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This paper focuses on a 3D thermo elasto plastic localized thermal source simulation and its parametric analysis with high CPU efficiency in the reduced

order model (ROM) framework. The hyper reduced order model (HROM) is introduced and improved with two choices. Firstly, three reduced bases are
constructed: one for the displacement increments, one for the plastic strain increments and one for the stress state. Equilibrium equation in plasticity
relies on the knowledge of plastic strain rate, hence the plastic strain has to be included into the variable to be reduced, and the incremental form is
adopted in the paper. It is shown that the introduction of an extra stress basis greatly improves the quality and the efficiency of the ROM. Secondly, the
reduced state variables of plastic strain increments are determined in a reduced integration domain. Concerning the parametric analysis, the
interpolation of the reduced bases is based on the Grassmann manifold, which permits to generate the new proper orthogonal decomposition bases for
the modified parameters. In order to increase the convergence rate, the plastic strain interpolated from snapshots (the reference cases with full FEM
calculations) is considered as the initial value of each time step for the modified problem of parametric studies. As a result, the plastic calculation is
always done on the confined domain and only a few iterations are then required to reach static and plastic admissibility for each time step. The
parametric studies on varying thermal load and yield stress show high versatility and efficiency of the HROM coupled with Grassmann manifold

interpolation. A gain of CPU time of 25 is obtained for both cases with a level of accuracy smaller than 10%.

1. Introduction

In design and control of complex continuum mechanical or physical
processes, standard simulation techniques using the finite element
method (FEM) are not very efficient due to the large number of degrees
of freedom (DOF) and time steps. Indeed, they can involve prohibitive
global CPU. Hence, the reduced order model (ROM) technique helps to
save the computational cost using smaller number of DOF through
capturing the significant transformations of the parameters of interest
[1]. Among ROMs, the proper orthogonal decomposition (POD) reduc
tion method has shown its efficiency for optimization problems in fluid
mechanics [2], structural dynamics [3], material science [1], thermal
science [4] and real time surgery simulation [5].
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However, the classical ROM based on the Galerkin formulation by
a POD basis is not efficient for medium size elasto plastic problems.
In such problems, the computational effort related to the local
integration of the nonlinear constitutive laws, which is used to
determine the state of a system involving internal variables (IVs),
can represent more than 80% of the total computational effort [6].
The complexity of the local computations does not depend on the
reduced order of the model, as the computational effort needed to
estimate IVs is not related to the reduced approximation, and all the
elements are included in the loops for obtaining the good estima
tions of IVs. This defeats the purpose of model reduction and limits
the efficiency of the reduced POD models.

By selecting accurately a small set of elements from the detailed
model and considering the related equilibrium conditions, it is
possible to define a reduced integration domain (RID) for the mec
hanical model as proposed by Ryckelynck [6]. As a result, the
estimation of the significant IVs is only limited within the RID, the
remaining variables can be extrapolated to the whole domain by the
reduced basis of the IVs, this technology is similar to the Gappy POD



method [7]. This clever approach named hyper reduced order
model (HROM) enables the further computational reduction com
pared with the POD reduction model. However, the time saving is
only limited to 75% in the elasto plastic calculation. Later, Ryck
elynck and Benziane [8] developed the A Priori Hyper Reduction
method (APHR) for nonlinear mechanical problems involving inter
nal variables, and a multi level formulation is introduced to focus on
the capability of the method to perform efficient parallel computa
tions, where the best computational saving of 97% is obtained.

Besides, a modified POD strategy of the empirical interpolation
method (EIM) is suggested by Maday et al. [9], which reduces the
evaluation of the nonlinear term in the reduced model to a level
proportional to the number of POD based reduced variables. Based
on the EIM, the discrete empirical interpolation method (DEIM) is
proposed by Chaturantabut and Sorensen [10]. The essential of EIM
or DEIM is to replace the orthogonal projection in the Galerkin
scheme with an interpolatory projection within the selected
interpolation points for approximating the nonlinearities. Similar
to the HROM,, the high efficiency is obtained as it only evaluates the
nonlinearities at a few interpolation points.

Concerning the elasto plastic problem, Radermacher and Reese
[11] proposed an adaptive method of sub structure based on the
selective POD, where the reduction is only applied in sub domains
with approximately elastic behavior. Then the POD basis is adapted
with the selected sub domain, while further research is needed on
the efficiency. Moreover, the POD based reduction method has
been also extended to inelastic structures including cracks [12],
where the global model reduction strategy is developed by mixing
both the a posteriori and a priori approaches to simulate the crack
propagation. Moreover, the damage initiation problems are also
addressed by the POD hyper reduction model when strong topo
logical changes are involved [13].

Recently, Relun et al. [14] have developed a reduction model
based on the proper generalized decomposition (PGD) method for
elastic viscoplastic computational analysis, but similar computa
tional time is found compared with FEM. In addition, the reference
points method (RPM) is proposed by Ladeveze et al. [15] to
decrease the computational complexity of algebraic operations in
the framework of the PGD.

Generally speaking, the reduced methods of POD and PGD show
potentials to decrease the computational efforts for the elasto
plastic problems, while the hyper reduced order model (HROM) on
thermo elasto plastic calculation has not been reported. This paper
focuses on the HROM applied to highly localized 3D thermo elasto
plastic calculation. The first aim of the present paper is to reduce
the computational effort significantly by the HROM. Moreover, the
precision of stress field is improved by using an additional stress
basis in order to recover more efficiently balance equations such as
the equilibrium equation. The second aim of the present paper is to
perform parametric studies for the parameters of interest. The
Grassmann manifold interpolation is then adopted for the adaptive
POD basis corresponding to the modified parameter, and the
known plastic strains of the the reference cases with full FEM
calculations are considered as the initial value of the plastic
calculation to accelerate the convergence rate for the parametric
studies.

The 3D thermo elasto plastic calculation is presented in the
context of hyper reduced order model coupled with Grassmann
manifold interpolation, and the structure of this paper is organized
as follows: firstly, the thermo elasto plastic reference problem is
presented. Secondly, the hyper reduced order model and its
improvement is introduced, the evaluation criteria of the POD
basis number are developed. The high efficiency of the improved
HROM is validated by comparing with the reference solution.
Thirdly, the Grassmann manifold interpolation is presented for
determining the POD basis corresponding to the modified value of

the parameter of interest. Fourthly, the parametric studies on the
variational thermal loading and yield stress are performed to
validate the accuracy and the versatility of the proposed method.

2. Problem description

In this section, a structure (£2) which obeys to usual thermo
elasto plastic equations is employed. The thermo elasto plastic
process subjected to a transient thermal load and usual boundary
condition is typically assumed to weakly coupled. The temperature
profile is assumed to be independent of stresses and strains.
Therefore a heat transfer analysis is performed initially, and the
results are imported for the stress analysis. The material constitu
tive model and the equilibrium equation are given in the below
sub section.

