 , and V occurs at 4.911 kPa. Then, the S_2S_1E extends up to 250 MPa, while the S_1VE ends at the sublimation pressure of pure CH_4 (4.913 kPa).

With respect to the range 1T, any Px cross section in the range 2T presents one additional pressure of three-phase equilibrium. This is related to the S_1L_1VE .

Figure 10B shows the phase equilibrium behavior at 90.7 K: the $S_2S_1V_1E$ and S_1L_1VE are at 11.694 kPa and 11.705 kPa, respectively. The S_2VE extends again from the sublimation pressure of H_2S (1.3×10⁻⁶ kPa) up to the pressure of S_2S_1VE , and the S_2S_1E extends up to 250 MPa and beyond. In this case, the S_1VE ends at the S_1L_1VE rather than at the sublimation of CH_4 ; the VL_1E and the S_1L_1E end respectively at the saturation (11.708 kPa) and melting (40.13 kPa) pressures of pure CH_4 .

Any Px cross section in the range 3T is qualitatively represented in Figure 10C, which has been calculated at 140 K. The S_2VE originating at the sublimation pressure of H_2S ends now at the pressure of S_2L_1VE (0.635 MPa): from this pressure, the VL_1E joins the saturation pressure of CH_4

(0.647 MPa), while the S_2L_1E extends in the high pressure region up to the $S_2S_1L_1E$ (198 MPa). From this three-phase equilibrium, the S_1L_1E ends at the melting pressure of CH₄ (230 MPa), the S_2S_1E extends in the high pressure region.

When the system temperature exceeds 183.92 K, namely the temperature of QP₁, a liquid phase L_2 appears in order to provide the S_2L_2VE , the L_2L_1VE , the $S_2L_2L_1E$, and the related two-phase equilibria. The Px cross section at 183.94 K in Figure 10D presents a S_2VE ending at the pressure of S_2L_2VE (3.374 MPa). The system is at S_2L_2E between this pressure and the pressure of $S_2L_2L_1E$ (3.645 MPa) only for compositions of CH_4 between about 0.04 and 0.07. To the contrary, the VL_2E and L_2L_1E occur for higher contents of CH_4 , and the transition between these equilibria involves the L_2L_1VE (3.402 MPa). The S_2L_1E originates from the $S_2L_2L_1E$ and extends up to 250 MPa and beyond, while a VL_1E runs from the pressure of L_2L_1VE and the saturation pressure of CH_4 (3.768 MPa).

In the region 4T the saturation pressure of CH_4 is higher than the pressure of $S_2L_2L_1E$, while the contrary occurs in the region 5T, where the phase L_2 develops and reaches higher pressures thus making the $S_2L_2L_1E$ occurring at higher pressures. For instance at 186.25 K (Figure 10E), the pressure of $S_2L_2L_1E$ is 23.449 MPa, higher than the saturation pressure of CH_4 (4.045 MPa).

In general, all the solid-liquid-vapor equilibria occur once the temperature is higher than the triple point temperature of CH_4 ; the S_2L_2E develops between the pressures of S_2L_2VE and $S_2L_2L_1E$ in regions 4T and 5T, whereas it starts at the melting pressure of H_2S in all the PT cross sections from the region 6T to higher temperatures. For instance at 188 K, Figure 10F, the S_2L_2E exits the melting pressure of H_2S (1.632 MPa) and ends at the $S_2L_2L_1E$ (37.439 MPa); furthermore, the VL_2E extends from the L_2L_1VE (3.808 MPa) down to the saturation pressure of H_2S (0.0228 MPa).

The underlying difference between the phase equilibrium behaviors in the regions 6T-8T is the reciprocal positions of the melting pressure of H_2S , the pressures of L_2L_1VE , and the saturation pressure of CH_4 .

In the region 6T, the melting pressure of H_2S is lower than the pressure of L_2L_1VE and the saturation pressure of CH_4 . In the region 7T, the melting pressure of H_2S exceeds the pressure of L_2L_1VE remaining lower than the saturation pressure of CH_4 . For instance, in the Px cross section at 188.48 K, Figure 11A, these values are 4.222 MPa, 3.859 MPa, and 4.326 MPa, respectively.

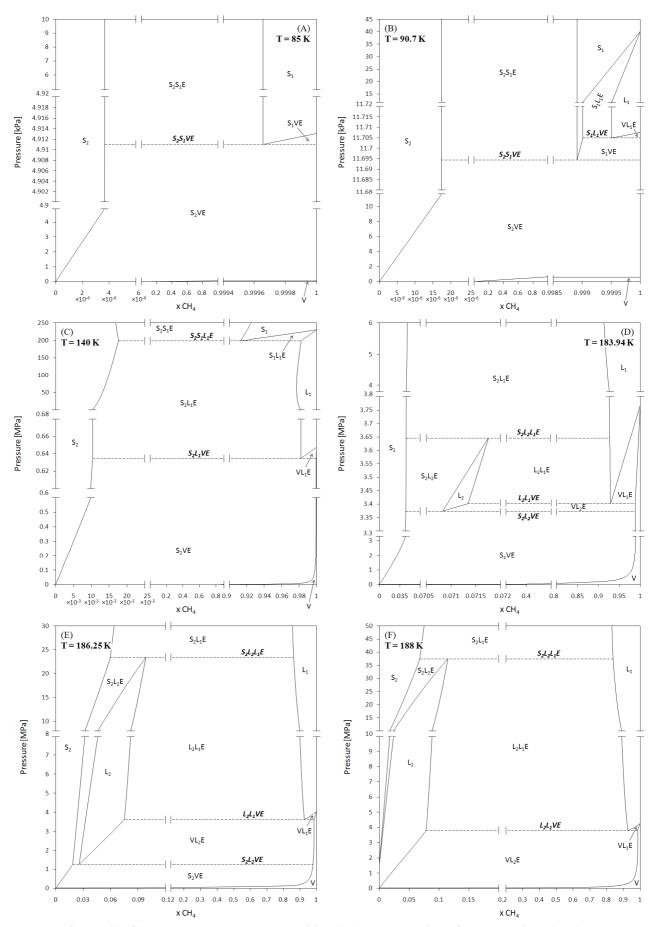


Figure 10. Calculated pressure-composition (Px) cross sections for the regions 1T-6T.

