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method [7]. This clever approach named hyper reduced order
model (HROM) enables the further computational reduction com
pared with the POD reduction model. However, the time saving is
only limited to 75% in the elasto plastic calculation. Later, Ryck
elynck and Benziane [8] developed the A Priori Hyper Reduction
method (APHR) for nonlinear mechanical problems involving inter
nal variables, and a multi level formulation is introduced to focus on
the capability of the method to perform efficient parallel computa
tions, where the best computational saving of 97% is obtained.

Besides, a modified POD strategy of the empirical interpolation
method (EIM) is suggested by Maday et al. [9], which reduces the
evaluation of the nonlinear term in the reduced model to a level
proportional to the number of POD based reduced variables. Based
on the EIM, the discrete empirical interpolation method (DEIM) is
proposed by Chaturantabut and Sorensen [10]. The essential of EIM
or DEIM is to replace the orthogonal projection in the Galerkin
scheme with an interpolatory projection within the selected
interpolation points for approximating the nonlinearities. Similar
to the HROM, the high efficiency is obtained as it only evaluates the
nonlinearities at a few interpolation points.

Concerning the elasto plastic problem, Radermacher and Reese
[11] proposed an adaptive method of sub structure based on the
selective POD, where the reduction is only applied in sub domains
with approximately elastic behavior. Then the POD basis is adapted
with the selected sub domain, while further research is needed on
the efficiency. Moreover, the POD based reduction method has
been also extended to inelastic structures including cracks [12],
where the global model reduction strategy is developed by mixing
both the a posteriori and a priori approaches to simulate the crack
propagation. Moreover, the damage initiation problems are also
addressed by the POD hyper reduction model when strong topo
logical changes are involved [13].

Recently, Relun et al. [14] have developed a reduction model
based on the proper generalized decomposition (PGD) method for
elastic viscoplastic computational analysis, but similar computa
tional time is found compared with FEM. In addition, the reference
points method (RPM) is proposed by Ladeveze et al. [15] to
decrease the computational complexity of algebraic operations in
the framework of the PGD.

Generally speaking, the reduced methods of POD and PGD show
potentials to decrease the computational efforts for the elasto
plastic problems, while the hyper reduced order model (HROM) on
thermo elasto plastic calculation has not been reported. This paper
focuses on the HROM applied to highly localized 3D thermo elasto
plastic calculation. The first aim of the present paper is to reduce
the computational effort significantly by the HROM. Moreover, the
precision of stress field is improved by using an additional stress
basis in order to recover more efficiently balance equations such as
the equilibrium equation. The second aim of the present paper is to
perform parametric studies for the parameters of interest. The
Grassmann manifold interpolation is then adopted for the adaptive
POD basis corresponding to the modified parameter, and the
known plastic strains of the the reference cases with full FEM
calculations are considered as the initial value of the plastic
calculation to accelerate the convergence rate for the parametric
studies.

The 3D thermo elasto plastic calculation is presented in the
context of hyper reduced order model coupled with Grassmann
manifold interpolation, and the structure of this paper is organized
as follows: firstly, the thermo elasto plastic reference problem is
presented. Secondly, the hyper reduced order model and its
improvement is introduced, the evaluation criteria of the POD
basis number are developed. The high efficiency of the improved
HROM is validated by comparing with the reference solution.
Thirdly, the Grassmann manifold interpolation is presented for
determining the POD basis corresponding to the modified value of

the parameter of interest. Fourthly, the parametric studies on the
variational thermal loading and yield stress are performed to
validate the accuracy and the versatility of the proposed method.

2. Problem description

In this section, a structure (Ω) which obeys to usual thermo
elasto plastic equations is employed. The thermo elasto plastic
process subjected to a transient thermal load and usual boundary
condition is typically assumed to weakly coupled. The temperature
profile is assumed to be independent of stresses and strains.
Therefore a heat transfer analysis is performed initially, and the
results are imported for the stress analysis. The material constitu
tive model and the equilibrium equation are given in the below
sub section.

2.1. Material constitutive model

A linear isotropic hardening is considered for the thermo
elasto plastic calculation. The strain rate tensor _ε is split into the
elastic, plastic and thermal parts: _ε

e, _ε
p and _ε

th, respectively:

ε ¼ ε
e
þε

p
þε

th
ð1Þ

The equivalent plastic strain (PEEQ) pwith the plastic multiplier
is defined by

_p ¼ J
2
3

_ε
p
J ¼ _λ ð2Þ

The free energy is assumed to be of the following form:

ω¼ 1
2 ε ε p ε th
� �T

: D : ðε ε p ε thÞþ1
2 Hp2 ð3Þ

where D and H are Hooke's tensor and hardening modulus for
linear isotropic hardening, respectively. The thermal strain can be
defined by ε th ¼ αΔTI , where α is the thermal expansion coeffi
cient, and ΔT is the temperature increment.

