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SUMMARY

The hyper-reduced-order model (HROM) is proposed for the thermal calculation with a constant moving 
thermal load. Firstly, the constant velocity transient process is simplified to a steady-state process in the 
moving frame. Secondly, the control volume is determined by the temperature rate, and the thermal 
equilibrium equation in the moving frame is derived by introducing an advective term containing the 
loading velocity. Thirdly, the HROM is performed on the control volume with a moving frame formulation. 
This HROM has been applied to the thermal loading on brick and ring disk specimens with a CPU gain of 
the order of 7 (10 ). In addition, two strategies are proposed for the HROM to improve its precision. 
Moreover, the high efficiency and high accuracy are kept for the parametric studies on thermal conductivity 
and amplitude of heat flux based on the developed HROM. Copyright ©c 2015 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Finite element methods; hyper-reduced-order model; quasi-static thermal analysis;

moving frame; control volume; streamline upwind PetrovGalerkin

1. INTRODUCTION

This paper presents a finite element(FE) formulation-based hyper-reduced-order model(HROM) for

quasi-static thermal analysis. The formulation is suitable for modeling material processes such as

welding and laser surfacing in a constant loading with a high efficiency.
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2 Y.ZHANG ET AL.

Quasi-static processes can be defined as processes, which are steady-state problems in either

a stationary or a moving configuration, and the system variables may have history-dependent

behavior [1]. A fixed (Lagrangian) frame (FF) formulation is usually adopted to model a history

dependent quasi-static problem by a transient analysis. A typical example of a quasi-static process is

welding process, where the transient thermal analysis in the FF is numerically solved using a time-

increment approach with a number of increments varying from hundreds to thousands. Besides,

the FF formulation also requires a fine mesh in the model or implementing an adaptive mesh in

the critical region around the heat source [2][3][4]. As a result, it is inefficient to employ the

FF formulation for quasi-static analyses from the computational point of view, especially for 3D

optimisation with multiple analysis.

Recently, the moving frame (MF) formulation is adopted for the quasi-static process to reduce

the computational cost [5]. This conception was originally proposed by Nguyen and Rahimian[6]

for the plastic problem. By this transformation, the evolution of temperature field can be modelled

as a steady-state problem in the MF: the enforcement of energy balance leads to a flow through a

control volume, which yields the corresponding governing equation. As a result, the history of the

temperature field in the MF can then be calculated along the path lines [7]. In the MF formulation,

an advective term introduced in the equilibrium equation leads to spurious oscillations of the

solution in a thin boundary layer near the outflow boundary. To control the advective-derivative

term and stabilize the oscillations, an artifical term is added only along the streamline direction

by Brooks and Hughes [8]. The technique used is the streamline upwind petrov-galerkin (SUPG)

method. However, the solution of the steady-state problem with the MF formulation requires the

appropriate specification of boundary conditions over inlet and outlet surfaces of the control volume.

As proposed by Balagangadhar et al.[5], the surface flux boundary conditions at these surfaces

are assumed to be consistent with the steady-state response of the studied field. However, the

computation is still costly with moving frame (MF) formulation if the control volume is too large.

To reduce the computational complexity for optimization procedures or parametric analyses, the

reduced-order model (ROM) can be a good choice [9]. The ROM is based on the projection of

the full-order model onto low dimensional reduced bases. Usually, ROMs based on the proper

orthogonal decomposition (POD) is proposed [10][11][12][13][14]. The primary step is to build

the reduced-basis (RB) with the most dominant modes of the POD of the snapshots, which contain

resolutions of problems involving large time spans or series of similar problems. Then the solution

of this reduced problem is decomposed using POD and projects the full-order model onto low

dimensional reduced bases [15]. In addition, various interpolation methods are reported to get

the adaptive RB for parametric studies [16][12][17][18]. However, the accuracy of the ROM

strongly depends on the relevancy of the selected RB [19][20][15]. Contrary to the POD-based

ROM method, the Proper Generalized Decomposition (PGD)-based ROMs [21] have been more

recently generalized to high-dimensional problems [22][23][24][25][26][27]. The aim of PGD is to

approximate a space-time solution as a sum of products of space and time functions, and the PGD

method is uaually coupled with the non-linear non-incremental LATIN solver [21] over the entire

time interval.