The melting pressure of H₂S exceeds also the saturation pressure of pure CH₄ in the region 8T; for instance, in the Px cross section at 189.5 K (Figure 11B) these values are 9.786 MPa (SLE H₂S), 4.458 MPa (VLE CH₄), and 4.326 MPa (L₂L₁VE), respectively.

The upper temperature related to the region 8T is the critical temperature of CH_4 . As a consequence, the VL_1E ends at the saturation pressure of pure CH_4 in all the Px cross sections in the range of temperatures corresponding to the regions from 2T to 8T. The VL_1E ends instead at a critical point $L_1=V$ in region 9T, as it can be appreciated in Figure 11C which shows the Px cross section at 195 K. At this temperature, the calculated L_2L_1VE and the $S_2L_2L_1E$ are at 4.57 MPa and 94.718 MPa, respectively.

According to the PT diagram of Figure 9, the L_2L_1VE boundary ends at the singular point UCEP₁. Consequently, the transition between the V and L_1 phases becomes continuous for temperatures higher than 202.25 K. For instance, the Px cross section at 203.4 K portrayed in Figure 11D illustrates the absence of the VL_1E and of the critical point $L_1=V$. The difference between the VL_2E and the L_2L_1E is the consequence of a change in density of the phase at equilibrium with the phase L_2 . Furthermore, the $S_2L_2L_1E$ occurs at 169.717 MPa.

No critical point exists for the mixture in the region 10T; to the contrary, the $L_2=L_1/V=L_2$ critical curve is crossed at each temperature higher than the temperature at the UCEP₂ (208.98 K).

At 210 K, Figure 11E, the VL₂E originates at the saturation pressure of H_2S , and the L_2L_1E ends at a critical point $L_2=L_1$ (176.4 MPa). The S_2L_2E exits the melting pressure of H_2S (139.74 MPa) and extends in the high pressure region. It should be noted that the melting pressure of H_2S is lower than the pressure of the critical point $L_2=L_1$ at 210 K, and so for all the temperatures in the region 11T. In the region 12T the critical point of the system is placed at a pressure lower than the melting pressure of pure H_2S ; for instance at 230 K, Figure 11F, the L_2L_1E ends at about 23 MPa, which represents a critical point $L_2=L_1$; the solid-liquid equilibria are located at pressures higher 250 MPa.

Finally, the extent of the L_2L_1E reduces for temperatures approaching the critical temperature of H_2S , and the critical point $L_2=L_1$ becomes a critical point $L_2=V$, as shown in Figure 12 by the Px cross section at 300 K.

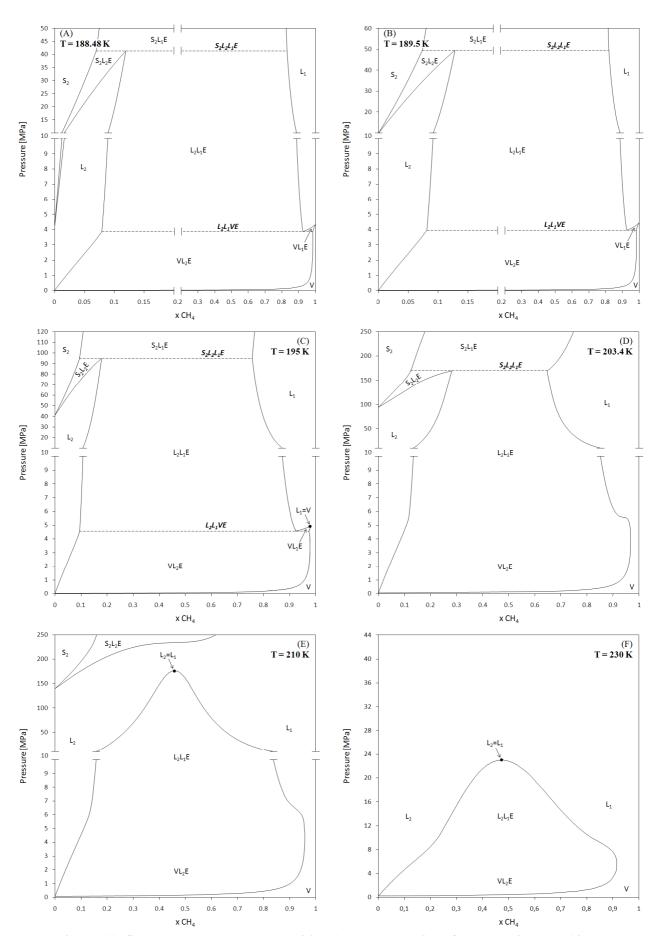


Figure 11. Calculated pressure-composition (Px) cross sections for the regions 7T-12T.

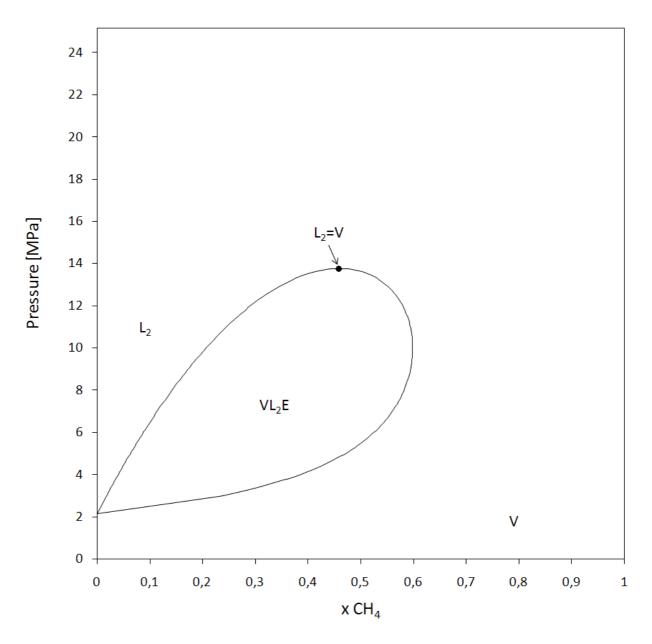


Figure 12. Calculated pressure-composition (Px) cross section at 300 K, i.e. the reference temperature for the region 13T.