The yield surface is defined by the function f:

f ðσ ;pÞ ¼ σ : M : σ

r

ðσ0þHpÞ ð4Þ

where σ0 is the initial yield stress, and M is the stress operator

tensor for von Mises calculation. It should be mentioned that a
fixed point type iteration strategy is suggested for the determina

tion of the plastic multipliers λ [16]. Once λ is determined, the
plastic strain ε p can be obtained, then the stress can be expressed

by

ε e ¼ ε ε th ε p

σ ¼D : ε e ð5Þ

2.2. FE discretization and equilibrium equation

The discretized FE weak form for the thermo elasto plastic
problem involves

f
int
ðutnþ 1 Þ ¼ f

ext
ðtnþ1Þ ð6Þ

where we introduce the state variable XðtnÞ ¼ fu εp σgTn , which is
known at time step tn, while Xðtnþ 1Þ ¼ fu σ εpg

T
nþ1 is not known.

In this case, the thermal and mechanical properties are weakly
coupled. In a first stage, the temperature field Tðtnþ1Þ is calculated
and the external force f

ext
ðtnþ1Þ at time step tnþ1 is given. Then the

corresponding internal and external generalized node forces for a
given degree of freedom (DOF) can be introduced by the FE
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definition:

f
int
i ¼

Z

Ω
Tr½σ ε ðφ

i
Þ� dΩ

f
ext
i ¼

Z

∂Ω
F
d
:φ

i
dSþ

Z

Ω
f
d
:φ

i
dΩ ð7Þ

where φ
i
is the corresponding shape function of the DOF.

By the strain rate relationship Eq. (5) it induces
Z

Ω
Tr½ε D ε ðφ

i
Þ� dΩ¼ f

ext
i þ

Z

Ω
Tr½ε p D ε ðφ

i
Þ� dΩþ

Z

Ω
Tr½ε th D ε ðφ

i
Þ� dΩ

ð8Þ

Then the equilibrium equation at time step tnþ1 for the whole
model can be expressed by

Ku¼ f
ext

þf
th
þf

p
ð9Þ

with the following definitions in standard Voigt notation:

K¼

Z

Ω
BTDB dΩ the constant stiffness matrix;

f
ext

¼

Z

∂Ω
NTFd dSþ

Z

Ω
NT fd dΩ

f
th
¼

Z

Ω
BTDεth dΩ the thermal balance forces;

f
p
¼

Z

Ω
BTDεp dΩ the plastic internal forces:

In this paper, we consider a fixed point approach as the notation
solver. Here, we can introduce the corresponding linearized system
for a given nonlinear iteration kþ1:

K iþ1
T δukþ1 ¼ resk ð10Þ

where K iþ1
T is the tangent stiffness and δukþ1 is the displacement

increment in iteration kþ1, with the residual

resk ¼ f
int
k f

ext

or

resk ¼Kuk f
ext

f
th

f
p
k ð11Þ

In the fixed point method, the tangent stiffness is equal to
constant (initial) stiffness by KT ¼ KT ðu

0 ¼ 0Þ ¼K (the elastic stiff
ness in Eq. (9)), which avoids the constructions of the tangent
stiffness in all iterations. Actually, the fixed point method is a
modified Newton Raphson iteration scheme and considers the
updated plastic internal force as the external force in each itera
tion. As the increment form is adopted in this paper, the final
equilibrium equation is expressed by

KΔu¼Δf
ext

þΔf
th
þΔf

p
ð12Þ

where Δ is defined as the parameter increment between time steps
tnþ1 and tn.

3. Hyper reduced-order modeling

Concerning the thermo elasto plastic calculation, the incre
mental form is adopted for all quantities, which are considered
as the varying rate of the discretized quantities. The POD bases are
obtained from the singular value decomposition (SVD) for the
parameters of interest. The increment of the displacement field (for
3D model of n degrees of freedom (DOFs) and m time steps) can be
defined by

ΔU¼

Δu1ðt1Þ Δu1ðt2Þ ⋯ Δu1ðtmÞ

Δu2ðt1Þ Δu2ðt2Þ ⋯ Δu2ðtmÞ

⋮ ⋮ ⋱ ⋮

Δunðt1Þ Δunðt2Þ ⋯ ΔunðtmÞ

2

6

6

6

6

4

3

7

7

7

7

5

¼ ½Δuðt1Þ Δuðt2Þ ⋯ ΔuðtmÞ� ð13Þ

where ΔUAR
n�m is a rectangular matrix. In the next paragraph,

the SVD decomposition of ΔU is introduced [17,18].