2.1. Material constitutive model

A linear isotropic hardening is considered for the thermo

elasto plastic calculation. The strain rate tensor € is split into the
elastic, plastic and thermal parts: €%, € and & th,_respectively:

I

=§e+€p+£th (])

The equivalent plastic strain (PEEQ) p with the plastic multiplier
is defined by

p=12¢PI =2 )
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The free energy is assumed to be of the following form:

T
o=i(e € &) Die & ey’ G

where D and H are Hooke's tensor and hardening modulus for
linear isetropic hardening, respectively. The thermal strain can be
defined by & = aATI, where « is the thermal expansion coeffi
cient, and AT is the temperature increment.

The yield surface is defined by the function f:

fle.p)= \/g:g 16 (0o+Hp) )

where oy is the initial yield stress, and M is the stress operator

tensor for von Mises calculation. It should be mentioned that a
fixed point type iteration strategy is suggested for the determina

tion of the plastic multipliers A [16]. Once A is determined, the
plastic strain €P can be obtained, then the stress can be expressed

by
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2.2. FE discretization and equilibrium equation

The discretized FE weak form for the thermo elasto plastic
problem involves

£y, ) =" (s 1) (6)

where we introduce the state variable X,, = {u &? )", which is
known at time step t,, while X, . ,, = {u ¢ €°}], ; is not known.
In this case, the thermal and mechanical properties are weakly
coupled. In a first stage, the temperature field T(t, 1) is calculated
and the external force f'(t,, 1) at time step t,, 1 is given. Then the
corresponding internal and external generalized node forces for a

given degree of freedom (DOF) can be introduced by the FE



definition:
= /Q Trlo &(p,)] d2
fxt:/ Ed‘ﬂi dS+/[d.£i dQ (7)
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where 2 is the corresponding shape function of the DOF.
By the strain rate relationship Eq. (5) it induces

/Tr[ D £(p)] dQ:ff’“+/Tr[ep D g(p))] dQ+/Tr[e"‘ D e(p)dR2
Q :ézfl Q :ézfl Q — ézfl
(8)

Then the equilibrium equation at time step t,,; for the whole
model can be expressed by

Ku = o £ 4 P )

with the following definitions in standard Voigt notation:

K= / B'DB dQ2 the constant stiffness matrix,
Q
£ = / NF, dS+ / N'f, d2
0Q e
" — / B'De™ dQ2 the thermal balance forces,
)

= / B'De? d2 the plastic internal forces.
Q

In this paper, we consider a fixed point approach as the notation
solver. Here, we can introduce the corresponding linearized system
for a given nonlinear iteration k+1:

KiHtouk+l = res (10)

where K"T“ is the tangent stiffness and Su*+! is the displacement
increment in iteration k+ 1, with the residual

int fext

resk =f),

or

res* =Ku* " (1)

In the fixed point method, the tangent stiffness is equal to
constant (initial) stiffness by K; = Ky(u® = 0) =K (the elastic stiff
ness in Eq. (9)), which avoids the constructions of the tangent
stiffness in all iterations. Actually, the fixed point method is a
modified Newton Raphson iteration scheme and considers the
updated plastic internal force as the external force in each itera
tion. As the increment form is adopted in this paper, the final
equilibrium equation is expressed by

KAu = Af% + Af™ + AP 12)

where A is defined as the parameter increment between time steps
thy1 and t,.

3. Hyper reduced-order modeling

Concerning the thermo elasto plastic calculation, the incre
mental form is adopted for all quantities, which are considered
as the varying rate of the discretized quantities. The POD bases are
obtained from the singular value decomposition (SVD) for the
parameters of interest. The increment of the displacement field (for
3D model of n degrees of freedom (DOFs) and m time steps) can be
defined by

Auy(ty) Aug(ty) Auy(tm)
AU— Au%(ﬁ) AUZ:(tz) AUz(fm)
Auy(ty)  Aug(ty) Aun(tn)

=[Au(ty) Au(ty) - Au(tp)] 13)

where AU e R™™ is a rectangular matrix. In the next paragraph,
the SVD decomposition of AU is introduced [17,18].

3.1. Singular value decomposition (SVD)

By the SVD decomposition, the snapshot matrix of the collected
increment of displacement AU can be

_01 o .. 0]
0 o :
: ~ o[}
AU=®PZY =@ - ®,]| 0 - 0 on : (14)
0 - 0 o0 ||Y"
|0 - 0 o0

where @ e R™" is a unitary matrix containing space vectors,
Y e R™™ a unitary matrix containing time vectors, and X e R™™
contains diagonal and non negative singular values o; in the dec
reasing order.

o Thin (or economy sized) SVD: In the case of thin SVD, the above
decomposition can be expressed by Eq. (15) with m«n:

o1 0 0 YT
0 1
AU=DEY = [®, - B,] o2 o |1 15)
: - T
0 0 Om Ym

Actually, the space vector ®; is combined with time vector Y;
scaled with the singular value o;. As a result, the displacement
increment can be written as a sum of the product of space vector,
its singular value and time vector within mode m:

AU=®; 6; X1+D®, 6, Yo+ 4D 6; X+ + Dy, 6 X,

m
(16)
which can also be expressed as
AU = O']q)1 Q Y] +O‘2q)2 g Y2+“‘+G,‘(I)i ® Yi+“‘+0'mq)m ® Ym
17)
e Truncated SVD: The following decomposition of Eq. (18) is the
rank k truncated (or partial) SVD of AU, where k<r<m and r is

the rank of AU. The truncated SVD is the most common form of the
SVD for applications:

AU~ D, 61 X 4+D; 03 Xyt 4D 6, X + -+ D6, X (18)

3.2. Reduced basis definition

Based on the POD basis from the SVD as presented in Eq. (14),
we define the reduced basis [19,20] by

¥y _dx 19)
Then Eq. (14) can be replaced by
AU=YYAAY (20)

where AAY =V is the time reduced state variable. The reduced
basis is also applied for the decomposition of the increments of
plastic strain and stress in this paper.

Finally, PY, W' and W’ are defined as the space reduced bases
of the increments of displacement, plastic strain and stress,
respectively. Indeed, it will be shown that the choice of these state
variables is essential for the effectiveness of the HROM.



3.3. POD reduced order model

The POD method is actually a model reduction technique
projected on a small dimensional subspace W [11]. Based on
FEM, the discrete form of the equilibrium equation can be
expressed as Eq. (21) at any time t by selecting the first modes of
W™ containing the largest part of “energy” of all the modes:

[(PYYKPUIALY = (PYY(AF 4+ AF" + AFP)

The resolution of this system, which reduces the unknowns from
n (the degree of freedom of the system) to k (the selected mode
number of ‘I‘U), is very fast but gives an approximation of the
solution Au~WYAA". It can be noticed that the main drawback of
Eq. (21) is the use of the full K matrix on the left hand side. In
practice, only selected DOFs of K are considered (see Section 3.4).