A similar study has been carried out with respect to the qualitative changes of the temperature-composition cross sections with pressure. Table 9 summarizes the main pressure regions listed from 1P to 13P. Lower and upper pressure limits and a reference pressure have been fixed for each region of pressure, whereas the last column of Table 9 indicates the number of the figure presenting the correspondent cross section.

In some case, either the lower or the upper limit or both pressure limits are represented by the pressure where two phase boundaries cut cross each other. For instance, the lower limit for the region 5P is the pressure at the quadruple point QP_1 , whereas its upper limit is the pressure where the melting curve of H_2S (SLE H_2S) crosses the L_2L_1VE curve.

Table 9. Pressure ranges presenting different qualitative temperature-composition phase equilibrium behaviors for the methane-hydrogen sulfide system, and the selected representative pressure (*Pref*).

Region	Lower limit (P / MPa)	Upper limit (P / MPa)	Pref/MPa	Figure
1P	Low-pressure limit (0)	P _t CH ₄ (0.011697)	0.009	13A
2P	P _t CH ₄ (0.011697)	P QP ₂ (0.01177)	0.0117335	13B
3P	P QP ₂ (0.01177)	$P_t H_2 S (0.0223)$	0.02	13C
4P	$P_t H_2 S (0.0223)$	P QP ₁ (3.4)	1.37	13D
5P	P QP ₁ (3.4)	P cross SLE H_2S/L_2L_1VE (3.8)	3.75	13E
6P	P cross SLE H_2S/L_2L_1VE (3.8)	P cross VLE $CH_4/S_2L_2L_1E$ (3.85)	3.825	13F
7P	P cross VLE $CH_4/S_2L_2L_1E$ (3.85)	P cross VLE CH ₄ /SLE H ₂ S (4.34)	4.14	14A
8P	P cross VLE CH ₄ /SLE H ₂ S (4.34)	P _c CH ₄ (4.5992)	4.5	14B
9P	P _c CH ₄ (4.5992)	P UCEP ₁ (5.44)	5	14C
10P	P UCEP ₁ (5.44)	$P_c H_2 S (9)$	7.5	14D
11P	$P_{c} H_{2}S (9)$	P cross SLE $H_2S/L_2=L_1$ (144.46)	15	14E
12P	P cross SLE $H_2S/L_2=L_1$ (144.46)	P UCEP ₂ (224.09)	200	14F
13P	P UCEP ₂ (224.09)	High-pressure limit (250)	235	15

At 9 kPa (Figure 13A) the system CH_4+H_2S presents a S_2S_1VE at 88.906 K; a S_2S_1E extends down to 70 K, whereas the S_2VE and the S_1VE ends at the sublimation temperature of pure H_2S (175.957 K) and CH_4 (88.902 K), respectively. The Temperature-composition (Tx) cross section of Figure 13A is representative of the region 1P, whose upper pressure limit is the triple point of CH_4 .

At any pressure in the region 2P, namely between the triple point pressure of CH_4 (11.697 kPa) up to the pressure of the QP_2 (11.77 kPa), the S_1VE exists between a S_1L_1VE and a S_2S_1VE . For instance at 11.7335 kPa, Figure 13B, the S_1VE is confined in the high-methane content region

between 90.72 K (temperature of S_1L_1VE) and 90.722 K (temperature of S_2S_1VE). From the S₁L₁VE, a S₁L₁E and a VL₁E originate and join the melting temperature (90.695 K) and the saturation temperature (90.718 K) of pure CH₄, respectively. The S₂VE originating at the S₂S₁VE always ends at the sublimation temperature of H₂S (179.22 K in the case of Figure 13B). A S₂S₁L₁E and a S₂L₁VE appear when the system pressure exceeds the pressure at QP₂ remaining lower than the triple point pressure of H₂S, as shown in the Tx cross section at 0.02 MPa portrayed in Figure 13C. Figure 13C is representative of the phase equilibrium behavior in the region 3P, and the temperatures of S₂S₁L₁E and a S₂L₁VE at 0.02 MPa are 90.748 K and 95.14 K, respectively. The S₁VE does not exist for pressures higher than the pressure of the QP₂, and for increasing pressures the S₂S₁L₁E remains located almost at the same temperature while the S₂L₁VE moves to higher values. Furthermore, a S₂L₁E appears for the first time in the region 3P and it will never disappear in the Tx cross sections at higher pressures. With respect to the behavior in the region 2P (Figure 13B) where the S_1L_1E and a VL_1E both join the temperature of S_1L_1VE , in the region 3P the S₁L₁E and a VL₁E reach two different three-phase equilibria. According to Figure 13C, the S₁L₁E ranges from the melting temperature of CH₄ (90.694 K) and the temperature of S₂S₁L₁E, while the VL_1E extends from the saturation temperature of CH_4 (95.136 K) and the temperature of S_2L_1VE . A third three-phase equilibrium, the S₂L₂VE, is encountered for pressures in the region 4P, namely from the triple point pressure of H₂S (22.3 kPa) up to the pressure of QP₁ (3.4 MPa). This additional equilibrium and its related two-phase equilibria (S₂L₂E and VL₂E) are the consequence of the appearance of the liquid phase L₂ in the Tx cross section, as shown at 1.37 MPa in Figure 13D. Thus, in the region 4P, the phase equilibrium behavior changes qualitatively in the high temperature region. With respect to Figure 13C, in Figure 13D the S₂VE reaches the S₂L₂VE (157.132 K), from which the S₂L₂E and VL₂E continue up to the melting temperature (186.112 K) and saturation

temperature (282.753 K) of H₂S, respectively.

