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Interactive Liver Tumor Segmentation Using
Graph-cuts and Watershed
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! Ecole Nationale Supérieure des Mines de Paris, Centre de Morphologie
Mathématique, Fontainebleau, France
2 Institut Gustave Roussy, Villejuif, France

Abstract. We present in this paper an application of minimal surfaces
and Markov random fields to the segmentation of liver tumors. The orig-
inality of the work consists in applying these models to the region adja-
cency graph of a watershed transform. We detail the assumptions and the
approximations introduced in these models by using a region graph in-
stead of a pixel graph. This strategy leads to an interactive method used
to delineate tumors in 3D CT images. We detail our strategy to achieve
relevant segmentations of these structures and compare our results to
hand made segmentations done by experienced radiologists. This paper
summarizes our participation to the MICCAI 2008 ® workshop called:
73D segmentation in the clinic : A Grand Challenge II”.

1 Introduction

Possible applications related to liver tumor segmentation are mainly radiother-
apy and surgery planning. In both scenarios, the knowledge of the exact location
and volume of the tumors is a key problem. Liver tumors present low contrasted
boundaries and exhibit a large variability of shapes, sizes and locations in the
liver. Due to these multiple difficulties, automatic or model based approaches
seem to be inadequate. A few semi-automatic approaches have already been pro-
posed in the literature. Recent approaches are mainly based on active contours
[12], level-sets [14], as well as machine learning [10]. These methods have the
interesting property to allow an interaction with its user through land marks
positioning or interactive refinement of the segmentation. The interactive ap-
proach of medical images segmentation is, to our mind, the most reliable method
to provide robust results. We propose in this paper an interactive segmentation
method based on watershed and graph cuts to extract liver tumors boundaries
in 3D CT images.

3 MICCAI 2008 is the 11th International Conference on Medical Image Computing
and Computer Assisted Intervention: http://miccai2008.rutgers.edu/
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2 Data

The studied CT images # were acquired on one 64-slice and two 40-slice CT
scanners using a standard four-phase contrast enhanced imaging protocol. The
resulting images have a slice thickness of lmm or 1.5mm and an in-plane reso-
lution of 0.6-0.9mm. Depending on several parameters such as the patient size
and cardiac rhythm, the images present different contrasts in the liver. Several
cases are illustrated in figure 1. The liver segmentation presents some difficulties
that have to be taken into account to design a relevant segmentation protocol.
Depending on the acquisition time, tumors can be in positive or negative con-
trast with the liver. Secondly, the tumors boundaries are not well defined and
perceptual properties have to be used to define the exact contours of the tumors.

Fig. 1. Liver 3D CT images. Tumors are indicated by red arrows and the aorta is
indicated by a blue arrow. The brightness of the aorta indicates the quantity of contrast
agent present in it.

3 Images segmentation strategy

The first step of our methodology is the manual definition of a sub-volume
containing one or more tumors that need to be segmented in order to reduce the
computation time of the segmentation algorithm. Our strategy is then entirely
based on the use of the region adjacency graph of an unsupervised watershed
segmentation [2], as originally proposed by Li et al. [11]. From this first low-level

4 The images are provided by the organizers of the workshop ”3D segmentation in the
clinic : A Grand Challenge I1”: Wiro Niessen, Martin Styner, Simon K. Warfield and
Xiang Deng. http://grand-challenge2008.bigr.nl/index.php.
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segmentation, a region adjacency graph is extracted and used for the following
optimization steps.

Our protocol is motivated by the following simple observation: the liver
presents two kinds of tissues: tumoral and healthy tissues. The classification
of liver pixels in one of these two classes provides the tumor boundaries. To
achieve this classification we model the liver pixels as a Markov random field
and the classification is performed through the maximum a posteriori estima-
tion. This classification step is supervised by user defined markers that specify
both tumoral and healthy tissues. The markers are used to locate the tumors
and to estimate the grey levels characteristics of these structures. However, the
liver pixels classification needs also that the liver boundaries are extracted. This
task is realized by computing a minimal surface based on user defined markers.
The user has finally to specify normal liver tissues, tumoral tissues, and external
tissues surrounding the liver. Note that the liver boundaries extraction is only
necessary if the sub-volume considered for the segmentation contains also non-
liver tissues. In any other cases, the liver boundaries are not computed, and only
the classification step is performed. The different energy minimization strategies
(minimal surfaces and Markov random field) are based on the computation of
a minimal graph cut using Boykov and Kolmogorov algorithm described in [5]
and implemented in the Boost Graph Library °.