As all the elements are needed to determine the correct plastic
deformation for the elasto plastic calculation, the constitutive
equation represents more than 80% of the computational effort
and only less than 20% CPU times are saved by the classical POD
reduction method, although the number of the primary variables is
divided by an amazing factor of n/k [6]. So this solution needs to be
improved by high efficiency while keeping the accuracy.

21

3.4. Hyper reduced order model (HROM)

e Petrov Galerkin formulation: It should be mentioned that the
POD reduction method does not modify the number of constitutive
equations that must be solved to estimate the displacement field.
Indeed, it keeps the computational effort for the plastic calculation
in the local domain. One way to reduce the number of constitutive
equations is the creation of a reduced integration domain (RID),
where the calculation of constitutive equations is only considered.
Moreover, the orthogonal condition in Eq. (21) does not mean that
all the residuals of the equilibrium equations must be equal to zero.
In fact, it allows us to introduce a RID only on a part of the global
domain. A rectangular boolean matrix Il allows to perform the
selection according to the following formulation:

IKAu = INAF™ + AfT 4+ AFP)

By introducing a truncated orthogonal condition for these
selected equations, the hyper reduced formulation of the govern
ing equations of the ROM is obtained:

(PH'IITIKYY) ALY = (PY)TITIIAF + AT 1+ AFP)

Then the residual of the hyper reduced formulation can be
expressed by

Rep = (P I TIKYY)ALY  (PY) IV INAF™ + AF" + AFP)  (24)

For the matrix Hlxnl(nxn‘l’gxk. [ should be larger than k, it means
that the rank of this matrix must be equal to the number of the
reduced state variables k.

For the POD reduction method, it only reduces the number as
follows: (WY)T(Af™ + A"+ AfP), but it covers all DOFs for the
calculation of the constitutive model. The Petrov Galerkin formu
lation, in terms of (WY)'II'TI (A + Af™ + AfP), points out the
selected DOFs by I, (Af*™ + Af" + Af"), ., where only I equa
tions are adopted. Therefore, the purpose of the hyBer reduced
problem is to find the reduced state variables AA~ such that
Au =YY ALY by the selected DOFs.

o The extrapolation of the plastic strain and stress: Concerning the
plastic calculation, the plastic strain increment vector is introduced
as a column vector AY = {AgP} of the plastic strain tensor field.

Similar to the displacement increment reduced basis, the plastic
strain increment reduced basis is calculated on a matrix containing
all solutions for each time t(t <m) for the reference problem,

(22)

(23)

which is given by AY,ef =[AY7...AYy]. By performing the SVD, we
can obtain the modes ¥" for the plastic strains.

The components of the plastic strain increment vector AY;
calculated inside the RID (reduced integration domain, £2;;) are
defined in a vector Y; in each time step, in other words the
components of the plastic strain increment vector AY; are not
computed outside £2j7. This section aims at building an estimation
of the plastic strain increment vector over the complementary part
Q7 of RID.

As the reduced basis ¥" (k modes) is defined over the entire
domain £2, it can be used to extrapolate the plastic strain AY;; such
that

z=arg minHQA") (25)

ik ik
H(AA") = / <AY,7 STWIAN AY, S W A,liy> dQ (26)
2 i1 i1

I

Then, Eq. (27) can be obtained by combining Eqgs. (25) and (26):

2= I ') v ' ay, 7
ik o

AYw =Y Y ®z Vxelp (28)
i 1

AY(X)=AYp(x) VxeQp (29)

Similar operation is performed for the stress increment vector in
each time step. It should be mentioned that the reduced basis of
the stress increment does not participate to the element selection
and the reduction of the DOFs of the resolved problem. The main
purpose of the introduction of the stress reduced basis is just to
increase the level of accuracy of the equilibrium equation solving
when the stress is extrapolated from the local RID to the global
domain.

3.5. Reduced integration domain (RID) identification

In this part, we are now ready to introduce the mode selection
of the reduced bases and the creation of the RID for the HROM.

3.5.1. Mode selection of the reduced basis

For all reduced bases, we have to define how many modes
should be kept, according to the relative importance of the modes.
To effectively select the modes, an energy norm, a measure of
equivalent plastic strain and the accumulated singular value for
displacement, plastic strain and stress are defined below.

o Energy measure for displacements: Similar to previous works of
Giacoma et al. [17,21] and Boucinha et al. [22], the energy measure
related to displacements is evaluated in order to determine the size
of the reduced basis. The energy measure of the displacement field
integrated over the considered time domain is defined by

t
E= / Au(®)K u(t) dt (30)
0

It can be expressed with a summation on the selected modes as
E=Y" |E, where E; corresponds to the energetic measure
contained in the ith mode:

E=c?W KW, Y] Y, (€20}

where Yj;= 37/ Y,; is the cumulative value of the increme
ntal basis.

e A measure of equivalent plastic strain for the plastic strains:
Similar definition is performed for a measure of equivalent plastic



strain integrated over the considered time domain:

t
EP = / eP(t)" eP(t) dt (32
0
It can be also distributed with a summation on the selected
modes as EP = 3"  Ef, where EP corresponds to a measure of
equivalent plastic strain contained in the ith mode:

B = (P20 @) YIT Y7

where Tﬂ =¥ ",Tf," ; is the cumulative value of the incre
mental basis.

o Size identification for the stress reduced basis: The size of stress
basis is obtained by the singular value accumulation:
p =i 1A

X T
where 4; is the singular value of the stress increment.

For the given ratios, ny = °f ,Ei/E, n, = Y 1 E/E and 1,
the appropriate modes of the reduced bases can be selected for the
increments of displacement, plastic strain and stress.

33

(34)

3.52. Reduced integration domain (RID) construction

The RID must be large enough to get Egs. (23) and (27) well
posed. According to Eq. (23), the RID is formed by the list of the
elements connected to the DOF related to the selected equilibrium
equation. We denote by Ej), the nth version of the set of selected
elements.

The first stage concerns the reduced basis vector W} for the
selected modes 1 <i<k. A loop is applied for each reduced basis
vector to find the maximum absolute values of the vector compo
nent. Then the elements connected with the selected nodes are
chosen as Eg},.

The second stage is related to the largest absolute value of the
component of each vector W! for the selected modes 1<j <k,
and then the corresponding elements are selected as E). It should
be mentioned that only one maximum value is selected for each
reduced basis vector for the first and the second stage.