The S_2L_1VE and S_2L_2VE cease to occur when the system pressure becomes higher than the pressure of QP_1 , while the $S_2S_1L_1E$ persists at low temperatures. To the contrary, two different three-phase equilibria turn out, at least for pressures lower than the pressure of UCEP₁ (5.44 MPa).

For instance at 3.75 MPa, whose Tx cross section is presented in Figure 13E, the system is characterized by a $S_2S_1L_1E$ (91.778 K), a $S_2L_2L_1E$ (183.95 K), and a L_2L_1VE (187.428 K), and related two-phase equilibria. Consequently, it can be stated that the immiscibility between the L_1 and L_2 phases occurs only for pressures higher than the pressure of QP_1 , according obviously to the value of the system temperature. The Tx cross sections in Figures 13F, 14A, and 14B are qualitatively of the same kind of Figure 13E. The difference among the correspondent phase equilibrium behaviors (respectively at 3.75 MPa, 3.825 MPa, 4.14 MPa, and 4.5 MPa) is the position of the saturation and/or melting temperatures of the pure components.

At 3.75 MPa, Figure 13E, the melting temperature of H_2S (188.393 K) is higher than the temperature of L_2L_1VE (187.428 K), which in turns is higher than the temperatures of $S_2L_2L_1E$ (183.95 K) and saturation of CH_4 (183.787 K).

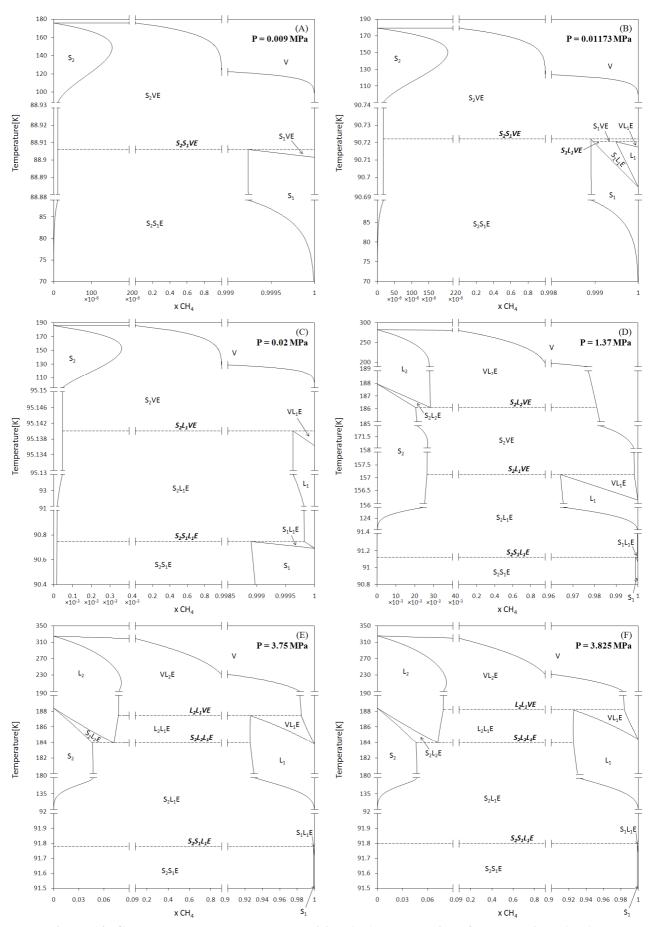


Figure 13. Calculated temperature-composition (Tx) cross sections for the regions 1P-6P.

At 3.825 MPa, Figure 13F, the melting temperature of H_2S (188.407 K) is still higher than the temperature of L_2L_1VE (188.156 K), and the saturation temperature of CH_4 (184.425 K) is in this case lower than the temperature of L_2L_1VE but higher than the temperature of $S_2L_2L_1E$ (183.958 K).

At 4.14 MPa, Figure 14A, the temperature of L_2L_1VE (191.09 K) exceeds the melting temperature of H_2S (188.464 K); the saturation temperature of CH_4 (186.99 K) and the temperature of $S_2L_2L_1E$ (183.98 K) are again lower than the melting temperature of H_2S .

At 4.5 MPa, Figure 14B, the temperatures of L_2L_1VE (194.379 K) and saturation of CH_4 (189.815 K) are both higher than the temperatures of melting of H_2S (188.531 K) and of $S_2L_2L_1E$ (184.022 K).

The region 9P involves the appearance of the critical point L_1 =V. The Tx cross section at 5 MPa in Figure 14C is representative of the phase equilibrium behavior in this region of pressure. In this case, the VL₁E joining the L₂L₁VE at 198.672 K does not end at the saturation temperature of CH₄ seeing that the system pressure is now higher than the critical point pressure of same component (4.5992 MPa). Therefore the VL₁E ends at a critical point L₁=V at about 197.093 K.

It should be noted that in Figures 13D-13F and 14A-14C the S_1L_1E is confined in the region of high-methane content, and that the temperature of $S_2L_2L_1E$ changes from 91.125 K at 1.37 MPa (Figure 13D) to 92.12 K at 5 MPa (Figure 14C).

In the Tx cross section, a L_1 =V critical point occurs at each pressure between the critical point pressure of CH₄ and the pressure of UCEP₁ (5.44 MPa). It means that for higher pressures, as in the region 10P represented by the diagram at 7.5 MPa in Figure 14D, the transition between the L_1 and the vapor is continuous, thus the L_2L_1 VE ceases to exist.

Nevertheless, a critical point exists when the pressure is higher than the critical pressure of H_2S (9 MPa) and lower than the pressure of UCEP₂ (224.09 MPa). This critical point represents either a $L_2=V$ or a $L_2=L_1$ equality according to pressure. For instance, at 15 MPa, Figure 14E, the VL_2E

ends at a critical point $L_2=V$ (363.3 K), while at 200 MPa, Figure 14F, the VL_2E has disappeared and the L_2L_1E ends directly at a critical point $L_2=L_1$ (209.53 K).

