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Abstract: This article proposes a distributed parameters model for a pool of electric hot water
tanks (EHWT). EHWT are electric appliances found in numerous homes where they produce
hot water for domestic usages. Designing smart piloting for them requires a careful description
of several variables of interest and their dynamics. When the number of such devices is large,
these dynamics can be lumped into Fokker-Planck equations. In this case, these equations are
driven by in-domain control which defines the heating policies in a stochastic manner. The main
contribution of this article is the Fokker-Planck model of a pool of EHWT.
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1. INTRODUCTION

The increasing share of intermittent renewable electricity
sources in the energy mix (European Commission [2011],
Edenhofer et al. [2011]) raises new difficulties in man-
agement of the electricity production and equilibrium in
distribution networks. Demand Side Management (DSM),
which is a portfolio of smart piloting techniques aiming at
modifying consumers’ demand, is a promising solution for
such concerns (Palensky and Dietrich [2011]). A key factor
in developing DSM is the ability to find energy storage
capacities. In this context, the large pools of electric hot
water tanks (EHWT) have a well recognized potential.

An EHWT is a domestic electric appliance which heats a
volume of water with an electric thermo-plunger that can
be controlled. The home user drains hot water from the
EHWT at various times of the day. The literature (Blandin
[2010], Zurigat et al. [1991] and the references therein)
models EHWT as vertical cylindrical tanks driven by
thermo-hydraulic phenomena: heat diffusion, buoyancy ef-
fects and induced convection and mixing, forced convection
induced by draining and associated mixing, and heat loss
at the walls.

To model EHWT, one-dimensional distributed parameter
models of the temperature profile in the tank have been de-
veloped (see Beeker et al. [2015a,b]). The observed temper-
ature profiles are increasing with height. For smart piloting
applications, one can define three variables of interest
providing a simplified representation of the temperature
profile, under the form of three amounts of energy. From
this, advanced control designs can be studied. Among
them, optimal control strategies are particularly appealing
as they address topics of direct interest both for end-
users and electricity producers: cost reduction, comfort
constraints, and yield management. Yet, the situation is

not that straightforward. In truth, a real challenge lies
in solving optimal control problems for large numbers of
such EHWT. Coordinated individual control of each tank
is feasible for pools of moderate sizes (typically from 2 to
10 EHWT). However, for large pools of EHWT (tens of
thousands), this approach is a stalemate. Unfortunately,
the real stakes and industrial expectations belong to this
range.

Interestingly, it is possible to recast this problem into
a distributed parameters approach. This is the path we
explore in this article. Following the works of Malhamé
and Chong [1985], we consider that the local (individual)
control variables of EHWT are each defined according to
stochastic processes. Then, we combine i) this randomness,
ii) the diversity in the distribution of the states of the
EHWT, iii) the randomness of the water consumptions,
and we develop a partial differential equation (PDE) for a
large pool of EHWT. This takes the form of Fokker-Planck
equations (see Risken [1996]) governing the probability
distributions of the population of EHWT. The work of
Malhamé and Chong was originally focused on a mitigated
load represented by a single state, which we need to extend
for the smart piloting applications under consideration
here. This extension results into a rich system of PDE,
which constitutes the main contribution of this paper.

The paper is organized as follows. In the pool, a single
EHTW is a macroscopic but small subsystem described
by state variables. These variables of interest are defined
in Section 2. They have hybrid dynamics by construction.
To account for the randomness of water consumption, we
propose a single EHWT model as a Markovian stochas-
tic process in Section 3. Then, we introduce probability
density function of the population of EHWT and derive
the Fokker-Planck equations in Section 4. A summary of
the obtained input-output description of the EHWT pool
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Fig. 1. Schematic view of an electric hot water tank.

is reported in Section 5. Conclusions and perspectives are
given in Section 6.