The RID is finally increased by adding its neighbor elements to
the list, in other words, one layer is added to the list EG),. So the
final selection of RID can be combined by the above selection:

Erip = Eggp U Eggp U Egy

(35
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The global local algorithm implementation for the HROM is
given in Appendix A. Before finishing this subsection, we would
like to regularize the state variables related to the reduced order
model as S:

AU
S=| AY
Ac

The SVD operation is performed for each component of S. Then the
aim is to determine the reduced state variables as defined by AAY,

(36)

AAY and AA”:
SVD(AU) o3V Y’ WU AAY

SVD(S) = SVD(AY) = (I)Y zY TYT i \[‘Y AAY] 37
SViXAo) | | wrzrw” | SR RA"

Besides, the size of the reduced state variables corresponding to
their reduced bases is also related to their components and defined
below:

dim(SVD(AU)) dim(¥")
Sk, =dim(SVD(S)) = | dimSVD(AY)) | = | dim(¥") 38)
dim(SVD(Ao)) dim(¥?)

3.6. Application of the improved HROM to the reference problem

3.6.1. The test problem

The system of interest is a block domain as shown in Fig. 1 and
Table 1, which contains 2601 nodes and 10 240 TET4 elements (4
node linear tetrahedral element with one integration point).
Similar to the multi pass welding, the thermal loading magnitude
vector of Q (720 880 W, with 5% variation of 800 W) is given by
the linear tendency [0---1---1---0---1---1---0], which corresponds to

Table 1
Geometry parameter description.

I, (mm) I, (mm) I; (mm) N.N EN ET H.F (Q)

720-880 W

255 255 12 2601 10240  TET4

Notes: “N.N" means Node Number; “E.N" means Element number; “ET" means
Element type; “H.F" means Heat flux.

Thermal load Q

00 7 14 21 28 35 42

Time steps (ms)

)
7 ‘u Fixed
/Y nﬂ boundaries
1275 z

Fig. 1. Geometry and boundary condition.



the loading time [0---7---14---21---28---35...42] with the total
T=42 millisecond (ms). The thermal source is focused on the top
surface of the centered 8 elements connected with the top middle
node over the space time domain [0, T] x £2, as shown in Fig. 1. The
bottom surface is clamped in all directions. The mechanical and
thermal properties are given in Table 2.

3.6.2. HROM application

To validate the above improved HROM, the reference problem
with a thermal load of 720 W is considered firstly. To define the
size of the reduced bases easily, the normalized singular values and

Table 2
Material parameters of the studied problem.

Notation Name Values
Gy Specific heat capacity 7100]kg 'K !
i Thermal conductivity 461Wm 'K !
» Density 7850kgm 3
E Young's modulus 200 GPa
v Poisson ratio 0.33
a Thermal expansion 1x10 °K !
lad Yield stress 200 MPa
H Hardening modulus 15 GPa
To Initial temperature 25°C
a

Amplitude
Strain energy captured

0.74

10-5 . . . . . . 0.61
0 6 12 18 24 30 36 42

singular value

their equivalent energetic measure (Eq. (31)) and a measure of
equivalent plastic strain (Eq. (32)) are given in Fig. 2. It can be
found that the energy measure and the measure of equivalent
plastic strain occupy more than 90% of the total ones just after
2 modes in Fig. 2(a) and (b), respectively. Moreover, the increment
of the equivalent plastic strains (PEEQ) based on the POD basis for
modes 1, 2, 3 and 8 are given in Fig. 3. In the special case of
confined thermal loading, the distributions of PEEQ of first modes
are always located at the loading position, and the contribution of
the PEEQ to the entire one can be ignored after the 8th mode as
indicated in Fig. 3(d). From accuracy and CPU considerations, the
size of the reduced bases Sg,,, =[6,6,5]" is selected by selecting
truncation ratio of [0.9999, 0.995, 0.8]" for the energy measure, the
measure of equivalent plastic strain and accumulation of the
singular value of the stress, respectively. As a result, only 155
elements are selected based on the selected bases of the displace
ment increment and plastic strain increment for the RID zone.
The online computational ratio “Tz” is defined as the ratio
between the online CPU time of the HROM and that of the full
FEM. All the calculations are performed on 1 CPU and 1024 mb
memory space. Based on the selected modes and the HROM, the
online computational time is given in Fig. 4(b). The HROM plastic
calculation is even faster than the elastic FEM calculations (for
instance see time step 23). Then, a gain of CPU time close to 22 is
obtained finally. Besides, a global level of accuracy less than 10% is

Y1
10° 1

A measure of equivalent plastic strain <
normalized by E” I
[%]
L
2 ﬁ
107+ 109 ©
[e%
g 5]
=] ©
= £
£ g
Singular value (normalized by > o, 5
107 9 ( Yo {08 @
3
[2]
©
(0]
£
<

10°° . . . 0.7

0 8 16 24 32 40

singular value

Normalized singular value

n

10 —

n n n n

0 5 10 15 20

25 30 35 40 45

Number of singular value

Fig. 2. The a posteriori analysis of the first snapshot with SVD decompositions of displacement, plastic strain and stress for Q;

(b) SVD decomposition for AY1 and (c) SVD decomposition for As1.

720 W: (a) SVD decomposition for AU1,
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0.008

- 0.004
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Fig. 3. POD bases related to the displacements and the increments of PEEQ: (a) PEEQ element for mode 1, (b) PEEQ element for mode 2, (c) PEEQ element for mode 3 and

(d) PEEQ element for mode 8.
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Fig. 4. Online comparison between FEM and HROM for the reference: (a) selected elements in RID (155) and (b) online time comparison.

ensured in the global domain as given in Table 3 calculated by the
following equation:

1 Xerom + Xeem |

It should be mentioned that the global stress error is greatly
improved with the reduced stress basis as given in Table 3. With
the same modes for the displacement and plastic strain and the
selected elements in RID, the maximum error decreases from
22.26% to 8.62% while keeping other errors constant. Otherwise,
more elements in the RID are needed to improve the precision of
stress field, then the computational time increases correspondingly.

ex (39)

3.6.3. Evaluation on errors and CPU gain by the truncation ratio

To evaluate the influence of the selected truncation ratio on the
precision and the gain of CPU time, additional 4 sets are given in
Table 4 by considering the case of [0.9999,0.995,0.8]" as the
reference one. Actually, the truncation ratio corresponds to the

Table 3
Result analysis of HROM compared with FEM.

Cases Errors (%) Time

ey e, e, €, Online (s) Tr
HROM with ¥° 592 7.85 230 862 33.04 22.49
HROM without ¥* 592 7.85 230 2226 3426 21.69
FEM - B - - 74327 -

selected number of modes, and the number of modes determines
the number of elements in the RID. By fixing the truncation ratio of
the increments of stress and plastic strain corresponding to case1 and
case2, all errors decrease with the increased truncation ratio of the
displacement increments, while the CPU time increases with more
selected elements in the RIDs (Table 5). Similar tendencies are also
observed for the increased truncation ratios of the stress and plastic



strain corresponding to case2 and case3, case2 and case4 respectively.
Because of the hyper reduction of the present HROM, the errors
decrease slowly when their values approach to 1% in case5, even with
higher truncation ratio. It should be mentioned that the selection of
truncation ratio depends on the desired accuracy or the CPU gain.