3.1. Singular value decomposition (SVD)

By the SVD decomposition, the snapshot matrix of the collected
increment of displacement ΔU can be

ΔU¼Φ Σ ϒ
T
¼ ½Φ1 ⋯ Φn�

σ1 0 ⋯ 0

0 σ2 ⋮

⋮ ⋱ 0

0 ⋯ 0 σm

0 ⋯ 0 0

⋮ ⋯ ⋮ ⋮

0 ⋯ 0 0

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

ϒ
T
1

⋮

ϒ
T
m

2

6

6

4

3

7

7

5

ð14Þ

where ΦAR
n�n is a unitary matrix containing space vectors,

ϒAR
m�m a unitary matrix containing time vectors, and ΣAR

n�m

contains diagonal and non negative singular values σi in the dec
reasing order.

� Thin (or economy sized) SVD: In the case of thin SVD, the above
decomposition can be expressed by Eq. (15) with m{n:

ΔU¼Φ Σ ϒ
T
¼ ½Φ1 ⋯ Φm�

σ1 0 ⋯ 0

0 σ2 ⋮

⋮ ⋱ 0

0 ⋯ 0 σm

2

6

6

6

4

3

7

7

7

5

ϒ
T
1

⋮

ϒ
T
m

2

6

6

4

3

7

7

5

ð15Þ

Actually, the space vector Φi is combined with time vector ϒi

scaled with the singular value σi. As a result, the displacement
increment can be written as a sum of the product of space vector,
its singular value and time vector within mode m:

ΔU¼Φ1 σ1 ϒ
T
1þΦ2 σ2 ϒ

T
2þ⋯þΦi σi ϒ

T
i þ⋯þΦm σm ϒ

T
m

ð16Þ

which can also be expressed as

ΔU¼ σ1Φ1 � ϒ1þσ2Φ2 � ϒ2þ⋯þσiΦi � ϒiþ⋯þσmΦm � ϒm

ð17Þ

� Truncated SVD: The following decomposition of Eq. (18) is the
rank k truncated (or partial) SVD of ΔU, where krrrm and r is
the rank ofΔU. The truncated SVD is the most common form of the
SVD for applications:

ΔU�Φ1 σ1 ϒ
T
1þΦ2 σ2 ϒ

T
2þ⋯þΦi σi ϒ

T
i þ⋯þΦk σk ϒ

T
k ð18Þ

3.2. Reduced basis definition

Based on the POD basis from the SVD as presented in Eq. (14),
we define the reduced basis [19,20] by

Ψ
U
¼ΦΣ ð19Þ

Then Eq. (14) can be replaced by

ΔU¼Ψ
U
ΔΛ

U
ð20Þ

where ΔΛ
U
¼VT is the time reduced state variable. The reduced

basis is also applied for the decomposition of the increments of
plastic strain and stress in this paper.

Finally, ΨU , ΨY and Ψ
σ are defined as the space reduced bases

of the increments of displacement, plastic strain and stress,
respectively. Indeed, it will be shown that the choice of these state
variables is essential for the effectiveness of the HROM.
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3.3. POD reduced order model

The POD method is actually a model reduction technique
projected on a small dimensional subspace Ψ [11]. Based on
FEM, the discrete form of the equilibrium equation can be
expressed as Eq. (21) at any time t by selecting the first modes of
Ψ

U containing the largest part of “energy” of all the modes:

½ðΨ
U
ÞTKΨ

U
�Δλ

U
¼ ðΨ

U
ÞT ðΔf

ext
þΔf

th
þΔf

p
Þ ð21Þ

The resolution of this system, which reduces the unknowns from
n (the degree of freedom of the system) to k (the selected mode
number of ΨU), is very fast but gives an approximation of the
solution Δu�Ψ

U
Δλ

U . It can be noticed that the main drawback of
Eq. (21) is the use of the full K matrix on the left hand side. In
practice, only selected DOFs of K are considered (see Section 3.4).