In Figures 14C-14F, the solid-liquid equilibria S_2L_2E and S_1L_1E join the $S_2L_2L_1E$ and the $S_2S_1L_1E$, respectively. The S_2L_2E ends at the melting temperature of H_2S , the S_1L_1E ends at the melting temperature of CH_4 .

Because the immiscibility in the liquid phase ceases at pressures higher than the pressure of UCEP₂ (224.09 MPa), it follows that the $S_2L_2L_1E$ does not persist in the region 13P, as it happens at 235 MPa, Figure 15. This feature leads to have a homogeneous liquid phase and a S_2LE extending in the low temperature region down to the $S_2S_1L_1E$.

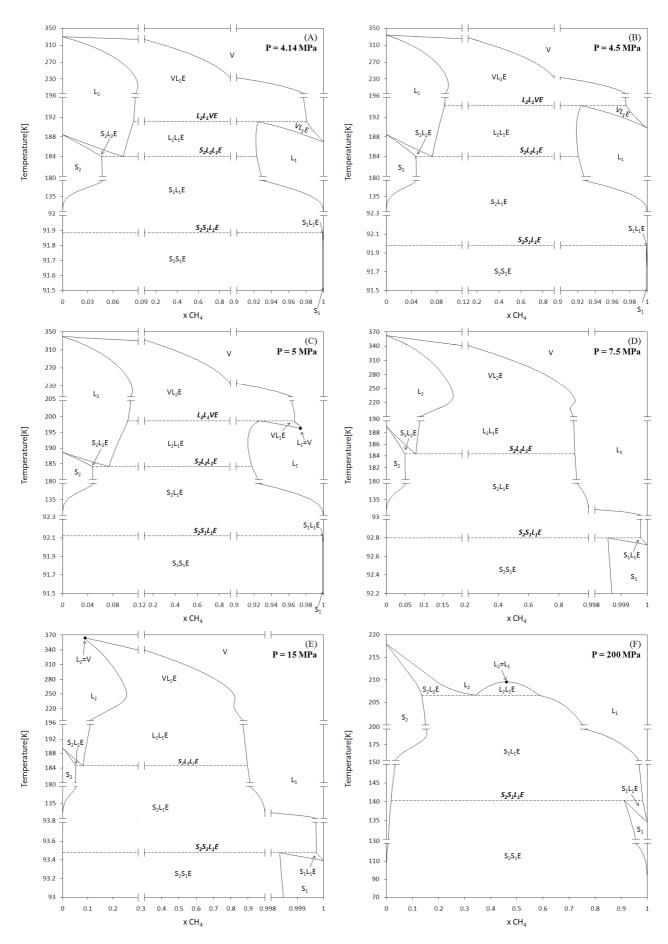


Figure 14. Calculated temperature-composition (Tx) cross sections for the regions 7P-12P.

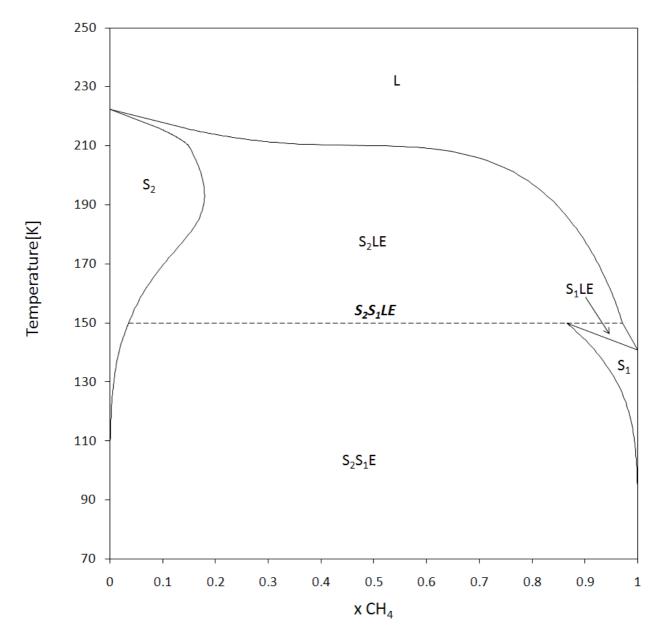


Figure 15. Calculated temperature-composition (Tx) cross sections at 235 MPa, i.e. the reference pressure for the region 13P.

Miscibility of the Solid Phases and Allotropic Behavior of H₂S

The first comment concerning the Px and Tx cross sections calculated by the SLV EoS concerns the purity of the solid phases S_1 and S_2 . As stated in Section 3, using the mixing rules developed for fluid phases presented in Eqs. 5-8 results in obtaining not pure solid phases, as it can be observed for instance in Figure 15. The Tx cross section at 235 MPa presents a solid phase S_2 rich in H_2S with a maximum mole fraction of methane of 0.18, and a solid phase S_1 rich in CH_4 where the mole fraction of hydrogen sulfide reaches a maximum of 0.13. As already stated, any evidence has been

provided yet in the literature concerning the purity of the solid phases in the methane + hydrogen sulfide system, and the results here presented resulted from the mere application of the cited mixing rules in the SLV EoS.

Moreover, as previously introduced in this section, also the position of the $S_2S_1L_1VE$ (QP₂) has not been determined yet. The kind of the solid-liquid equilibrium of the system of interest strictly depends on the exact position of the quadruple point, QP₂. The binary mixture of CH₄ and H₂S presents immiscibility in the solid phase, but this feature could result in a solid-liquid equilibrium either of the eutectic type or the peritectic type. The discerning aspect is comparison between the mole fraction for instance of CH₄ in the liquid phase L₁ (xL₁) and those in the solid phases S₁ and S₂ (xS₁ and xS₂): xL₁ is lower than xS₁ but higher than xS₂ in the eutectic behavior, it is higher than both xS₁ and xS₂ in the peritectic behavior.