3.1 The watershed transform

An unsupervised watershed transform of the morphological gradient of the orig-
inal CT image is used in our work to produce a region adjacency graph. Both
minima of the gradient and the watershed transform are computed using the
6-neighborhood adjacency system. The watershed transform [2] allows to obtain
a partition of an image composed of small and numerous homogeneous regions.
Moreover important contours of the image are preserved during the segmen-
tation and regions of the partition are mostly composed of homogenous pixels
(pixels of similar grey values). The quality of this first unsupervised segmenta-
tion is important to guarantee a minimal loss of information, an ideal situation
would be that important information (contours and/or homogenous regions)
about the original image is accessible from this first segmentation. These ob-
servations about the watershed transform are not theoretically guaranteed but
are verified when working on natural images. Another important point is that
the watershed transform algorithm based on hierarchical queues exhibits a lin-
ear complexity [13]. The time needed by the watershed transform is in practice
negligible compared to a standard graph cuts algorithm [5].

3.2 Approximate minimal surfaces

We detail now how to extract the liver boundaries by an approximate mini-
mal surface using a region adjacency graph [16]. The combination of graph-cuts

® http://www.boost.org/
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with a watershed low-level segmentation provides us with an explicit and efficient
way to compute approximate minimal surfaces. Our basic assumption is that the
minimal surface to be computed is embedded in the watershed low-level segmen-
tation contours. We propose thus to solve the following combinatorial problem:
finding a surface composed of a finite union of watershed contours such that the
surface minimizes a given geometric functional. We solve this problem by using
graph-cuts optimization on a region adjacency graph.

Following the formulation of Caselles et al. [7], we want to find a surface

S defined by a finite union of watershed contours that minimizes the following
energy function:

B(S) = / /S o(IVI(z,y)|)dedy (1)

where g is a positive and strictly decreasing function and ||VI(z,y)| is the
modulus of the gradient of the image I (image contrast) along the surface S.
Note that Cauchy-Crofton formulaes can be used to minimize the energy func-
tion E(S) by computing a minimal graph cut as described by Boykov et al. in [4].

Let us consider G = (V,E,W) as the pixel graph of an image I. Classi-
cally V is the set of nodes and represents the pixels of I, E is the set of edges
representing neighborhood relations between pixels and W is a positive weight
assigned to each edge of E. In our terminology, an edge linking two nodes 7 and
J is written e; ; and the corresponding edge weight is denoted by w; ;. From the
pixel graph, we define the region adjacency graph Ggr = (Vg, Er, Wg) of the
watershed transform where Vj is the set of nodes (i.e the regions of the water-
shed transform). Eg is the set of edges (i.e the neighborhood relation between
regions) and Wpg is the weights of the edges.
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Fig. 2. (a) A region adjacency graph. (b) The set of nodes of the pixel graph considered
to compute boundary properties between two regions, with a V4 adjacency system. (c)
A curve crossing the edges of the boundary between two regions r1 and rs.

Let us define F{,, .,y as the set of edges of the pixel graph connecting two
regions r; and r; of the low-level watershed segmentation:
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Fooryy ={emn € E|mer, ner;}. (2)

Note that the set F{,, ,,) depends on the adjacency system of the pixel graph

G. The set of edges of the pixel graph describes also implicitly a set of surfaces

between the regions r; and r; as illustrated in figure 2. Let S, ;) denote the

set of surfaces that could cross the edges of F,, . Following Cauchy-Crofton

formulaes with the Vs adjacency system, the energy function E(S(,, . ) can be
approximated by:

ESprp) Y glmaz([VI(m)], [VI(n)]])), 3)

(evrl,rzeF(ri,rj))

where |[VI(m)| and [|[VI(n)|| are the gradient magnitudes of the end points of
em,n- 10 the following, we consider the strictly positive and decreasing function

g:

k
s9160) = (1 w77 ) - (@

The parameter k € RT is a free parameter that can be used as a smoothing
term as shown by Alléne et al. in [1]. In our application this parameter was set
to k = 2. The function g works as an edge indicator of the image I and takes
a small value if neighbors pixels m and n take different grey values p,, and p,.
The energy E(S(mrj)) of the boundary between two regions is simply obtained
by summing the local contrasts along the boundaries between two regions. The
edge weights of the region adjacency graph are then set such that the weight of

a graph cut equals the energy function of the surface it implicitly defines:
Wry,ry = E(S(Tiﬂ“j)) : (5)