2. VARIABLES OF INTEREST IN A EHWT

2.1 General description, stratification, and effects of heating

A typical EHWT is a vertical cylindrical tank filled with
water. A heating element is plunged at the bottom end
of the tank (see Fig. 1). The heating element is pole-
shaped, and relatively lengthy, up to one third of the
tank. Cold water is injected at the bottom while hot
water is drained from the top at exactly the same flow-
rate (under the assumption of pressure equilibrium in the
water distribution system). In the tank, layers of water
with various temperature coexist (see Fig.2). At rest, these
layers are mixed only by heat diffusion which effects are
relatively slow compared to the other phenomena (Han
et al. [2009]). Existence of a non uniform (increasing with
height) quasi-equilibrium temperature profile in the tank
is called stratification (Dincer and Rosen [2010], Lavan and
Thompson [1977]). In practice, this effect is beneficial for
the user as hot water available for consumption is naturally
stored near the outlet of the EHWT, while the rest of the
tank is heated (see Fig.2(b)). Due to this effect and the
cylindrical symmetry of the system, one can assume that
the water temperature in the tank is homogeneous at each
height.

Following the description above, the temperature T of the
tank is a continuously increasing function of height (see
Fig. 2). The constant inlet temperature Tin constitutes
a lower bound of the temperature profile. The heating
process is driven by turbulence generated by buoyancy
effects, which is the cause of a local mixing in the bottom
of the tank. We consider that this mixing is perfect on a
spatial zone, refereed to as the plateau (see Beeker et al.
[2015a,b]), and does not affect the temperature profile
in the upper part of the tank (see Fig. 2(b)). During
the heating process, the plateau grows and gradually
covers the whole tank. The user specifies a temperature

Tmax at which the heating has to be stopped to prevent
overheating. As a result of the heating process, if the
temperature at the bottom of the tank is Tmax, then the
temperature in the tank is uniformly at Tmax once the
heating is finished.

The user can also specify a comfort temperature Tcom. Wa-
ter having temperature higher than Tcom can be blended
with cold water to reach Tcom and is therefore useful, while
water having temperature lower than Tcom is useless.

2.2 Consumption, control and objectives

Each EHWT has two inputs: water consumption and
heating power. The user consumes certain quantities of
energy each day. For this reason, consumption of hot water
is an (uncontrolled) input of our problem. On the other
hand, the heat injected via the heating element in the tank
is a control variable.

The control design can have various objectives. The most
obvious one is individual cost reduction for each single
unit in response to a price signal. At larger scales, one can
naturally consider a pool of tanks, and aim at reaching a
load profile for the aggregate consumption.

2.3 Variables of interest: Available, delay and reserve
energies

Describing the exact temperature profile inside the tank is
unnecessary for the applications discussed above. Instead,
a few (3) variables of interest can be considered.

The available energy a is defined as the energy contained
in the zones having temperature greater than the comfort
temperature Tcom. This constitutes a direct comfort index
for the user. If a reaches 0 and a water drain is applied,
then the comfort constraints is violated.

The delay energy τ is defined as the energy required by
the plateau to reach the temperature Tcom. When the tank
is heated at constant maximum power, in the absence of
drains and heat losses, τ is simply proportional to the time
necessary to reach a state from which a can effectively be
positively impacted by the heating process.

The reserve energy µ is defined as the energy contained
in the tank that is currently unavailable for consumption,
i.e. the energy contained in the water under Tcom. When,
thanks to the heating process, τ reaches the value 0, the
energy µ becomes available for consumption: this generates
an immediate (discontinuous) increase of a, and µ is reset
to 0. 1

Fig. 2 illustrates the dynamics of these variables. A drain
(pictured in (a)) is mainly characterized by a decrease of a
and an increase of τ , with a slight raise of µ due to an
energy transfer from a. On the other hand, in the heating
pictured in (b), τ decreases at the same rate as µ rises,
until the plateau reach Tcom. An energy transfer from µ
to a takes place then. This is pictured in (c). A case where
comfort constraint is violated is pictured in (d).