4. Grassmann manifold interpolation for the adaptive POD
basis

The POD method produces an orthogonal basis that approxi
mately spans the solution space of the thermo elasto plastic system
for a given parameter value. If we assume that the solution space
varies continuously with the considered parameter, then we could
expect that the corresponding POD basis can reasonably span the
solution space for another parameter value approximately. Of course
it is less optimal than constructing a new POD basis based on the
snapshot at the desired parameter value. Nevertheless, the ultimate
goal is to construct small size RID with acceptable quality based on
the small size POD basis. Thus, we are faced with the question of
how to perform an accurate interpolation based on snapshots.

We define the studied subspace X e R™™ and the truncated
POD basis as ® =[®,,...,D,], where k< m. Hence, the following
subsections will focus on the interpolation between two (®, and
@, ) or more POD bases.

Table 4
Evaluation on errors and CPU gain by the truncation ratio.

Cases Truncation ratio POD bases Elements in RID
Dis. Pla Str. Dis. Pla. St

Casel 0999 0.995 0.8 3 6 5 140

Case2 09999 0.995 08 6 6 5 155

Case3 09999 0.995 09 6 6 10 155

Cased 09999 0.999 0.8 6 14 5 216

Case5 099999 09999 099 12 24 30 323

Notes: “Dis." means Displacement; “Pla.” means Plastic strain; “Str.” means stress.

Table 5

Result analysis by different truncation ratios.
Cases Errors (%) Time

ey €. e, e, Online (s) Tk
Casel 6.52 10.30 4.06 890 3093 24.03
Case2 592 7.85 230 862 33.04 2249
Case3 592 7.85 230 462 3310 2245
Case4 213 349 123 828 36.84 2047
Case5 047 1.09 112 1.71 41.26 18.01
FEM - - - - 74327 -
a

o

W (Geodesic)

G(k, n)
(Manifold)

To construct the small size POD bases, the traditional linear
interpolation does not give linear variation from the aspect of the
geometrical space (the relative angles between POD bases) and
interpolated basis is not unitary even though the selected two POD
bases are unitary [23]. The subspace angle interpolation shows a
good precision for the space interpolation and preserves the
unitary nature of the POD basis, while it is limited to second
order interpolation [24]. Fortunately, the subspace manifold inter
polation overcomes the above problem [25] and is adopted in
this paper.

A manifold is defined as a set of points such that any of these
points has a neighborhood which is homeomorphic to an open set
of an Euclidian space [26]. In this paper, we are interested in the
Grassmann manifold [27], which is defined as the set of k
dimensional linear subspaces of R™:

G(k,n)= {S < R"|IX e R™* span{X} = S, rank{X} =k} (40)

At each point S of the manifold Gk, n), there exists a tangent
space [28] of the same dimension. This space is denoted by 75 and
each of its points y; can be represented by a matrix I' e R™¥, This
space is a vector space which has its origin at the point of tangency.
Hence, 75 is a “flat” space, which is a space in which interpolation
can be performed with traditional methods.

4.1. The second order interpolation

Let POD bases @, e R"** and ®@; e R"*¥ represent two reduced
order bases pre computed at two different values s, and s; of a
physical or modeling parameter s. Let S, and S;, corresponding to
@, and P,, denote the two points of G(k,n) that are spanned by
the columns of the unitary matrices. Let y(t), 0 <t <1, denote the
geodesic (which is defined as the shortest path [25] between two
points of a manifold) between these two points (Sp, S;) with S
chosen as its origin, which means the geodesic on G(k, n) satisfying
y(0)=S, and y(1) =S, (Fig. 5).

The proposed procedure for adapting the two available
reduced order bases to a new value § of s that is different from
both Sp and S can be described in three steps: (1) The selections of
reference point (origin point) Sp and its neighborhood (S; ,.”“ o in
the manifold(S; is only considered for the second order interpola
tion). (2) Mapping Sp and S; from the manifold space G(k, n) to the
tangent space 7, by Eq. (41) (Sp and S; — ¥, =0 and y;, represented
by I'y and T'y). (3) Interpolation at the tangent space 7s, (¥o and
X1 —%. represented by I'). (4) Mapping back from the tangent
space to the manifold space (7 — S, represented by ®):

(1 @y B @y (®;P;)" ' =U T V'(Thin SVD) (41)

The proposed adaption method finally constructs a reduced
order @(s) for one value of the parameter s e [sp,$,] as given in

b

Logs,(S1) = %o
X1

Fig. 5. A graphical description of the interpolation of two subspaces in a tangent space to a Grassmann manifold: (a) Grassmann manifold G(k, n) and (b) interpolation in a

tangent space.



Eq. (42). More details can be referred to [25]: formulation is performed by Eq. (43) to get a new projected basis
% vis 5 I'ng(s) in the tangent plane:

d(s) =dyVcos ((s ) tan 1(E)) +Usin ((s So) tan ‘(2))
1 1

So Ng -1
~ S SA
42 Tne= ) [I—Ti6s) 43)
i 0 j;ﬂ'sl Sj
42. High order interpolation of the manifold method Finally, the matrix T'y,(s) representing y,, e s, is mapped to a

subspace Sy on the Grassmann manifold spanned by a matrix @y

Considering higher order interpolation, the scheme is shown in  Using the exponential Expso, which can be expressed by
Fig. 6. The snapshots are projected onto the tangent plane by
Eq. (41) based on a reference snapshot, then the interpolation

a b
75,G(Na, Ny) S selod S 75,G(Na, Ny)
¢ z Logg=xa/~ &
R 'y -
5 E T Loos %
T
S Enf <

Fig. 6. A graphical description of high order interpolation in a tangent space to a Grassmann manifold: (a) Grassmann manifold G(Ns, Ny) and (b) interpolation in a
tangent space.

Iy, =Uy,En, VY, (ThinSVD) (44)
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Fig. 7. The a posteriori analysis of the second snapshot with SVD decompositions of displacement, plastic strain and stress for Q. 880 W: (a) SVD decomposition for AU2,
(b) SVD decomposition for AY2, (c) SVD decomposition for As2 and (d) RID for snapshot 2 (225).



Dy, = DyVy, cos (X, ) + Uy, sin (Zy,) (45)

The presented second and third order manifold interpolations
will be applied for the parametric studies in the following section.
In addition, in order to reduce the plastic iterations for the yield
elements, the linear interpolated plastic strains of the adopted
snapshots are also employed as the initial values at each time step
for the case of plastic deformation.

5. Parametric studies with adaptive POD basis

We look for the variation of the thermomechanical response
when some parameters change. Here we shall illustrate the
methods of the HROM and the Grassmann manifold interpolation
in the case of variable intensity of the thermal load and the yield

stress. Actually, we want to explore the effect of this variation on
some quantities of interest, with the minimum computational
efforts.

