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Abstract. Model reduction allows transforming a high-dimensional model into a very low-dimensional 

approximation, which makes it possible to significantly decrease the computational time while preserving the physics 

of the problem.  In this paper, it is applied to a metal forming process, the semi-thick sheet bulging test, where 

computing time can be quite significant when using the associated inverse analysis. The problem is characterized by 

large deformations, development of instability, implicit velocity / pressure formulation and unstructured meshes of 

tetrahedrons. A Proper Orthogonal Decomposition (POD) is implemented in the commercial software Forge®. The 

proposed reduced order model (ROM) involves a reduced basis for both velocity and pressure fields to account for the 

incompressibility constraint. The ROM by POD allows reducing the number of unknowns to less than 12 while 

keeping the results accuracy and precisely predicting the sheet instability development. The ROM remains accurate 

for a wide range of material parameters variations. The DEPOD approach allows further extending the ROM validity 

range, through the information of additional snapshots in the vicinity of the initial ones.  

1 Introduction 

Simulation techniques have brought huge 

contributions to engineering problems. Despite major 

progress in numerical methods and computers capacities, 

accurate solutions require refined space discretizations, 

which consequently increase computational time. Model 

Order Reduction (MOR) seeks to overcome this issue by 

approximating the high dimensional problem with a 

lower one, following several techniques as proposed in 

literature [1-2]. This work is based on the Proper 

Orthogonal Decomposition (POD); it does not aim to 

develop a new variant of the method but instead to study 

its capacity to treat metal forming problems including 

high non-linearities, large deformations and unstructured 

meshes. 

2 Bulging Rheological Test 

The considered metal forming problem is the bulged 

test (see Figure 1 and 2) often used to identify the 

material behaviour through inverse analysis. An oil 

pressure is enforced on the metal sheet while the sides of 

the sheet are maintained by a blank holder. The inverse 

analysis requires carrying out several simulations of the 

forming problem with different material parameters, so 

resulting into large computational time. 

 

Figure 1. Boundary conditions for the bulging test. 

 

Figure 2. Velocity field at the end of the bulged test (stable 

case). 

 

The circular sheet is 1 mm thick with a 50 mm radius. 

The material, formed under hot conditions, is assumed to 

follow the Norton-Hoff law (2). Its consistency K is equal 
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to 202 MPa.s and its  strain rate sensitivity m is equal to 

0.15. Two oil pressure cycles are considered from the 

initial value of 0.3 MPa at t = 0 s. 

1. Stable cycle: linear increase to 3 MPa at t = 20 s 

followed by a linear increase to 4.125 MPa at t = 50 s 

2. Unstable cycle: same linear increase to 3 MPa at 

t = 20 s followed by a linear increase to 6 MPa at 

t = 100 s. 

Figure 3 shows the deformed bulged sheets at the end of 

the process in both cases, computed with an unstructured 

finite element mesh of tetrahedra with 700 nodes. Figure 

4 shows the sudden increase of velocity at the central 

node of the sheet with the “unstable” cycle and that is 

triggered by the thickening of the sheet before tearing. 

  

Figure 3. Isovalues of the equivalent cumulated strain at the 

end of the process. Left: stable case. Right: unstable case. 

 

Figure 4. Time evolution of the vertical velocity at the centre of 

the sheet in the unstable case. 

3 Metal Forming Problem Equations  

Inertia and gravity forces can be neglected in the 

problem equations (1.a). Elasticity is also neglected 

during large material deformations under hot conditions, 

so that the material is fully incompressible (1.b), where  

is the stress tensor and v the material velocity. 
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Norton-Hoff constitutive equation is given by (2) where 

( )v  is the strain rate tensor,   the equivalent strain and 

p the hydrostatic pressure. Boundary conditions are 

summarized in equation (3), and the resulting weak form 

of the mixed velocity / pressure problem is presented in 

equation (4). 
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The computational domain  is discretized using an 

unstructured mesh made of tetrahedra and equation (4) by 

the Mini-Element P1+/P1 formulation [3]. The resulting 

system of  ,h hv p  equations is nonlinear: R denotes the 

residual of the equations and J its Jacobian. The matrix 

formulation of the linear system solved at each iteration 

of the nonlinear resolution algorithm can be written as: 
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4 Reduced Order Model (ROM) 

Proper Orthogonal Decomposition (POD) methods 

generally aim at finding a reduced equivalent system 

to (5) while preserving the accuracy of the solution. It 

consists in building a reduced orthonormal basis 

 
1,r r m

N


 with m  < N (number of dof) that minimizes 

the sum of the squared projection error over the chosen 

snapshots, following the snapshot POD approach 

introduced by Sirovich in [4]. At every snapshot time 
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
, the velocity and pressure fields are stored 

respectively into two matrices vQ  and pQ : 
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The reduced basis is derived from the Singular Value 

Decomposition (SVD) of    ,i i v p
Q


 (8), where the iU  

matrix contains the reduced basis vectors  r r
N . 
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Selecting the m first vectors for velocity and pressure 

provides the A reduction matrix (9). The solution in the 

reduced space writes q Aa  (10) and the reduced 

matrix formulation of the problem is expressed by (11): 
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In order to extend the validity range of the ROM in 

respect to a specific material parameter coefficient such 

as m, computing snapshots for different m values is 

necessary. In the DEPOD approach [5], the new m value 

is obtained from a slight modification of the initial value 

(12), and the new combined snapshot matrix  
 ,

i
i v p

Q


 

includes results from both simulations (13) where is a 

numerical coefficient: 
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4 Applications  

4.1 Modes Selection 

Snapshots are extracted at every time step, Figure 4 

shows the relative L
2
 error on the velocity field at the end 

of the process, according to the number of velocity and 

pressure modes. The error decreases very rapidly and the 

minimum value is obtained with 12 modes. This number 

is then selected for following computations. 

 

Figure 4. Approximation error of the ROM versus the number 

of velocity/pressure modes. 

4.2 Accuracy of the Reduced Order Model 
The ROM constructed in this way is now used with 

different values of the m coefficient of the Norton-Hoff 

constitutive equation (2). Figure 5 shows that for m 

ranging between 0.08 and 0.18 the relative L
2
 error is less 

than 1%, which is more than acceptable. This domain can 

be further increased by the DEPOD approach. A new 

simulation is run with m=0.16 in order to compute new 

snapshots and to extract new modes. The errors for 

m=0.05 and m=0.2 are then reduced to less than 1%. 

In the unstable case, Figure 6 shows that the moment 

for which the instability occurs depends significantly on 

the m value and is quite well predicted by the ROM. 

 

Figure 5. Approximation error of the ROM according to the 

strain rate sensitivity coefficient value of the material. 

 

Figure 6. Time evolution of the vertical velocity at the centre of 

the sheet in the unstable case for different values of the material 

strain rate sensitivity coefficient with the ROM and full model. 
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