The liver boundaries are finally extracted by computing a minimal graph cut
of the region adjacency graph with weights given by equation 5. The minimal cut
is computed on the region adjacency graph with two additional nodes s and ¢,
respectively connected to the markers of the liver and the markers of the external
tissues. In the following, we denote the markers that specify the liver tissues as
the set of regions M; and My, respectively for tumoral and healthy tissues. The
markers specifying the tissues surrounding the liver are denoted by M. The
edge weights of the graph are summarized in table 1.

[Edge| Weight | for ‘
Ws r; +oo ri € My

Ws r; +oo ri € My

Wy ¢ +o0 Ti € Megt

Wr; v E(S(,«i’rj)) T, € VR,TJ' S Nri

Table 1. Edge weights for approximate minimal surfaces.
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3.3 Approximate maximum a posteriori estimation of a Markov
random field (MRF)

This section details the segmentation method used to detect the tumors in the
liver. We are now going to take into account a second assumption about the
watershed transform: the unsupervised watershed transform of a natural image
is composed of regions of homogenous grey level intensities. This assumption
permits us to model the image to be segmented as a Markov random field [6,
3], where each random variable corresponds to the mean value inside a region of

the watershed transform [17].

Let us consider the pixel graph G = (V, E, W) of an image, as well as the cor-
responding region adjacency graph Gg = (Vg, Er, Wg) of its watershed trans-
form. The binary image restoration problem [8,6] is classically defined as the
labeling X of the nodes V:

X:V—-{0,1}

such that X minimizes:

E(X) = Z —In(Pr(pilz:)) + Z Z u; 5.6(x; # xj) (6)

i€V i€V JEN;

where p; € [0,1] is the grey level of the pixel i, and x; € {0,1} is a label that
has to be assigned to the pixel 7. INV; is the set of neighbors of the pixel i and u; ;
is a positive function. §(x; # ;) is the indicator function: §(x; # x;) = 1 if and
only if z; # x; and d(z; # x;) = 0 otherwise.

This equation describes the classical formulation of the maximum a poste-
riori estimation of a Markov random field [6]. The data term, also called the
likelihood function Pr(p;|z;), ensures that dark pixels, p; ~ 0, will be assigned
the label z; = 0; and that bright pixels, p; ~ 1, will be assigned the label z; = 1.
This model is regularized with the prior function wu,; ; which is typically used
to guarantee that the resulting segmentation has smooth boundaries. We detail
now how each term of this energy function can be approximated by using the
region adjacency graph of the watershed transform.

Since we assume that each region of the watershed transform is composed of

region of homogenous intensities, we can approximate the likelihood term by:

S —tn(Pr(pla) & 3 ~Irildn(Pr(u]e) | (7)

iev iEVR

1
= - 8
i, |ri|zme”pz 7 (8)

where |r;] is the number of pixels inside the region r;.
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Assuming that the data are corrupted with a white gaussian noise, the like-
lihood function can finally be written as:

(,un' — H(xz;=0) )2

Pripr, (@ = 0)) = eap(—L L8
0

) (9)

(fr, = fi(z;=1))?

Pr(u,, 902
1

(2 =1)) = exp(— ), (10)
where p,, is the mean gray level of the region r;, and fi(,,—o) and p(,,—1) are
the mean values of the pixels expected to take the values z; = 0 and z; = 1.
In our experiments the values of oy and o7 were empirically set to o9 = 0.25
and o7 = 0.2. In our model, o represents the grey level variance of the tumoral
tissues and o7 represents the grey level variance of the healthy tissues. We have
experimentally found that the variance of tumoral tissues is slightly higher than
the grey level variance of the healthy tissues. On the other side, the values of
Lz, are estimated from the user defined markers as:

1

PR . 11

[ (z:=0) 7] %\; Por; (11)
1

= — y 12

[z =1) IMhIT;\;h“” (12)

where |Mp| and | M| are respectively the number of regions marked as healthy
or tumoral. We recall that the markers that specify the liver tissues are denoted
as the set of regions M; and M}, respectively for tumoral and healthy tissues.
The markers specifying the tissues surrounding the liver are denoted by Me,;.