5.1. Thermal loading interpolation

To simplify the problem, two snapshots, corresponding to
720 W and 880 W, are considered in the case of thermal load. In
addition, the selecting truncation ratio of [0.9999,0.995,0.8]"
(corresponding to the energy measure, the measure of equivalent
plastic strain and accumulation of the singular value of the stress,
respectively) is used to determine the modes of the reduced bases,
and 1 maximum component selection of each basis vector is
adopted for selecting elements in RID.

Table 7
Result analysis of the HROM.
Table 6
RID information of five cases. Cases Offline (s) Online (s) Ty emax (%)
Truncation ratio RID bases RID elements Interpolation  Total
Dis. Pla. Str. Dis. Pla. Str. Q1 Q2 Q3 Q4 Q5 HROM with ¢, 0.29 13949 152.86 26.61 9.43
HROM without e,  0.28 131.81 174.48 23.32 8.67
09999 0995 08 6 6 5 155 180 159 186 225 Angle withoute,  0.39 13445  171.58 2370  8.67
Linear withoute,  0.26 13449 17134 23.74  13.70
Notes: “RID” means the reduced integration domain; “Dis.” means Displacement; FEM _ _ 4068.14 - -
“Pla.” means Plastic strain; “Str.” means stress.
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The SVD analysis for snapshot 1 has been given in Fig. 2 of
Section 3.6 for the reference problem. Correspondingly, the SVD
analysis is also performed for snapshot 2 as shown in Fig. 7. It can
be seen that a few modes can represent the global solution. As a
result, the basis size of S, =[6,6, 6]" is selected for snapshot 2. To
obtain small size POD bases of the new set of thermal loads of
760 W, 800 W and 840 W, the basis size of Sg,, =|[6,6, 6" is
selected for the interpolation of two snapshots. Based on the
interpolated POD bases, the selected elements in RID are given in
Table 6. The interpolated RIDs and error distribution by manifold
interpolation are also presented in Fig. 8. As all the selected
elements are within 250 for the plastic calculation compared to
10 240 of the FEM, the online time ratio Tk of 26.61 is obtained for
the 5 cases. Moveover, a level of accuracy smaller than 10% is
ensured for the displacement, the elastic strain, the plastic strain
and the stress as given in Fig. 8(d). It should be mentioned that the
CPU time for the manifold interpolation is only 0.28 s, which is
neglectable compared to the online time. To validate the superiority
of the manifold interpolation for small size POD bases, the CPU time
and maximum errors of linear and angle interpolation [24] are also
given in Table 7. Similar CPU time is found for the traditional linear
interpolation, while it gives the largest error. Besides the CPU time,
the angle interpolation shows the same error as the manifold
interpolation, which agrees with the previous research [25]. Unfor
tunately, the angle interpolation is limited to second order. The
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Fig. 9. The maximum PEEQ for different thermal loads.
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manifold keeps the accuracy and is flexible for high order inter
polation, that is also the reason why it is adopted in this paper.

As the plastic strains are the key parameters for the thermo
elasto plastic analysis, the maximum equivalent plastic strain (PEEQ)
is evaluated for the five thermal loads as given in Fig. 9. Actually, the
element containing the maximum PEEQ is in the selected RID and is
calculated in all the times steps, hence the precision can be
guaranteed, where the maximum error of 1.89% is found for load
800 W. Similar distribution is also founded for the stress.

As presented in Section 4, the known plastic strains of the
snapshots are considered as the initial values of plastic calcula
tion for the parametric studies. The effectiveness of this improve
ment is given in Fig. 10(a). For the time step 7 of thermal load
800 W, the residual decreases greatly after the first iteration and
it converges to 0.01 within 3 following iterations, while 12
iterations are needed to reach the prescribed level of accuracy
without considering the known plastic strains. As a result, the
online time comparison is given in Fig. 10(b), it can be seen that
the online CPU time in the plastic step 7 of the HROM is much
faster (0.28s) than the case without initial plastic strains.
Furthermore, there are no significant difference between elastic
and plastic calculations with the adopted initial plastic strains,
where the online CPU varies from 0.63 s to 0.65 s with time steps
from 23 to 25 in the elastic calculation, and the plastic case is
0.85 s in time step 31.

5.2. Yield stress with high order interpolation

To test the effectiveness of the manifold interpolation, five yield
stresses with a variation of 15% of 200 MPa, 140 MPa, 170 MPa,
200 MPa, 230 MPa and 260 MPa are studied with the thermal load
of 800 W. For two snapshots 140 MPa and 260 MPa and the same
truncation ratio as the thermal load for the reduced basis modes,
the error evolution is given in Fig. 11(a). Unfortunately, the
maximum error is near 20% for the elastic strain, and the errors
of displacement and stress are more than 10% for yield stresses of
170 and 200 MPa with the second order interpolation.

There are two solutions to improve the accuracy: one way is to
increase the size of the reduced basis, while it increases the selected
elements in RID and leads to high computational effort; the other
one is to increase the order of the interpolation, which keeps the
advantage of small size basis. In this paper, we choose the later
solution, then an additional snapshot of 200 MPa (the middle point)

b
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—<— HROM without initial plastic strains
—6—HROM with initial plastic strains
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42

Fig. 10. Online CPU time for the interpolated thermal load of 800 W with or without the initial plastic strains from snapshots: (a) iteration comparison at time step 7 and (b)

online CPU time evolution.
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is selected for the Grassmann manifold interpolation. With the
algorithm described in Fig. 6 and Eq. (43), the third order interpola
tion is implemented. To reduce the computational cost, POD modes
of three snapshots for displacement, the plastic strain and stress are
considered for the interpolation.

Through the interpolation of three snapshots, the new RID
information and error distribution is given in Fig. 11(c). It can been
seen that all the interpolation errors are significantly reduced for
yield stresses of 170 MPa and 230 MPa. Due to the enrichment of
the POD bases, only few additional elements (corresponding to 191
and 169) are selected compared with the second order interpola
tion (162 and 140) as shown in Table 8. The increased element

a
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Fig. 11. The second-order and third-order interpolation for POD bases Sg,,,

selection leads to slightly higher online time as shown in Table 9,
while more than 25 times computational time is still obtained
compared to the full model. It should be mentioned that the
interpolation CPU time can still be ignored compared to the total
time as indicated in Table 9.

Besides the global error distributions, the distributions of the
maximum PEEQ are also given for two and three snapshots interpola
tions in Fig. 11(b) and 11(d), respectively. As the element containing the
maximum PEEQ is always selected in the RID and calculated in all time
steps, slightly influence on the maximum PEEQ is found by the number
of the snapshot, and all the errors are within 2%. However, the number
of snapshot greatly improves the global error distribution due to more
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[6.6.6]" (corresponding to the truncation ratio of 0.9999,0.995,0.8], respectively) for 1 number

selection of the maximum component of each basis vector: (a) errors: 1 and 5 snapshots, (b) the maximum PEEQ: 1 and 5 snapshots, (c) errors: 1, 3 and 5 snapshots and (d)

the maximum PEEQ: 1, 3 and 5 snapshots.