1 The rationale behind these definitions is that to plan the heating,
we account for the time left before the energy reserve embodied by
a (in the total energy a+ µ) is consumed, and the time necessary to
provide new hot water, embodied by τ .
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2.4 Domains of definition of state variables

Define λ =
Tconf−Tinj

Tmax−Tinj
and let m be the maximal energy

that can be contained in the tank under the tempera-
ture Tmax. Then, by definition, a, τ, µ are subject to the
following inequalities :

0 ≤ a ≤ m, 0 ≤ τ ≤ λm, 0 ≤ µ ≤ λm,

a+
1

λ
(τ + µ) ≤ m, λm ≤ a+ τ + µ

(1)

from which we define the following open polyhedron of R3

and its faces (see Fig. 3):

Ω0 ={(a, τ, µ)|a, τ, µ > 0, λm < a+ τ + µ

and a+
1

λ
(τ + µ) < m}

F1 =Ω̄0 ∩ {(a, τ, µ)|µ = 0}
F2 =Ω̄0 ∩ {(a, τ, µ)|τ = 0}
F3 =Ω̄0 ∩ {(a, τ, µ)|λm = a+ τ + µ}

F4 =Ω̄0 ∩ {(a, τ, µ)|a+
1

λ
(τ + µ) = m}.

(2)

The following edges and vertices are considered

E1 =F1 ∩ F2 E2 =F3 ∩ F4

V1 ={(λm, 0, 0)} V2 ={(m, 0, 0)}
V3 ={(0, λm, 0)} V4 ={(0, 0, λm)}.

(3)

In practice, x , (a, τ, µ) can only belong to E2 (low energy,
e.g. Fig. 2 (d)), Ω0 (medium energy, e.g. Fig. 2 (a) and (b))
and E1 (high energy, e.g. Fig. 2 (c)). Faces F1 to F4,
and vertices V1 to V4 constitute boundaries of these three
domains. Note that uniformly cold tank can also stack
in V3. In the sequence, we note Ω = Ω0∪E1∪E2∪V3. Any
index i = 0, 1, 2, 3 will refer to these domains, respectively.

2.5 Transient behavior

Heating mostly induces a continuous variation of x.
If τ, µ > 0 (i.e. x ∈ Ω0), then the heating yields a decrease
of τ and an increase of µ. Under certain conditions, a
threshold effect can be observed: when τ reaches 0 (i.e.
when x reaches F2), then suddenly, all the unavailable
energy µ becomes available, µ takes the value 0 and all its
energy is transferred into a. This induces a discontinuity,
transferring x to E1 in which the heating has again a
continous effect on x, increasing the available energy a.

Heat losses also mostly induce a continuous variation of
x, where a and µ decrease while τ increases. The reverse
threshold effect can also be observed: when x reaches F3,
an entire layer of water goes under the temperature Tcom,
which causes a to take the value 0 and x to jump in E2 in
which it will again vary continuously.
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The drains have a very short duration compared to heating
and heat loss. They yield quasi-instantaneous decrease of a
and µ and increase of τ , having time of occurrence and
magnitude depending on the user’s habits. We model them
as jumps only. Very large decreases can cause x to jump
from E1 to Ω0 (or even to E2), or from Ω0 to E2.

The transients are pictured in Fig. 2. A summary of jump
dynamics is pictured in Fig. 4.

3. EHWT AS A HYBRID-STATE STOCHASTIC
PROCESS

3.1 Stochastic process representation

The times of occurence and magnitude of the drains are
user-dependent. We model this dependency under the form
of a stochastic process. This results in a model similar in
spirit to the single-dimensional representation originally
proposed by Malhamé and Chong [1985].

In our model, each EHWT is defined by the state vector

Xt =

[
at
τt
µt

]
∈ Ω (4)

and its heating status St ∈ {r, h}, which is also of
stochastic nature. From now-on, the indexes {r, h} refer
to “rest” and “heating”, respectively.

The dynamics of Xt is governed by the phenomena de-
scribed in Section 2.5. In each domain Ω0, E1, E2, the
state vector Xt continuously (due to heating and heat
loss) and discontinuously (due to drains) changes, with
respect to a stochastic differential equation, constituting
the flow map, that will be stated below. A jump of hy-
brid nature appears when Xt reaches F2, F3, V1 or V4.
This discontinuity, according to the terminology of Goebel
et al. [2012], constitutes the jump map. A correspondence
between phenomena and stochastic/hybrid representation
can be found in Table 1.