On the other side, the prior function depends on the boundaries properties
of the labeling . We assume now that all pixels inside a region of the watershed
transform are assigned the same label z;, the prior function does thus only
depend of the pixels lying in the boundaries between two regions:

Z Z um.(S(xi 75 J?j) ~ Z Z |F(Ti’rj)|.ui7j.5(xi 7’5 Jﬁj) s (13)

i€V jEN; i€VR JEN,,

where N, is the set of neighbor regions of the region r; and |F,, , )| is the
number of edges of F,, .

The prior function u; ; that we use in our application is a contrast sensitive
function:

uij = (6= B* (pr, — pry)") - (14)
where n is a free parameter describing the strength of the term 3 (u,, — ;) and
takes also into account the local contrast. In the following we set the parameter
to n = 4. Note that if n is very large, our contrast sensitive model is equal to the
classical Ising model of ferromagnetism [9]. The prior function takes into account
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the contrast between two regions and is equal to a constant in the areas where
the contrast is low. This function allows to detect correctly the boundaries of
high contrasted tumors, whereas low contrasted boundaries are smoothed such
that the surface of the object is minimized.

We have finally to minimize the following energy function:

=3 Il ““‘ LS S B g b £ ) . (15)

1€VR 1€VR jJEN,,

As shown in [6], we can minimize this energy function by computing a min-
imal graph cut. The minimal cut is computed on the region adjacency graph
with two additional nodes s and t, respectively connected to the markers of the
tumoral tissues and the markers of the healthy liver tissues. The edge weights
of the graph are summarized in table 2.

[Edge[ Weight | for |
Ws,r; +o0 ri € Mt
Wr; ,t +00 r; € Mp,

(P‘ri —H(x;=0) )2

Ws,r; 202 r; € Vp \ {Mt @] Mh}
— pi
Wy, ¢ (pry ‘2‘((:%7‘;1)) ri € Vg \ {Mt U Mh}

Wr,,r; |F('ri,7‘j)|-ui,j ri € Vr,7; € Ny,
Table 2. Edge weights for approximate maximum a posteriori estimation of a MRF.

3.4 Post-processing

An additional post processing step is also proposed to the user after the extrac-
tion of the segmented tumors. This step consists in smoothing the segmentation
by using a morphological opening of the object representing the tumor. The
opening is computed with a structuring element of size 1 using the V6 adja-
cency system. This additional step permits to obtain slightly smoother tumors
boundaries.

3.5 Example

Figure 3 illustrates our segmentation strategy on a single slice of a 3D CT image.
The obtained results are in good concordance with the expected results obtained
by a hand made segmentation. Alternatively, the user can add or delete markers
if he is not satisfied with the computed segmentation.
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Fig. 3. Liver tumor segmentation. (a) User specified markers. In blue, the tumor mark-
ers, in red, the liver markers and in green, the external markers. (b) Results of our
segmentation strategy. (c) Radiologist hand made segmentation and the liver contours
extracted by our method.

Fig. 4. Snapshot of the graphical user interface of our software. (a) Interactive marker
drawing. (b) Visualization of a segmented data set.

4 Graphical user interface

We have developed a graphical user interface dedicated to 3D medical image
segmentation and visualization. The software is entirely developed in python
and C++ based on the VTKS® and our own image analysis library Morph-M".
Our software allows the user to explore a highly detailed view of the data-set
for easy interpretation. Visualization is particularly important for segmentation
validation purposes. Data sets can be explored through 2D orthogonal cuts of
the 3D volume and 3D rendering of the whole image. The user can interactively
provide the markers needed for the segmentation algorithms by drawing on slices

8 www.vtk.org, The Visualization ToolKit (VTK) is an open source, freely available

software system for 3D computer graphics, image processing, and visualization.
" http://cmm.ensmp.fr/Morph-M/, Morph-M is the result of the work of several re-
searchers at the Centre for Mathematical Morphology.



of the 3D image, as illustrated in figure 4. The user can visualize the segmented
image as a set of surfaces, one surface for each object and surimpose it on the
original image. Combination of all this visualization methods allows an easy and
fast interpretation of the segmentation result.