As all the elements are needed to determine the correct plastic
deformation for the elasto plastic calculation, the constitutive
equation represents more than 80% of the computational effort
and only less than 20% CPU times are saved by the classical POD
reduction method, although the number of the primary variables is
divided by an amazing factor of n=k [6]. So this solution needs to be
improved by high efficiency while keeping the accuracy.

3.4. Hyper reduced order model (HROM)

� Petrov Galerkin formulation: It should be mentioned that the
POD reduction method does not modify the number of constitutive
equations that must be solved to estimate the displacement field.
Indeed, it keeps the computational effort for the plastic calculation
in the local domain. One way to reduce the number of constitutive
equations is the creation of a reduced integration domain (RID),
where the calculation of constitutive equations is only considered.
Moreover, the orthogonal condition in Eq. (21) does not mean that
all the residuals of the equilibrium equations must be equal to zero.
In fact, it allows us to introduce a RID only on a part of the global
domain. A rectangular boolean matrix Π allows to perform the
selection according to the following formulation:

ΠKΔu¼ΠðΔf
ext

þΔf
th
þΔf

p
Þ ð22Þ

By introducing a truncated orthogonal condition for these
selected equations, the hyper reduced formulation of the govern
ing equations of the ROM is obtained:

ððΨ
U
ÞTΠ

T
ΠKΨ

U
ÞΔλ

U
¼ ðΨ

U
ÞTΠ

T
ΠðΔf

ext
þΔf

th
þΔf

p
Þ ð23Þ

Then the residual of the hyper reduced formulation can be
expressed by

RRID ¼ ððΨ
U
ÞTΠ

T
ΠKΨ

U
ÞΔλ

U
ðΨ

U
ÞTΠ

T
ΠðΔf

ext
þΔf

th
þΔf

p
Þ ð24Þ

For the matrixΠl�nKn�nΨ
U
n�k, l should be larger than k, it means

that the rank of this matrix must be equal to the number of the
reduced state variables k.

For the POD reduction method, it only reduces the number as
follows: ðΨ

U
ÞT ðΔf

ext
þΔf

th
þΔf

p
Þ, but it covers all DOFs for the

calculation of the constitutive model. The Petrov Galerkin formu
lation, in terms of ðΨ

U
ÞTΠ

T
Π ðΔf

ext
þΔf

th
þΔf

p
Þ, points out the

selected DOFs by Πl�n ðΔf
ext

þΔf
th
þΔf

p
Þn�1, where only l equa

tions are adopted. Therefore, the purpose of the hyper reduced
problem is to find the reduced state variables Δλ

U such that
Δu¼Ψ

U
Δλ

U by the selected DOFs.
� The extrapolation of the plastic strain and stress: Concerning the

plastic calculation, the plastic strain increment vector is introduced
as a column vector ΔY¼ fΔε pg of the plastic strain tensor field.

Similar to the displacement increment reduced basis, the plastic
strain increment reduced basis is calculated on a matrix containing
all solutions for each time tðtrmÞ for the reference problem,

which is given by ΔYref ¼ ½ΔY1…ΔYm�. By performing the SVD, we
can obtain the modes ΨY for the plastic strains.

The components of the plastic strain increment vector ΔYi

calculated inside the RID (reduced integration domain, ΩΠ) are
defined in a vector YΠ in each time step, in other words the
components of the plastic strain increment vector ΔYi are not
computed outside ΩΠ . This section aims at building an estimation
of the plastic strain increment vector over the complementary part
ΩΠ of RID.

As the reduced basis ΨY (k modes) is defined over the entire
domainΩ, it can be used to extrapolate the plastic strainΔYΠ such
that

z¼ arg minHðλY Þ ð25Þ

HðΔλ
Y
Þ ¼

Z

ΩΠ

ΔYΠ

X

i k

i 1

Ψ
Y
i Δλ

Y
i ;ΔYΠ

X

i k

i 1

Ψ
Y
i Δλ

Y
i

* +

dΩ ð26Þ

Then, Eq. (27) can be obtained by combining Eqs. (25) and (26):

z¼ ðΨ
Y T
Π

Y T
Π

Y
Ψ

Y
Þ�1

Ψ
Y T
Π

Y T
Π

Y
ΔYΠ ð27Þ

ΔYðxÞ ¼
X

i k

i 1

Ψ
Y
i ðxÞ zi 8xAΩΠ ð28Þ

ΔYðxÞ ¼ΔYΠ ðxÞ 8xAΩΠ ð29Þ

Similar operation is performed for the stress increment vector in
each time step. It should be mentioned that the reduced basis of
the stress increment does not participate to the element selection
and the reduction of the DOFs of the resolved problem. The main
purpose of the introduction of the stress reduced basis is just to
increase the level of accuracy of the equilibrium equation solving
when the stress is extrapolated from the local RID to the global
domain.