Table 8
RID information for the yield stress with the third-order interpolation.

Snapshots Truncation ratio POD bases Elements in RID
Dis. Pla. Str. Dis. Pla. Str. Y1 Y2 Y3 Y4 Y5
Two 09999 0995 08 6 6 5 199 162 140 140 155
Three 09999 0995 08 6 6 5 199 191 169 140 155
Notes: “Dis.” means Displacement; “Pla.” means Plastic strain; “Str.” means stress;

“Y” means Yield stress.

Table 9
Result analysis for the yield stress with the third-order interpolation.

Snapshots Offline (s) Online (s) Tr emax (%)
Interpolation Total

Two 0.28 129.88 157.17 26.13 19.91

Three 0.40 152.87 159.70 25.72 9.50

FEM - - 4107.62 - -
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accurate POD bases, which are used to extrapolate the obtained results
from the local RID to the entire domain.

6. Conclusions

An improved hyper reduced order model (HROM) for 3D thermo
elasto plastic calculation is introduced in this paper. The reduced bases
of the increments of displacement and plastic strain are used to reduce
the global model to a small reduced integration domain (RID). The stress
reduced basis is also adopted to increase the precision when stress is
projected from the local RID to the global domain. To construct the new
bases for parametric studies, the Grassmann manifold interpolation is
employed, which is possible for high order interpolation and ensures
the small size of the POD bases. In order to reduce the iteration number
of plastic loop, the linear interpolated plastic strains of the adopted
snapshots are also chosen as the initial inputs for the interpolated cases,
then less than 7 iterations are obtained at each time step for the plastic
calculation in the local RID to reach the given level of accuracy.

By the truncation ratio of [0.9999,0.995,0.8]", the reference
problem shows that the HROM can be 22 times faster compared
to the finite element model with small size POD bases and few
elements in the RID, while all the global errors are within 10% for
the displacement, elastic strain, plastic strain and stress. With a
higher truncation ratio of [0.99999,0.9999,0.99]", the maximum
error within 2% can be obtained with the CPU gain of 18. So the

Algorithm 1. Global iterative scheme of the HROM.
inputs:
e Snapshots: AU; AY; Ac
e The external load: Af™, Af", Agth

e The operators : D, B, [B' d©, K, I;
Output:

selection of truncation ratio depends on the desired accuracy or
the CPU gain.

Based on the manifold interpolation for determining the adap
tive POD basses, the parametric study on the variational thermal
loading saves 26 CPU ratio for the interpolated case with the help
of initial plastic information known from the snapshots. Moreover,
the global errors are still controlled within 10%.

With the same truncation ratio of [0.9999,0.995,0.8]" as the
thermal load, and one component selection of each POD basis, the
second order interpolation is not enough for the modified yield
stress of a range of 15%. Instead of increasing the size of the POD
basis and components selection, the third order interpolation
obtains higher precision with the maximum error of 9.5% and
more than 25 CPU ratio is still obtained.

Generally speaking, the HROM coupled with the manifold interpola
tion seems a very good choice for 3D thermo elasto plastic calculations.
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Appendix A. Iteration algorithm

The final iterative algorithm of the method given in Algorithm 1.

e The full field of the modified problem: U;, e?, €, 6;

/% Calculation of reduced basis %/
11 ‘I‘U<S£AUref;
12 WyﬂAYref;
13 o (52 Ao—ref:
14 Select the reduced integration domain (RID)
/% Loop over the modified problems %/
15 for each modified problem Af* do
// Start the loop on each time step
1.6 fort=1...T do
/l Local global iterative scheme
/! Determine the initial estimation of the displacements
17 (PUHTITILKYPY) AL (1) = (PY)T I TL(AF (1) + AF (1))
18 Aui(t) =PY AL/ (1)
/! Determination of the increments by RID (local problem)
19 Auy(t), Aeh.(t), Appi(t), Aopi(t). «—(See Algorithm 2)
. AYi(t) = {AgP (D)
/! Extrapolation of the plastic strain to the whole domain
111 T T
12 A= TITIN W) "W ILT I AY(t)
AY;(t) =P AL (D)
113 /! Then the increment of plastic strain can be obtained
114 AgP(t), Ap;(t). Similar is done for the stress
115 Agé(t) = AB Auy(t) AgP(t) Aelh(t)
end
1.16 end
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Algorithm 2. Local iterative scheme of the HROM.

inputs:

e Increments: AA{ (), AF™(6), Af(1), Aeth(t)
e Operator functions: D, B, [B' d, K, ¥, ¥, II;

outputs:

e Increments of time step t: Au;(t), Ael,(t), Apmi(t), Aoyt

[* Local iterative scheme: initiation of the increments for plastic strain %/
21 Ael(t)=0; AfP(H)=0; R-=10"2.
[# Index;oo, = 1. (1 : continue; 0 : stop.) %/
2.2 while Index;,o, = 1. do
23 Agi(t) = BAu(t),
/l Loop all the elements over RID
24 for n=1...Nyp do
25 Ac;i(t,n) =DAg;(t,n)
2.6 6i(t,n) =o;(t,n)+ Aci(t,n)
2.7 Calculate yield function, f(o;i(t,n), p;(t,n))
28 if f > 0 then
29 AXi(t,n) =5,
Agl(t,n) = % Ali(t,n),
2.10 Agl(t,n) = Agi(t,n) Agf(t,n) Aeh(t,n),
211 Aci(t,n) =DAgS(t,n)
Api(t,n)= Ai(t,n)
212 else
213 Ali(t,n)=0, Aef(t,n)=0, Agi(t,n)= Ag(t,n),
214 Aci(t,n) =DAgS(t,n)
end
215 end
216 Af{ ()= [BTAel(t) dQ2
/! Check the equilibrium within the RID
2.17 Rep = (W' I} I K W) AL () W' TO] X0; (AFE(6)+ AF(6)+ AFP(t))
218 if IRgp | > =R, then
219 /! Determine the displacements due to the plastic balance force
220 U I 10, K WY) AAYP (0 = (PY)T T] 1, Af(r)
521 AwP(t) =Y AP ()
222 Au;(t) = Aui(t) + Aul'(t)
223 else
/! Stop loop : loop index is given to 0
Indexioop =0
Return Agl(t), Ap;(t)
end
224 end
References [6] D. Ryckelynck, Hyperreduction of mechanical models involving internal vari-

[1] S. Ganapathysubramanian, N. Zabaras, Design across length scales: a reduced-
order model of polycrystal plasticity for the control of microstructure-sensitive
material properties, Comput. Methods Appl. Mech. Eng. 193 (2004) 5017-5034.