According to the results presented in Figures 10C, 14C-14F, and 15, it clearly appears that the mole fraction of CH_4 in the liquid phase L_1 is higher than the mole fractions in the solid phases S_1 and S_2 . This is a direct consequence of the position of the singular point QP_2 in the PT diagram. No binary interaction parameter has been regressed in order to match an eutectic behavior seeing that there is no literature evidence of this feature for the CH_4+H_2S system.

The last analysis concerning the results of the SLV EoS is related to the three different crystal structures of H_2S that should be considered for obtaining the real behavior of the system. As introduced in Section 2, H_2S presents a triple point of $solid_{\gamma}$ -solid_{β}-vapor equilibrium at 103.5 K and triple point of $solid_{\beta}$ -solid_{α}-vapor equilibrium at 126 K in addition to the common triple point of $solid_{\alpha}$ -liquid-vapor at 187.7 K.⁴² The triple points at low temperature are stated to occur at the zero-pressure limit, while the solid-liquid-vapor equilibrium is at 22.3 kPa.⁴⁵

Being the SLV EoS in Eq. 1 a fourth-degree polynomial in the variable volume, a single root can be associated to the solid volume, being the other roots related to the fluid phases. In dealing with mixtures, this solid volume correspond to a solid phase rich in either H₂S or CH₄, which explains

the possibility of representing the phases S_2 and S_1 . To the contrary, the possibility of representing several solid phases for each pure component is outside the range of applicability of this EoS.

Nevertheless, the way the pure H_2S solid phases γ and β affect the phase equilibrium behavior of the mixture can be added relatively easily in both Tx and Px cross sections. For instance, Figures 16A and 16B present the Tx cross sections at 4.14 MPa in the range 91.8 K – 196 K considering a single phase for the solid H_2S , S_2 , and two additional solid-solid transitions occurring in pure H_2S at 103.5 K and 126 K, respectively.

One can notice at once that the phase S_{α} in Figure 16B takes the role of the phase S_2 in Figure 16A. In addition to that, the $S_2S_1L_1E$ is replaced by the $S_{\gamma}S_1L_1E$ at about 91.9 K, while two new three-phase equilibria appear. A $S_{\gamma}S_{\beta}E$ originating at 103.5 K ends at the temperature of the former, the $S_{\gamma}S_{\beta}L_1E$ at about 92 K, and a $S_{\beta}S_{\alpha}E$ originating at 126 K ends at the temperature of the latter, namely the $S_{\beta}S_{\alpha}L_1E$ placed at about 108 K. The temperatures of these SSL_1E have been randomly fixed and supposed lower than the correspondent solid-solid transitions of pure H_2S .

As it is possible to observe in Figure 16, the inclusion of different crystal structures of H_2S does not modify the solid-fluid equilibria, although the different solid phases imply the presence of supplementary solid-solid and solid-solid-fluid equilibria.

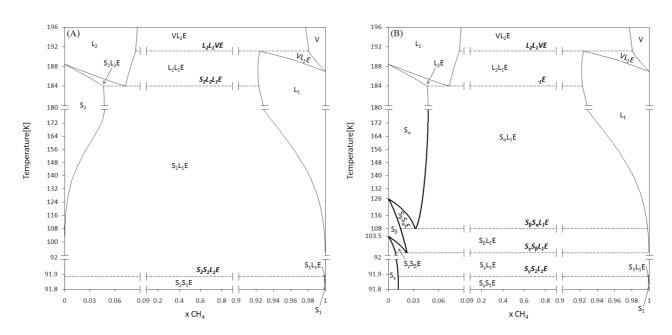


Figure 16. Comparison between the Tx cross sections at 4.14 MPa without (A) and with (B) the solid $_{\alpha}$ -solid $_{\beta}$ and solid $_{\beta}$ -solid $_{\gamma}$ transitions of H₂S.

Conclusions

The increasing global energy demand and the availability of highly sour natural gas reserves establish the need of a detailed description of the phase behavior of systems containing methane and hydrogen sulfide in order to properly tune thermodynamic models and, most of all, to perform the correct process design of new gas purification technologies (particularly the low temperature ones) that are required to allow the commercialization of such a kind of low quality natural gas reserves. Different authors studied the phase behavior of the system methane - hydrogen sulfide considering only fluid phases, whereas few works considered the presence of a pure solid phase of H₂S. The experimental works proposed in the last 60 years investigated the phase behavior of the system in a large proportion of the Pressure-Temperature (PT) diagram down to about 180 K. In particular, the work by Kohn and Kurata presented qualitative representations of the PT diagram and highlighted the complexity of the phase equilibrium behavior.

Nevertheless, no work has been proposed to reproduce the PT diagram of the mixture down to the triple point of methane by means of a unified thermodynamic model for both fluid and solid phases. In addition to that, literature data never exceed 14 MPa.

In this work, the complete PT diagram of the methane - hydrogen sulfide system has been investigated down 70 K and for pressures up to 250 MPa thanks to a model based on the analytic Solid-Liquid-Vapor Equation of State (SLV EoS) proposed in 2003 by Yokozeki. The parameters within the model have been tuned and validated against the available experimental data.

The calculated PT diagram and isobaric/isothermal cross sections show the complexity of the phase equilibrium behavior; immiscibility in both the liquid and solid phases characterizes the system and results in the presence of two quadruple points and two upper critical endpoints.

In addition to that, this works aims at proposing a map of the phase equilibrium behavior thus providing a rapid access to the evaluation of the change of the equilibria as function of pressure and temperature. 13 regions of both pressure and temperature have been found to resume all the possible

schemes of the equilibrium behavior that can be encountered in dealing with the process simulation and/or plant design.

One of the strength of the model here applied is the possibility of representing the rather complex phase equilibrium behavior of the system by means of a single binary interaction parameter. This point better highlights also the simplicity of the approach, enforcing the validity and the effective industrial interest of a simple thermodynamic tool, reliable in a wide region of possible operating conditions.