3.5. Reduced integration domain (RID) identification

In this part, we are now ready to introduce the mode selection
of the reduced bases and the creation of the RID for the HROM.

3.5.1. Mode selection of the reduced basis

For all reduced bases, we have to define how many modes
should be kept, according to the relative importance of the modes.
To effectively select the modes, an energy norm, a measure of
equivalent plastic strain and the accumulated singular value for
displacement, plastic strain and stress are defined below.

� Energy measure for displacements: Similar to previous works of
Giacoma et al. [17,21] and Boucinha et al. [22], the energy measure
related to displacements is evaluated in order to determine the size
of the reduced basis. The energy measure of the displacement field
integrated over the considered time domain is defined by

E¼

Z t

0
ΔuðtÞTK uðtÞ dt ð30Þ

It can be expressed with a summation on the selected modes as
E¼

Pm
i 1 Ei, where Ei corresponds to the energetic measure

contained in the ith mode:

Ei ¼ σ2
i Ψ

T
i K Ψi ϒ

T
i ϒ

0

i ð31Þ

where ϒ
0

j;i ¼
Pr j

r 1ϒr;i is the cumulative value of the increme
ntal basis.

� A measure of equivalent plastic strain for the plastic strains:
Similar definition is performed for a measure of equivalent plastic
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the loading time ½0⋯7⋯14⋯21⋯28⋯35⋯42� with the total
T¼42 millisecond (ms). The thermal source is focused on the top
surface of the centered 8 elements connected with the top middle
node over the space time domain ½0; T � �Ω, as shown in Fig. 1. The
bottom surface is clamped in all directions. The mechanical and
thermal properties are given in Table 2.

3.6.2. HROM application

To validate the above improved HROM, the reference problem
with a thermal load of 720 W is considered firstly. To define the
size of the reduced bases easily, the normalized singular values and

their equivalent energetic measure (Eq. (31)) and a measure of
equivalent plastic strain (Eq. (32)) are given in Fig. 2. It can be
found that the energy measure and the measure of equivalent
plastic strain occupy more than 90% of the total ones just after
2 modes in Fig. 2(a) and (b), respectively. Moreover, the increment
of the equivalent plastic strains (PEEQ) based on the POD basis for
modes 1, 2, 3 and 8 are given in Fig. 3. In the special case of
confined thermal loading, the distributions of PEEQ of first modes
are always located at the loading position, and the contribution of
the PEEQ to the entire one can be ignored after the 8th mode as
indicated in Fig. 3(d). From accuracy and CPU considerations, the
size of the reduced bases SRDim

¼ ½6;6;5�T is selected by selecting
truncation ratio of ½0:9999;0:995;0:8�T for the energy measure, the
measure of equivalent plastic strain and accumulation of the
singular value of the stress, respectively. As a result, only 155
elements are selected based on the selected bases of the displace
ment increment and plastic strain increment for the RID zone.

The online computational ratio “TR” is defined as the ratio
between the online CPU time of the HROM and that of the full
FEM. All the calculations are performed on 1 CPU and 1024 mb
memory space. Based on the selected modes and the HROM, the
online computational time is given in Fig. 4(b). The HROM plastic
calculation is even faster than the elastic FEM calculations (for
instance see time step 23). Then, a gain of CPU time close to 22 is
obtained finally. Besides, a global level of accuracy less than 10% is

Table 2

Material parameters of the studied problem.

Notation Name Values

Cp Specific heat capacity 710.0 J kg 1 K 1

λ Thermal conductivity 46.1 W m 1 K 1

ρ Density 7 850 kg m 3

E Young's modulus 200 GPa
ν Poisson ratio 0.33
α Thermal expansion 1�10 5 K 1

σ
y Yield stress 200 MPa
H Hardening modulus 15 GPa
T0 Initial temperature 25 1C
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Fig. 2. The a posteriori analysis of the first snapshot with SVD decompositions of displacement, plastic strain and stress for Q1 720 W: (a) SVD decomposition for ΔU1,
(b) SVD decomposition for ΔY1 and (c) SVD decomposition for Δσ1.
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ΦNR
¼Φ0VNR

cos ΣNR

� �

þUNR
sin ΣNR

� �

ð45Þ

The presented second and third order manifold interpolations
will be applied for the parametric studies in the following section.
In addition, in order to reduce the plastic iterations for the yield
elements, the linear interpolated plastic strains of the adopted
snapshots are also employed as the initial values at each time step
for the case of plastic deformation.