3.2 Flow map: Stochastic process dynamics on each domain

The stochastic differential equations of Xt and St are

dXt = v(Xt)dt+ dJt + σ(Xt)dWt

dSt = dNt
(5)

where

• v(Xt)dt is the drift component which represents the
heat losses and/or heating effects.

• dJt is the infinitesimal integration with respect to a 3-
dimensional compound Poisson process Jt represent-
ing the jump effects of drains on at, τt and µt.

• Uncertainties are lumped into a variance term σ(Xt),
integrated with respect to a Wiener process (or stan-
dard Brownian motion) Wt.

• dNt is the infinitesimal integration with respect to
a 1-dimensional Poisson process Nt representing the
status switch between h and r.

Expressions of v, σ and of the random characteristics of Jt
depend on the domain and the status of the EHWT. We
now detail them.

Heat loss and heating modeling as a drift Under the
assumption that the ambient temperature Ta is equal
to Tinj , the heat loss per unit of time for at is equal

to − k
Sρcp

at, where S is the cross-section of the tank, ρ

and cp are the density and heat capacity of water, and k is
the heat loss coefficient of the tank per unit of height (see
Fig. 2).

Likewise, for µt, the heat loss is equal to − k
Sρcp

µt. This

heat loss generates a positive effect on τt which therefore
increases with the rate k

Sρcp
µt. In summary,

vr(Xt) =
k

Sρcp

[−1 0 0
0 −1 0
0 1 0

]
Xt. (6)

To this heat loss drift is added a drift vh(Xt) due to
power injection for tanks subject to heating. In Ω0 and E2,
power injection p lowers τt and increases µt, so that one

has vh(Xt) = p [0 −1 1]
T

. In E1, the injected power only

affects at, and therefore vh(Xt) = [p 0 0]
T

. Finally, when
the tank is heating

v(Xt) = vr(Xt) + vh(Xt) (7)



and otherwise v(Xt) = vr(Xt).

Drain as a Poisson process The drains appear as a
sequence of quasi-instantaneous events of various magni-
tudes, so that we choose to model them as a compound
Poisson process Jt (see e.g. Applebaum [2004]).

Then, the time between jumps follows an exponential
law of parameter θ(t), and the magnitude of jumps is
characterized by a probability density function ω : Ω2 ×
R+ → R+. In words, a jump from y at time t maps to Ω
with distribution characterized by ω(y, ·, t).

EHWT variability as a Wiener process Some phe-
nomenon are not taken into account in the description
above (e.g. diffusion). We choose to lump these into into a
variance parameter σ(Xt) acting through a Wiener pro-
cess. However, the closer Xt is to the boundary of Ω,
the smaller the uncertainty should be on some of vari-
ables. Thus, certain components of σ(Xt) vanish at the
boundaries of domains. Additionally, the heating increases
uncertainty on the dynamics. Therefore, the variance takes
the form

σ(Xt) = σr(Xt) + σh(Xt) (8)

for heating tanks, and σ(Xt) = σr(Xt) otherwise.

On/off heating switch modeled with a Poisson process
The switching between the two statuses h and r constitute
a sequence of instantaneous events that can be controlled.
We choose to also model it with a Poisson process of inten-
sity α(Xt, t, St) = αSt(Xt, t) (indexed on St for transition
from St to the opposite one). This means that instead of
exactly setting the switching times, two functions αr, αh

define a probability to switch from one status to another,
depending on the state Xt and time t.

3.3 Jump map: Hybrid modeling of the domain switch

The threshold jump when heating or with heat losses
constitute hybrid deterministic jumps. When reaching a
certain boundary, it maps a domain to another, depending
on the status. The transition, in the framework of Goebel
et al. [2012], gives x+ (the value after the jump) as
a function of x (the value before the jump). For the
sake of simplicity, a summary is given in Table 2. The
maximal energy m that can be contained in the tank is
attained at point V2, when heating. We assume that the
heating automatically switches off at this point for security
reasons, which is characterized by a hybrid jump for the
status from h to r. This jump is also presented in the jump
map.