5 Results

Table 3 summarizes the evaluation scores of our method on a set of 5 CT images
presenting 10 tumors with unknown hand made segmentations. The evaluation
scores compare our results with the radiologists segmentations. The important
point is that these results have been obtained without the knowledge of the hand
made segmentations. The mean surface distance between our segmentations and
the references is approximatively one and a half millimeter, which represents 2
to 3 voxels of the studied 3D CT images. The volumetric overlap error shows
that approximatively 71 % of our segmentation volume is in perfect match with
a hand made segmentation. Some evaluation results show that we have misun-
derstood some structures that had to be extracted. This problem leads to very
low scores (see for instance tumor number 5). However our results are promising,
considering the low quality of some images of the dataset. In comparison, the
mean total score obtained on the training data set with known segmentations
was equal to 88.

Overlap Volume Average RMS Maximum |Total
Error Difference Surface Surface Surface Score
Distance Distance Distance
Tumor | (%) [Score| (%) [Score|[(mm)[Score|(mm)][Score|(mm)[Score

IMGO5 L1| 27,16 | 79 | 21,68 | 77 | 2,01 | 49 | 290 | 60 [10,50| 74 68
IMGO5 L2| 36,41 | 72 | 2498 | 74 | 1,36 | 66 | 1,83 | 74 |6,15| 85 74
IMGO5 L3| 31,99 | 75 | 16,93 | 82 | 1,18 | 70 | 1,59 | 78 | 5,64 | 86 78
IMGO6 L1| 33,19 | 74 1,86 | 98 | 0,84 79 [1,09| 85 |4,00| 90 85
IMGO6 L2| 61,24 | 53 |119,82| 0 |2,29 | 42 [2,95| 59 |9,30| 77 46
IMGO7 L1| 21,83 | 83 | 10,68 | 89 | 2,65 | 33 |3,58 | 50 |18,31| 54 62
IMGO7 L2| 21,44 | 83 | 485 | 95 | 0,93 | 77 | 1,38 | 81 |6,89 | 83 84
IMGO8 L1| 16,02 | 88 | 14,47 | 85 | 1,84 | 54 | 2,70 | 62 | 9,73 | 76 73
IMGO09 L1| 22,87 | 82 | 2,14 | 98 | 0,65 | 83 |0,97 | 87 | 5,10 | 87 87
IMG10 L1| 22,78 | 82 |21,27| 78 | 1,21 | 69 |1,73| 76 | 7,33 | 82 7
[ Average [29,49] 77 [23,87] 78 [150 [ 62 [2,07] 71 [829] 79 [ 73 |
Table 3. Results of comparison metrics and scores for all ten test tumors.

The computation time of our method depends on the image size and the
number of refinements of the segmentation. The first step, which consists in
extracting a sub-volume, is typically done in one minute. The markers placement
requires basically one to two minutes. In our experiments we have drawn markers



in three orthogonal slices centered on the tumor in about two minutes. The
computation time of the segmentation algorithms is then relatively fast: about 1
second for the watershed transform, 2 seconds for the liver extraction and 2 other
seconds for the tumor extraction (for a typical sub-volume of size 100 x 100 x 100,
computed on a common personal computer). The time needed for the refinement
steps is then mainly due to the markers placement. In our experiments, two to
five refinement steps were needed to provide the presented results. The typical
time spent for these refinements varied from two to five minutes. The total time
needed for the segmentation of a tumor is then approximatively equal to five,
up to height minutes.

6 Conclusion

Our method exhibits promising results for the aimed application. However some
open problems still remain. First, the segmentation of multiple tumors in the
same liver often requires additional user markers to correctly separate the tu-
mors. The developed method merges the tumors in a single object when different
tumors are too close. This problem requires that the user adds markers between
the merged tumors. This additional interaction speeds down the segmentation
protocol. However the used methods (minimal surfaces and Markov random fields
on a region adjacency graph) are fast and can be used interactively. Secondly we
did not develop any preprocessing step such as filtering of the images. There is
thus still some possible improvements of our methodology. Future work will be
concentrated on the development of adapted filters to simplify the segmentation
and the classification step of our methodology.

The use of a region adjacency graph offers a good trade-off between speed
and precision for the computation of minimal surfaces and maximum a posteriori
estimation of a MRF. We want also to point out that a region based approach
is potentially richer than a pixel approach since a wide class of geometrical and
statistical functionals can be computed on each region of the watershed transform
and additional constraints, such as curvature smoothing term, could be added
to the energy function to minimize. These approaches were already successfully
used for various image segmentation problems for medical and material sciences
applications [16, 15, 18].
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