5. Parametric studies with adaptive POD basis

We look for the variation of the thermomechanical response
when some parameters change. Here we shall illustrate the
methods of the HROM and the Grassmann manifold interpolation
in the case of variable intensity of the thermal load and the yield

stress. Actually, we want to explore the effect of this variation on
some quantities of interest, with the minimum computational
efforts.

5.1. Thermal loading interpolation

To simplify the problem, two snapshots, corresponding to
720 W and 880 W, are considered in the case of thermal load. In
addition, the selecting truncation ratio of ½0:9999;0:995;0:8�T

(corresponding to the energy measure, the measure of equivalent
plastic strain and accumulation of the singular value of the stress,
respectively) is used to determine the modes of the reduced bases,
and 1 maximum component selection of each basis vector is
adopted for selecting elements in RID.
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Fig. 8. Computational results for POD bases SRDim
½6;6;5�T (corresponding to the truncation ratio of ½0:9999;0:995;0:8�T ) for 1 number selection of the maximum

component of each basis vector in the case of manifold interpolation: (a) RID2(180 elements), (b) RID3(159 elements), (c) RID4(186 elements) and (d) error distribution.

Table 6

RID information of five cases.

Truncation ratio RID bases RID elements

Dis. Pla. Str. Dis. Pla. Str. Q1 Q2 Q3 Q4 Q5

0.9999 0.995 0.8 6 6 5 155 180 159 186 225

Notes: “RID” means the reduced integration domain; “Dis.” means Displacement;
“Pla.” means Plastic strain; “Str.” means stress.

Table 7

Result analysis of the HROM.

Cases Offline (s) Online (s) TR emax ð%Þ

Interpolation Total

HROM with εp 0.29 139.49 152.86 26.61 9.43
HROM without εp 0.28 131.81 174.48 23.32 8.67
Angle without εp 0.39 134.45 171.58 23.70 8.67
Linear without εp 0.26 134.49 171.34 23.74 13.70
FEM – – 4068.14 – –
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The SVD analysis for snapshot 1 has been given in Fig. 2 of
Section 3.6 for the reference problem. Correspondingly, the SVD
analysis is also performed for snapshot 2 as shown in Fig. 7. It can
be seen that a few modes can represent the global solution. As a
result, the basis size of SRDim

¼ ½6;6;6�T is selected for snapshot 2. To
obtain small size POD bases of the new set of thermal loads of
760 W, 800 W and 840W, the basis size of SRDim

¼ ½6;6;6�T is
selected for the interpolation of two snapshots. Based on the
interpolated POD bases, the selected elements in RID are given in
Table 6. The interpolated RIDs and error distribution by manifold
interpolation are also presented in Fig. 8. As all the selected
elements are within 250 for the plastic calculation compared to
10 240 of the FEM, the online time ratio TR of 26.61 is obtained for
the 5 cases. Moveover, a level of accuracy smaller than 10% is
ensured for the displacement, the elastic strain, the plastic strain
and the stress as given in Fig. 8(d). It should be mentioned that the
CPU time for the manifold interpolation is only 0.28 s, which is
neglectable compared to the online time. To validate the superiority
of the manifold interpolation for small size POD bases, the CPU time
and maximum errors of linear and angle interpolation [24] are also
given in Table 7. Similar CPU time is found for the traditional linear
interpolation, while it gives the largest error. Besides the CPU time,
the angle interpolation shows the same error as the manifold
interpolation, which agrees with the previous research [25]. Unfor
tunately, the angle interpolation is limited to second order. The

manifold keeps the accuracy and is flexible for high order inter
polation, that is also the reason why it is adopted in this paper.

As the plastic strains are the key parameters for the thermo
elasto plastic analysis, the maximum equivalent plastic strain (PEEQ)
is evaluated for the five thermal loads as given in Fig. 9. Actually, the
element containing the maximum PEEQ is in the selected RID and is
calculated in all the times steps, hence the precision can be
guaranteed, where the maximum error of 1.89% is found for load
800W. Similar distribution is also founded for the stress.