4. FOKKER-PLANCK PDE FOR A LARGE POOL OF
EHWT

4.1 EHWT pool population representation

Representing a large pool of tanks each having a 3-
dimensional state leads to an unnecessarily large finite-
dimensional system, which can be difficult to design con-
trollers for. Rather, a probability density functions repre-
sentation can be employed.

The main idea is to define seven function fr0 , fh0 , fr1 , fh1 ,
fr2 , fh2 , fr3 (for each domain Ω0, E1, E2 and V3, one for each

status r or h at the exception of V3 in which only resting
tanks can stack) which represent the population density
of the tanks of a given status in a certain domain. These
positive functions are subject to the balance consistency∫∫∫

Ω0

(fh0 +fr0 )+

∫
E1

(fh1 +fr1 )+

∫
E2

(fh2 +fr2 )+fr3 = 1. (9)

The dynamics governing these probability functions are
obtained from the preceding dynamics. We now detail
them.

4.2 Fokker-Planck equation for a stochastic process

A useful tool for the population distribution computation
is the Fokker-Planck equation (see Risken [1996]). For a set
of independent Markov process in a state space Ω following
the same generic stochastic equation

dXt = v(Xt, t)dt+ σ(Xt, t)dWt + dJt (10)

where v(Xt, t), σ(Xt, t) ∈ R6, dWt is the integration with
respect to a 1-dimensional Wiener process Wt, and dJt
is the integration with respect to a compound Poisson
process of intensity θ(t) and whose compound distribution
is represented with the probability density function ω
(i.e. when a jump occurs on state x, the probability
density function of transition to state y is represented
with ω(x, y, t) at time t), the probability density function
(when the number of stochastic process tends to infinity) is
given by the Fokker-Planck equation (see e.g. Applebaum
[2004])

∂tf(x, t) = −∇x · [v(x, t)f(x, t)] +∇x · [D(x, t)∇xf(x, t)]

+ θ(t)

∫
Ω

(f(y, t)− f(x, t))ω(x, y, t)dy

(11)

for (x, t) ∈ Ω× R+, where

D(x, t) =
1

2
σ(x, t) · σt(x, t) ∈ R3×3. (12)

4.3 Detailed expression of the PDE

Several observations can be made on the stochastic model
presented in Section 3. First, for each tank, the stochastic
process Xt defined by (5) constitutes a Markov process.
Moreover, given a pool of tanks, the independence of the
stochastic process of each tank appears as a reasonable
hypothesis, given the assumption that hot water consump-
tions of distinct households are not related.

Therefore, one can directly follow the work of Malhamé
and Chong [1985], and derive the Fokker-Planck equations.
In our case, for each domain and each status, this equation
takes the form of a parabolic PDE. The hybrid character of
the stochastic process appears in the boundary conditions
and yields an additional integral source term.

On each domain i = 0, 1, 2 (for Ω0, E1, and E2), fri and fhi
are driven by a system of the form

∂tf
r
i +∇x · [vrfri ] = ∇x · [Dr

i∇xfri ]

− (αri + θ)fri + αhi · fhi + Sri (f(·, t), x, t)
∂tf

h
i +∇x · [(vr + vhi )fhi ] = ∇x · [(Dr

i +Dh
i )∇xfhi ]

− (αhi + θ)fhi + αri · fri + Shi (f(·, t), x, t)
(13)



while fr3 follows an ordinary differential equation that will
be stated later.

4.4 Parameters specification on each domain

Each term of the PDE derives from the infinitesimal gen-
erator defining the parabolic operator used in the Fokker-
Planck equation. Each term in the stochastic differential
equation has a matching term in the partial differential
equation (see e.g. Ethier and Kurtz [2005], Sato [2011]).
For the sake of clarity, we present in Table 1 each stochas-
tic term in our case and its corresponding term in the
PDE. The necessary steps of computations are omitted
for brevity.