[2] D. Daescu, I. Navon, Efficiency of a pod-based reduced second-order adjoint
model in 4d-var data assimilation, Int. J. Numer. Methods Fluids 53 (6) (2007)
985-1004.

[3] M. Khalila, S. Adhikarib, A. Sarkara, Linear system identification using proper
orthogonal decomposition, Mech. Syst. Signal Process. 21 (8) (2007)
3123-3145.

[4] O. Balima, Y. Favennec, M. Girault, D. Petit, Comparison between the modal
identification method and the pod-Galerkin method for model reduction in
nonlinear diffusive systems, Int. J. Numer. Methods Eng. 67 (7) (2006) 895-915.

[5] S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta, Real-time deformable models of
non-linear tissues by model reduction techniques, Comput. Methods Progr.
Biomed. 91 (2008) 223-231.

ables, Int. J. Numer. Methods Eng. 77 (2009) 75-89.

[7] T. Bui-Thanh, M. Damodaran, K. Willcox, Aerodynamic data reconstruction and
inverse design using proper orthogonal decomposition, AIAA ]. 42 (2004)
1505-1516.

[8] D. Ryckelynck, D. Benziane, Multi-level a priori hyper-reduction of mechanical
models involving internal variables, Comput. Methods Appl. Mech. Eng. 199
(2010) 1134-1142.

[9] Y. Maday, N. Nguyen, A. Patera, S. Pau, A general multipurpose interpolation
procedure: the magic points, Commun. Pure Appl. Anal. 8 (2009) 383-404.

[10] S. Chaturantabut, D. Sorensen, Nonlinear model reduction via discrete empiri-
cal interpolation, SIAM ]. Sci. Comput. 32 (2010) 2737-2764.

[11] A. Radermacher, S. Reese, Model reduction in elastoplasticity: proper ortho-
gonal decomposition combined with adaptive sub-structuring, Comput. Mech.
54 (2014) 677-687.

[12] F. Galland, A. Gravouil, E. Malvesin, M. Rochette, A global model reduction
approach for 3d fatigue crack growth with confined plasticity, Comput.
Methods Appl. Mech. Eng. 200 (2011) 699-716.

14



[13] P. Kerfriden, P. Gosselet, S. Adhikari, S. Bordas, Bridging proper orthogonal
decomposition methods and deflated Newton-Krylov algorithms: an adaptive
model order reduction for highly nonlinear mechanical problems, Comput.
Methods Appl. Mech. Eng. 200 (2010) 850-866.

[14] N. Relun, D. Néron, P. Boucard, A model reduction technique based on the pgd
for elastic-viscoplastic computational analysis, Comput. Mech. 51 (2013)
83-92.

[15] P. Ladeveze, D. Neron, J. Passieux, On a multiscale computational mechanics
with time-space homogenization, in: J. Fish (Ed.), Multiscale Methods: Brid-
ging the Scales in Science and Engineering, vol. 26, 2010, pp. 247-282.

[16] Y. Vetyukov, ]. Gerstmay, H. Irschik, Fixed-point type iterations in numerical
simulations for static and dynamic elastoplasticity, in: PAMM, Proceedings in
Applied Mathematics and Mechanics, vol. 3, 2003, pp. 318-319, doi:http://dx.
doi.org/10.1002/pamm.200310431.

[17] A. Giacoma, D. Dureisseix, A. Gravouil, M. Rochette, A multiscale large time
increment/fas algorithm with time-space model reduction for frictional con-
tact problems, Int. J. Numer. Methods Eng. 97 (3) (2014) 207-230.

[18] C. Coulomb, Théorie des machines simples, Mémoires de I'’Académie des
Sciences, Paris, 1785.

[19] Y. Zhang, V. Roulet, A. Combescure, Hyper reduced-order model on thermal
elasto-plastic calculation, in: Computational Methods in Manufacturing Pro-
cesses, Saint-Etienne, France, 2014.

[20] A. Combescure, V. Roulet, Réduction de modéle pour I'étude efficace de la
sensibilité aux variations de parameétres matériaux - application a la

15

modélisation d'un probléme de thermique transitoire, Technical Report,
LaMCoS, INSA de Lyon, rapport d'avancement pour la Chaire AREVA-
SAFRAN., Mars 2012.

[21] A. Giacoma, D. Dureisseix, A. Gravouil, M. Rochette, Toward an optimal a priori
reduced basis strategy for frictional contact problems with latin solver,
Comput. Methods Appl. Mech. Eng. 283 (2014) 1357-1381.

[22] L. Boucinha, A. Ammar, A. Gravouil, A. Nouy, Ideal minimal residual-based
proper generalized decomposition for non-symmetric multi-field models -
application to transient elastodynamics in space-time domain, Comput.
Methods Appl. Mech. Eng. 273 (2014) 56-76.

[23] T. Lieu, M. Lesoinne, Parameter adaptation of reduced order models for three-
dimensional flutter analysis, in: 42nd AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, 2004.

[24] T. Lieu, C. Farhat, Adaptation of aeroelastic reduced-order models and applica-
tion to an f-16 configuration, AIAA ]. 45 (6) (2007) 1244-1257.

[25] D. Amsallem, C. Farhat, Interpolation method for adapting reduced-order
models and application to aeroelasticity, AIAA J. 46 (7) (2008) 7499-7506.

[26] S.S. Chern, W.H. Chen, K.S. Lam, Lectures on Differential Geometry, World
Scientific, Reading, MA, 2003.

[27] D. Amsallem, Interpolation on manifolds of cfd-based fluid and finite element-
based structural reduced-order models for on-line aeroelastic prediction (Ph.D.
thesis), Stanford University, 2010.

[28] E. Edelman, T. Arias, S. Smith, The geometry of algorithm with orthogonality
constraints, SIAM J. Matrix Anal. Appl. 29 (2) (1999) 303-353.



	Efficient hyper reduced-order model (HROM) for parametric studies of the 3D thermo-elasto-plastic calculation
	Introduction
	Problem description
	Material constitutive model
	FE discretization and equilibrium equation

	Hyper reduced-order modeling
	Singular value decomposition (SVD)
	Reduced basis definition
	POD reduced-order model
	Hyper reduced-order model (HROM)
	Reduced integration domain (RID) identification
	Mode selection of the reduced basis
	Reduced integration domain (RID) construction

	Application of the improved HROM to the reference problem
	The test problem
	HROM application
	Evaluation on errors and CPU gain by the truncation ratio


	Grassmann manifold interpolation for the adaptive POD basis
	The second-order interpolation
	High-order interpolation of the manifold method

	Parametric studies with adaptive POD basis
	Thermal loading interpolation
	Yield stress with high-order interpolation

	Conclusions
	Acknowledgments
	Iteration algorithm
	References