As presented in Section 4, the known plastic strains of the
snapshots are considered as the initial values of plastic calcula
tion for the parametric studies. The effectiveness of this improve
ment is given in Fig. 10(a). For the time step 7 of thermal load
800 W, the residual decreases greatly after the first iteration and
it converges to 0.01 within 3 following iterations, while 12
iterations are needed to reach the prescribed level of accuracy
without considering the known plastic strains. As a result, the
online time comparison is given in Fig. 10(b), it can be seen that
the online CPU time in the plastic step 7 of the HROM is much
faster (0.28 s) than the case without initial plastic strains.
Furthermore, there are no significant difference between elastic
and plastic calculations with the adopted initial plastic strains,
where the online CPU varies from 0.63 s to 0.65 s with time steps
from 23 to 25 in the elastic calculation, and the plastic case is
0.85 s in time step 31.

5.2. Yield stress with high order interpolation

To test the effectiveness of the manifold interpolation, five yield
stresses with a variation of 15% of 200 MPa, 140 MPa, 170 MPa,
200 MPa, 230 MPa and 260 MPa are studied with the thermal load
of 800 W. For two snapshots 140 MPa and 260 MPa and the same
truncation ratio as the thermal load for the reduced basis modes,
the error evolution is given in Fig. 11(a). Unfortunately, the
maximum error is near 20% for the elastic strain, and the errors
of displacement and stress are more than 10% for yield stresses of
170 and 200 MPa with the second order interpolation.

There are two solutions to improve the accuracy: one way is to
increase the size of the reduced basis, while it increases the selected
elements in RID and leads to high computational effort; the other
one is to increase the order of the interpolation, which keeps the
advantage of small size basis. In this paper, we choose the later
solution, then an additional snapshot of 200 MPa (the middle point)
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Fig. 10. Online CPU time for the interpolated thermal load of 800 W with or without the initial plastic strains from snapshots: (a) iteration comparison at time step 7 and (b)
online CPU time evolution.
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Fig. 9. The maximum PEEQ for different thermal loads.
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is selected for the Grassmann manifold interpolation. With the
algorithm described in Fig. 6 and Eq. (43), the third order interpola
tion is implemented. To reduce the computational cost, POD modes
of three snapshots for displacement, the plastic strain and stress are
considered for the interpolation.

Through the interpolation of three snapshots, the new RID
information and error distribution is given in Fig. 11(c). It can been
seen that all the interpolation errors are significantly reduced for
yield stresses of 170 MPa and 230 MPa. Due to the enrichment of
the POD bases, only few additional elements (corresponding to 191
and 169) are selected compared with the second order interpola
tion (162 and 140) as shown in Table 8. The increased element

selection leads to slightly higher online time as shown in Table 9,
while more than 25 times computational time is still obtained
compared to the full model. It should be mentioned that the
interpolation CPU time can still be ignored compared to the total
time as indicated in Table 9.

Besides the global error distributions, the distributions of the
maximum PEEQ are also given for two and three snapshots interpola
tions in Fig. 11(b) and 11(d), respectively. As the element containing the
maximum PEEQ is always selected in the RID and calculated in all time
steps, slightly influence on themaximum PEEQ is found by the number
of the snapshot, and all the errors are within 2%. However, the number
of snapshot greatly improves the global error distribution due to more
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Fig. 11. The second-order and third-order interpolation for POD bases SRDim
½6;6;6�T (corresponding to the truncation ratio of 0:9999;0:995;0:8�, respectively) for 1 number

selection of the maximum component of each basis vector: (a) errors: 1 and 5 snapshots, (b) the maximum PEEQ: 1 and 5 snapshots, (c) errors: 1, 3 and 5 snapshots and (d)
the maximum PEEQ: 1, 3 and 5 snapshots.

Table 8

RID information for the yield stress with the third-order interpolation.

Snapshots Truncation ratio POD bases Elements in RID

Dis. Pla. Str. Dis. Pla. Str. Y1 Y2 Y3 Y4 Y5

Two 0.9999 0.995 0.8 6 6 5 199 162 140 140 155
Three 0.9999 0.995 0.8 6 6 5 199 191 169 140 155

Notes: “Dis.” means Displacement; “Pla.” means Plastic strain; “Str.” means stress;
“Y” means Yield stress.

Table 9

Result analysis for the yield stress with the third-order interpolation.

Snapshots Offline (s) Online (s) TR emax ð%Þ

Interpolation Total

Two 0.28 129.88 157.17 26.13 19.91
Three 0.40 152.87 159.70 25.72 9.50
FEM – – 4107.62 – –
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accurate POD bases, which are used to extrapolate the obtained results
from the local RID to the entire domain.