According to model results for the phase behavior of the system $CH_4 - H_2S$, it is possible to identify areas where further experimental investigations are needed. A region of interest extends from temperatures below the UCEP1 and pressures up to 15 MPa. These experimental studies will be useful to better investigate the L_2VE , L_1VE , L_1L_2E , S_2L_2E , S_2L_1E and S_2VE regions where complete datasets (T, P and fluid phase compositions) are missing and phase behavior is complex. Particularly, it can be of interest to determine experimentally the existence of the narrow L_2 area present at temperatures between the QP_1 and the triple point of pure H_2S . TPx_2x_1y data along the L_1L_2VE locus, TPxy data along the S_2L_2VE and S_2L_1VE loci and TPx_2x_1 data along the $S_2L_2L_1E$ locus are also of paramount importance. These experimental data will provide useful information also for the validation and proper design of low-temperature process technologies for the purification of highly acid and/or sour natural gases and biogas.

Nomenclature

List of symbols

- a Equation of state parameter
- a_0 Parameter in Eq. 2
- a_1 Parameter in Eq. 2
- a_2 Parameter in Eq. 2
- b Solid covolume

- b_0 Parameter in Eq. 3
- b_1 Parameter in Eq. 3
- b_2 Parameter in Eq. 3
- c Liquid covolume
- d Equation of state parameter
- *k* Binary interaction parameter
- N Number of points (experimental or auxiliary)
- *NC* Number of components in the mixture
- *P* Pressure
- R Gas constant
- T Temperature
- v Molar volume
- *x* Mole fraction
- Z Compressibility factor

Subscript

- c Critical point property
- *i* Relative to the substance *i*
- j Relative to the substance j
- ij Relative to the interaction between substance i and the substance j
- *r* Reduced property
- *t* Triple point property
- 1 Relative to methane
- 2 Relative to hydrogen sulfide

Superscript

- calc Calculated value
- exp Experimental value

m Parameter in Eq. 3

n Parameter in Eq. 2

Acronyms

AAD Average Absolute Deviation

EoS Equation of State

L Liquid phase

LLE Liquid - Liquid Equilibrium

LLVE Liquid - Liquid - Vapor Equilibrium

MAD Maximum Absolute Deviation

QP Quadruple Point

S Solid phase

SLE Solid - Liquid Equilibrium

SLL Solid - Liquid - Liquid Equilibrium

SLVE Solid - Liquid - Vapor Equilibrium

SSE Solid - Solid Equilibrium

SSLE Solid - Solid - Liquid Equilibrium

SSVE Solid - Solid - Vapor Equilibrium

SVE Solid - Vapor Equilibrium

V Vapor phase

VLE Vapor - Liquid Equilibrium

UCEP Upper Critical EndPoint

Literature Cited

- 1. British Petroleum Energy Outlook 2035, www.bp.com (accessed May 2014).
- 2. Carrol J, Foster J. New Challenges & Solutions in Designing Large Sour Gas Projects 2008. www.fwc.com (accessed May 2014).

- 3. Burgers WJF, Northrop PS, Kheshgi HS, Valencia JA. Worldwide development potential for sour gas. *Energy Procedia*. 2011;4:2178–2184.
- 4. Rojey A, Jaffaret C, Cornot-Gandolphe S, Durand B, Jullian S, Valais M. Natural Gas Production Processing Transport. Paris: Editions Technip, 1994.
- 5. Haut RC, Denton RD, Thomas ER. Development and application of the Controlled-Freeze-Zone Process. *SPE Prod Eng.* 1989;4:265–271.
- 6. Parker ME, Northrop S, Valencia JA, Foglesong RE, Duncan WT. CO₂ management at ExxonMobil's LaBarge field, Wyoming, USA. *Energy Procedia*. 2011;4:5455–5470.
- 7. Northrop SP, Valencia JA. The CFZTM process: A cryogenic method for handling high- CO₂ and H₂S gas reserves and facilitating geosequestration of CO₂ and acid gases. *Energy Procedia*. 2009;1:171–5470.
- 8. Valencia JA, Denton RD. Method and apparatus for separating carbon dioxide and other acid gases from methane by the use of distillation and a controlled freeze zone. U.S. Patent 4533372, August 6, 1985.
- 9. Valencia JA, Victory DJ. Method and apparatus for cryogenic separation of carbon dioxide and other acid gases from methane. U.S. Patent 4923493, May 8, 1990.
- 10. Valencia JA, Victory DJ. Bubble cap tray for melting solids and method for using same. U.S. Patent 5265428, November 30, 1993.
- 11. Holmes AS, Price BC, Ryan JM, Styring RE. Pilot tests prove out cryogenic acid–gas/hydrocarbon separation processes. *Oil Gas J.* 1983;81(26):85–86.
- 12. Holmes AS, Ryan JM. Cryogenic distillative separation of acid gases from methane. U.S. Patent 4318723, March 9, 1982.
- 13. Holmes AS, Ryan JM. Distillative separation of carbon dioxide from light hydrocarbons. U.S. Patent 4350511, September 21, 1982.
- 14. Pellegrini LA, Process for the removal of CO₂ from acid gas. W.O. Patent 2014/054945A2, April 10, 2014.