The heat loss drift in the PDE has the same form as the
one in the stochastic equation, i.e.

vr(x) =
k

Sρcp

[−1 0 0
0 −1 0
0 1 0

]
x ∈ R3. (14)

The drift vhi ∈ R3, the diffusion Dr
i (x, t), D

h
i (x, t) ∈

R3×3
+ , and the source terms Ssi (f(·, t), x, t) ∈ R+ for

s = r, h have to be defined in each domain. The term
caused by the Poisson process leads to source terms
of various integral forms, depending on the probability
density function ωi on each domain (e.g. ω0 = ω|Ω0

).
Source terms can also appear due to hybrid transfer from
other domains in the form of an integral flow. For that
purpose, on F2 and F3, we introduce the functions η2

and η3 s.t.: η2(y, x) = 1 if [axτxµx]
T

= [ay + µyτy0]
T

and 0

otherwise; and η3(y, x) = 1 if [axτxµx]
T

= [0τyay + µy]
T

and 0 otherwise.

Details are reported in Table 3. Finally, the exchange
terms αsi (x, t) can be chosen as they are control-dependent,
while θ(t) does not depend on space.

4.5 Boundary conditions

The domain Ω0 has 4 boundaries (F1 to F4), while E1
and E2 have 2 boundaries, each in the form of ver-
tices. Boundary conditions stems from the behavior of the
stochastic process. A special case is the boundary V3 where
uniformly cold tanks stack.

On the borders, we have :

• dτ (x), dµ(x)→ 0 when x→ F1 or F2,
• da(x)→ 0 when x→ F3 or F4,
• d1(x)→ 0 when x→ V1 or V2,
• d2(x)→ 0 when x→ V3 or V4.

This allows to define boundary conditions of the Dirichlet
or free boundary types, except in V3. Their definitions
stem from exchange between the domains: free boundary
corresponds to the case where tanks flowing outside the
domain flow inside another domain as a source term (hy-
brid jumps). On the contrary, the zero Dirichlet boundary
conditions correspond to the fact that no new tank can
enter the system (the population is fixed). A summary is
presented in Table 4.

The vertex V3 constitutes a free boundary for fr2 , in
which the population of completely cold tanks can stack.

α(·, t)
CB(t)

PW (t)

PDE system

on f

Fig. 5. Input/output representation of the pool of EHWT.

The population fr3 (t) at this point can be heated and
constitutes the input flow for fh2 through the boundary
condition (vh2 + vτ2 (V3))fh2 (V3, t) = αr2(V3, t)f

r
3 (t). There-

fore, fr3 (t) is driven by

ḟr3 (t) =− αr2(V3, t)f
r
3 (t) + vτ2 (V3)fr2 (V3, t)

+

∫
E2
fr2 (y)ω2(y,V3, t)dy

(15)

5. INPUT-OUTPUT DESCRIPTION

The input of the system is the set of functions (over space
and time) α = [αr0, α

h
0 , α

r
1, α

h
1 , α

r
2, α

h
2 ]T , which determine

the intra-domain migration between the populations of
heating and resting tanks.

To control the pool of tanks, several indicators can be
interesting. They are the output of the proposed model.
Among them, the mass (number) of tanks breaking the
comfort constraints is

CB(t) =

∫
E2

(fh2 + fr2 )(x, t)dx+ fr3 (t) (16)

and the total power demand is

PW (t) =

2∑
i=0

∫∫∫
Ω

fhi (x, t)dx (17)

They constitute valuable performance indexes for the
system. The system can be seen with the input/output
representation depicted in Fig. 6.

A natural goal is then to design controls (α(·, t) : Ω→ R6
+)

s.t. CB is as low as possible, while the total power demand
PW follows a given objective function.

As a mean of illustration, the probability density functions
on E1, E2, and a representative segment of Ω0 from the
middle of E2 to V2 are shown in Fig. 5. Two profiles are
shown. A fictional initial one, and the one subsequent to
the following heating policy. We choose to promote heating
(i.e. αri high and αhi low) on E1, E2, and V3, and let the
tanks rest (i.e. αri low and αhi high) on Ω0. The profile
varies as is shown in the figure, and tends to spread due
to diffusion and integral drains. After some time, due to
diffusion effects, a stationary profile representative of the
cycle E2 → E1 → Ω0 → E2 should take place.