6. Conclusions

An improved hyper reduced order model (HROM) for 3D thermo
elasto plastic calculation is introduced in this paper. The reduced bases
of the increments of displacement and plastic strain are used to reduce
the global model to a small reduced integration domain (RID). The stress
reduced basis is also adopted to increase the precision when stress is
projected from the local RID to the global domain. To construct the new
bases for parametric studies, the Grassmann manifold interpolation is
employed, which is possible for high order interpolation and ensures
the small size of the POD bases. In order to reduce the iteration number
of plastic loop, the linear interpolated plastic strains of the adopted
snapshots are also chosen as the initial inputs for the interpolated cases,
then less than 7 iterations are obtained at each time step for the plastic
calculation in the local RID to reach the given level of accuracy.

By the truncation ratio of ½0:9999;0:995;0:8�T , the reference
problem shows that the HROM can be 22 times faster compared
to the finite element model with small size POD bases and few
elements in the RID, while all the global errors are within 10% for
the displacement, elastic strain, plastic strain and stress. With a
higher truncation ratio of ½0:99999;0:9999;0:99�T , the maximum
error within 2% can be obtained with the CPU gain of 18. So the

selection of truncation ratio depends on the desired accuracy or
the CPU gain.

Based on the manifold interpolation for determining the adap
tive POD basses, the parametric study on the variational thermal
loading saves 26 CPU ratio for the interpolated case with the help
of initial plastic information known from the snapshots. Moreover,
the global errors are still controlled within 10%.

With the same truncation ratio of ½0:9999;0:995;0:8�T as the
thermal load, and one component selection of each POD basis, the
second order interpolation is not enough for the modified yield
stress of a range of 15%. Instead of increasing the size of the POD
basis and components selection, the third order interpolation
obtains higher precision with the maximum error of 9.5% and
more than 25 CPU ratio is still obtained.

Generally speaking, the HROM coupled with the manifold interpola
tion seems a very good choice for 3D thermo elasto plastic calculations.
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Appendix A. Iteration algorithm

The final iterative algorithm of the method given in Algorithm 1.

Algorithm 1. Global iterative scheme of the HROM.

inputs:
� Snapshots: ΔU; ΔY; Δσ

� The external load: Δf
ext
i , Δf

th
i , Δε

th
i

� The operators : D, B,
R

BT dΩ, K, Πi

Output:
� The full field of the modified problem: Ui, ε

p
i , ε

e
i , σ i

/n Calculation of reduced basis n/
1.1

Ψ
U
⟵

SVD
ΔUref ;

1.2
Ψ

Y
⟵

SVD
ΔYref ;

1.3
Ψ

σ
⟵

SVD
Δσref ;

1.4 Select the reduced integration domain (RID)
/n Loop over the modified problems n/

1.5 for each modified problem Δf
ext
i do

1:6

1:7

1:8

1:9

1:10

1:11

1:12

1:13

1:14

1:15

// Start the loop on each time step

for t ¼ 1…T do
// Local global iterative scheme

// Determine the initial estimation of the displacements

ððΨ
U
ÞTΠ

T
i ΠiKΨ

U
ÞΔλ

U
i ðtÞ ¼ ðΨ

U
ÞT Π

T
i ΠiðΔf

ext
i ðtÞþΔf

th
i ðtÞÞ

ΔuiðtÞ ¼Ψ
U
Δλ

U
i ðtÞ

// Determination of the increments by RID ðlocal problemÞ

ΔuiðtÞ; Δε
p
Πi
ðtÞ; ΔpΠiðtÞ; ΔσΠiðtÞ: ⟵ðSee Algorithm 2Þ

ΔYΠiðtÞ ¼ fΔε p

Πi
ðtÞg

// Extrapolation of the plastic strain to the whole domain

Δλ
Y
i ðtÞ ¼ ðΨ

Y T
Π

Y
i T Π

Y
i Ψ

Y
Þ�1

Ψ
Y T

Π
Y
i T Π

Y
i ΔYΠiðtÞ

ΔYiðtÞ ¼Ψ
Y
Δλ

Y
i ðtÞ

// Then the increment of plastic strain can be obtained

Δε
p
i ðtÞ;ΔpiðtÞ: Similar is done for the stress

Δεei ðtÞ ¼ΔB ΔuiðtÞ Δε
p
i ðtÞ Δεthi ðtÞ
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Δf
P
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R

BT
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p
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T
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T
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T
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