- 15. Langé S, Pellegrini LA, Vergani P, Lo Savio M. Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO₂ content natural gas streams. *Ind Eng Chem Res.* 2015;54(40):9770–9782.
- 16. Hart A, Gnanendran N. Cryogenic CO₂ capture in natural gas. *Energy Procedia*. 2009;1:697–706.
- 17. Lallemand F, Lecomte F, Streicher C. Highly sour gas processing: H₂S bulk removal with the Sprex process. International Petroleum Technology Conference, Doha, Qatar, Nov 21–23, 2005.
- 18. Lallemand F, Perdu G, Normand L, Weiss C, Magne-Drisch J, Gonnard S. <u>www.digitalrefining.com/article/1000937</u> (accessed September 2014).
- 19. Schinkelshoek P, Epsom HD. Supersonic gas conditioning commercialization of Twister™ technology. 87th GPA Annual Convention, Grapevine, Texas, USA, March 2–5, 2008.
- 20. Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Dinizda Costa JC, Maya EF. The removal of CO₂ and N₂ from natural gas: a review of conventional and emerging process technologies. *J Petrol Sci Eng.* 2012;94–95:123–154.
- 21. Valencia JA, Kelman SD, Nagavarapu AK, Maher DW. The Controlled Freeze Zone Technology for the Commercialization of Sour Gas Resources. International Petroleum Technology Conference, Doha, Qatar, Jan 19–22, 2014.
- 22. Reamer HH, Sage BH, Lacey WN. Phase equilibria in hydrocarbon systems: volumetric and phase behavior of the methane-hydrogen sulfide. *Ind Eng Chem.* 1951;43(4):976–981.
- 23. Robinson DB, Bailey JA. The carbon dioxide-hydrogen sulphide-Methane System, Part 1: phase behavior at 100°F. *Can J Chem Eng.* 1957;35:151–158.
- 24. Robinson DB, Lorenzo AP, Macrygeorgos CA. The carbon dioxide-hydrogen sulphide-Methane System, Part 2: phase behavior at 40°F and 60°F. *Can J Chem Eng.* 1959;37:212–217.
- 25. Kohn JP, Kurata F. Heterogeneous phase equilibria of the methane-hydrogen sulfide system. *AIChE J.* 1958;4(2):211–217.

- 26. Van Konynenburg PH, Scott RL. Critical lines and phase equilibria in binary van der Waals mixtures. *Phil Trans R Soc Lond*. 1980;298:495–540.
- 27. Bolz A, Deiters UK, Peters CJ, De Loos TW. Nomenclature for phase diagrams with particular reference to vapor-liquid and liquid-liquid equilibria. *Pure Appl. Chem.* 1998;70:2233–2257.
- 28. Cheung H, Zander EH. Solubility of carbon dioxide and hydrogen sulfide in liquid hydrocarbons at cryogenic temperatures. *Chem Eng Progress Symp Series* 88. 1968;64:34–43.
- 29. Yarim-Agaev NL, Afanasenko LD, Matrienko VG, Ryabkin YY, Tolmacheva GB. Gas-liquid equilibrium in the methane-hydrogen sulfide system below 273 K. *Ukr Khim Zh.* 1991;57:701–704.
- 30. Coquelet C, Valtz A, Stringari P, Popovic M, Richon D, Mougin P. Phase equilibrium data for the hydrogen sulphide + methane system at temperatures from 186 to 313 K and pressures up to about 14 MPa. *Fluid Phase Equilib*. 2014;383:94–99.
- 31. Huron MJ, Dufour GN, Vidal J. Vapour-liquid equilibrium and critical locus curve calculations with the Soave equation for hydrocarbon systems with carbon dioxide and hydrogen sulphide. *Fluid Phase Equilib.* 1977-1978;1:247–265.
- 32. Adachi Y, Lu BCY, Sugie H. A four-parameter equation of state. *Fluid Phase Equilib*. 1983;11:29–48.
- 33. Mohsen-Nia M, Moddaress H, Mansoori GA. Sour natural gas and liquid equation of state. *J Petrol Sci Eng.* 1994;12:127–136.
- 34. Sakoda N, Uematsu M. Thermodynamic properties of the binary mixture of methane and hydrogen sulfide. *Z Phys Chem.* 2005;219(9):1299–1319.
- 35. Sakoda N, Uematsu M. A thermodynamic property model for the binary mixture of methane and hydrogen sulfide. *Int J Thermophysics*. 2005;26(5):1303–1325.
- 36. Privat R, Mutelet F, Jaubert JN. Addition of the hydrogen sulfide group to the PPR78 model (Predictive 1978, Peng Robinson EoS with temperature dependent k_{ij} calculated through a group contribution method). *Ind Eng Chem Res.* 2008;47(24):10041–10052.

- 37. Tsivitzelis I, Kontogeorgis GM, Michelsen ML, Stenby EH. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H₂S. *AIChE J*. 2010;56(11):2965–2982.
- 38. Tang X, Gross J. Modeling the phase equilibria of hydrogen sulfide and carbon dioxide in mixture with hydrocarbons and water using the PCP-SAFT equation of state. *Fluid Phase Equilib.*, 2010;293:11–21.
- 39. Yokozeki A. Analytical equation of state for solid-liquid-vapor phases. *Int J Thermophys*. 2003;24(3):568–619.
- 40. Colwell JH, Gill EK, Morrison JA. Thermodynamic properties of CH₄ and CD₄. Interpretation of the properties of the solids. *J Chem Phys.* 1963;39:635–653.
- 41. Stevenson R. Solid methane-changes in phase under pressure. J Chem Phys. 1957;27:656–658.
- 42. Giauque WF, Blue RW. Hydrogen sulfide. The heat capacity and vapor pressure of solid and liquid. The heat of vaporization. A comparison of thermodynamic and spectroscopic values of the entropy. *J Am Chem Soc.* 1936;58:831–837.
- 43. Stevenson R. Tentative phase diagram of solid H₂S. *J Chem Phys.* 1957;27:147–150.
- 44. Stringari P, Campestrini M, Coquelet C, Arpentinier P. An equation of state for solid–liquid–vapor equilibrium applied to gas processing and natural gas liquefaction. *Fluid Phase Equilib*. 2014;362:258–267.
- 45. Huber ML, McLinden MO, Lemmon EW. NIST Standard Reference Database23, Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2007.
- 46. Clark AM, Cockett, AH, Eisner HS. The vapour pressure of hydrogen sulphide. *Proc Roy Soc London Ser A*. 1951;209:408–415.
- 47. Prausnitz JP, Lichtenthaler RN, de Azevedo EG. Molecular thermodynamics of fluid-phase equilibria (2nd edition). New Jersey: Prentice-Hall, Englewood Cliffs, 1986.
- 48. Air Liquide, Encyclopédie des Gaz, ELSEVIER, 1976.

49. Cotton S. Hydrogen sulfide. Uppingham School, Rutland, UK. www.chm.bris.ac.uk/motm/H2S/h2sjm.htm (accessed May 2015).