6. CONCLUSION AND PERSPECTIVES

In this article we have explained the derivation of a model
for a large pool of EHWT. The input is a parameter defin-
ing the stochastic process of heating of each indidividual
EHWT in the pool. The outputs are the overall comfort
variable defined in (16) and the total power demand (17).
The dynamics are a collection of Fokker-Planck partial
differential equations.
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Fig. 6. Evolution of probability density function, given a
heating policy (red: heating, blue: resting)

The next steps should address the control problems based
on this input-output description. A question to be solved
can be formulated as follows: how to design α(·, t) so
that the power demand matches some desirable history
while limiting or minimizing the discomfort? This prob-
lem belongs to the class of optimal control (tracking) of
distributed parameters systems with in-domain actuation
and is the topic of current investigations.
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Phenomenon Stochastic representation Fokker-Planck equation

Heat loss Drift Convection

Heating Drift Convection

Drain Poisson process Integral source term

Threshold effect on the comfort Hybrid jump Free boundary condition, and source term

Control Poisson process Coupling source term

Uncertainty Brownian motion Diffusion

Table 1. Correspondance between: phenomenon, hybrid stochastic counterpart, and PDE term

In Ω0 E1 E2
If reaches F2 × {h} F3 × {r, h} V1 × {r} V2 × {h} V4 × {h}
Jump to E1 × {h} E2 × {r, h} E2 × {r} V2 × {r} E1 × {h}

According to the transition

[
a+

τ+

µ+

]
=

[
a+ µ
τ
0

] [
a+

τ+

µ+

]
=

[
0
τ

a+ µ

] [
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τ+

µ+

]
=

[
0
τ

a+ µ

]
s+ = r
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µ+
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=
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τ
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]
Table 2. Jump map

Domain Drift vhi Diffusion Dri (x) and Dhi (x) Source terms Sri (f(·), x, t) and Shi (f(·), x, t)

Ω0 p

[
0
−1
1

] [
da(x) 0 0

0 dτ (x) 0
0 0 dµ(x)

]
Sr0 = θ(t)

∫∫∫
Ω0
fr0 (y, t)ω0(y, x, t)dy + θ(t)

∫
E1
fr1 (y, t)ω1(y, x, t)dy

Sh0 = θ(t)
∫∫∫

Ω0
fh0 (y, t)ω0(y, x, t))dy + θ(t)

∫
E1
fh1 (y, t)ω1(y, x, t))dy

E1 p

[
1
0
0

]
d1(x)

[
1 0 0
0 0 0
0 0 0

]
Sr1 = 0

Sh1 =
∫∫

F2
η2(y, x)(v0(y) + vh0 )fh0 (y, t)dy

E2 p

[
0
−1
1

]
1
2
d2(x)

[
0 0 0
0 1 −1
0 1 1

]
Sr2 = θ(t)

∫∫∫
Ω0
fr0 (y)ω0(y, x, t)dy + θ(t)

∫
E2
fr2 (y)ω2(y, x, t)dy

Sh2 = θ(t)
∫∫∫

Ω0
fh0 (y)ω0(y, x, t)dy +

∫∫
F3
η3(y, x)v0(y)fh0 (y, t)dy

+θ(t)
∫
E2
fh2 (y)ω2(y, x, t)dy

Table 3. Definition if distributed parameters equation term on each domain

Domain Boundary Boundary condition

Ω0

F1 fr0 (x, t) = 0 and fh0 (x, t) = 0
F2 fr0 (x, t) = 0 and fh0 (x, t) free
F3 fr0 (x, t) free and fh0 (x, t) free
F4 fr0 (x, t) = 0 and fh0 (x, t) = 0

E1
V1 fr1 (x, t) free and fh1 (x, t) = fh2 (V4, t)
V2 fr1 (x, t) = fh1 (V2, t) and fh1 (x, t) free

E2
V3 fr2 (x, t) free and (vh2 + vr(x))fh2 (x), t) = αr2(x), t)fr3 (t)
V4 fr2 (x, t) = 0 and fh2 (x, t) free

Table 4. Boundary conditions