In this work, the POD-based hyper-reduced-order model (HROM) is proposed for the quasi-

static process, the model reduction is performed on the control volume with the MF formulation,

while the reduced bases are obtained from a series of representive control volumes determined by
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the temperature rate in the fixed frame. This HROM has been applied to the brick and ring disk

specimens. Finally, parametric studies are performed on the thermal conductivity and the amplitude

of heat flux.

2. UCED-ORDER MODEL BASED ON THE FIXED FRAME FORMULATION

r

x

Laser Torch
Moving frame

(Fixed to the torch)

Fixed frame
(Fixed to the body)

Body

V

Figure 1. Fixed and moving frames

In the present work, a reference frame fixed to the material configuration, r, denotes a fixed frame

(FF). In the FF, the torch moves with a constant velocity: the state of the body changes in time.

2.1. Fixed frame formulation

The equations in the FF are obtained by application of the energy balance equation. It yields the

following governing equation for transient heat transfer analysis:

ρCp

dT

dt
(r, t) = ∇ · (k∇T )(r, t)+Q(r, t) (1)

where ρ is the density of the following body, Cp is the specific heat capacity, T is the temperature,

k is the thermal conductivity, Q is the internal heat generation rate, t is the time, r is the coordinate

in the reference configuration and ▽ is the spatial gradient operator.

The initial temperature field is given by T = T 0 for the entire volume V, where T 0 is the prescribed

initial temperature. The following boundary conditions are applied on the surfaces:

T s = T p on the surface Γ1, with prescribed temperature (2)

qs = qp on the surface Γ2, with prescribed heat flux (3)

where T and q represent the prescribed temperature and surface flux, respectively.

∇T ·n = h(T a −T ) on the surface Γ3, for convective heat transfer (4)

where n is the unit outward normal to the surface Γ3, T a is the external ambient temperature.

After integration by parts and the divergence theorem on the integral form of Eq.1 with Eqs.3 and

4, the weak form can be expressed by:

3
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4 Y.ZHANG ET AL.

∫

Ω

[
∇T̂ · k∇T + T̂ ρCp

dT

dt
− T̂ Q

]
dΩ−

∫

Γ2

T̂ qdΓ−
∫

Γ3

T̂ h(T a −T )dΓ = 0 (5)

2.2. Finite element discretization in the fixed frame

By applying FE discretization and numerical integration from Eq. 5, the global equilibrium equation

can be expressed by

CeqṪ+KeqT = Peq (6)

where C is the matrix of specific heat capacity, Keq is thermal conductance matrix, Peq is the

thermal loading vector and T is the nodal temperature vector. The matrices Keq and Ceq, and vector

P are constructed by the elemental matrices as follows.

Keq = ΣeKe +ΣeHe

Ceq = ΣeCe (7)

Peq = ΣePe
Q +ΣePe

q +ΣePe
H

The explicit form of the elemental matrices is given below:

Ke =
∫

Ωe
k (B)T

BdΩ

He =
∫

Γe
3

hNT NdΓ

Ce =
∫

Ωe
ρCpNT NdΩ (8)

Pe
Q =

∫

Ωe
QNT dΩ

Pe
q =

∫

Γe
2

qNT dΓ

Pe
H =

∫

Γe
3

hT aNT dΓ

By the discretisation in time field, the above spatial discretization equation can be expressed by

C △ t +Keqθ)Tn+1 +(−Ceq/△ t +Keq (1−θ))Tn = (1−θ)Peq
n +θP

eq
n+1 (9)

where θ is the interpolation coefficient and defined as: 0 ≤ θ ≤ 1. In this work, a backward

difference with θ = 1 is adopted.

2.2.1. Creation of the reduced-basis (RB) The reduced basis is calculated by a matrix containing

all solutions for each time t and for each benchmark problem 1 . . . S. This matrix is constructed as

follows:

Tref = [T1 . . .TS]

4
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By performing a singular value decomposition (SVD) of the constructed reference matrix Tref (n

> m), we can obtain the POD bases of the temperature field, Φ.

Tref = Φ Σ ϒT =
[
Φ1 · · · Φn

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0

0 σ2

...

...
. . . 0

0 · · · 0 σm

0 · · · 0 0

... · · ·
...

...

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ϒT
1

...

ϒT
m

⎤
⎥⎥⎥⎦ (10)

Φ ∈ ×n is a unitary matrix containing space vectors, ϒ ∈ R
m×m a unitary matrix

ectors, and Σ ∈ R
n×m contains diagonal and non-negative singular values σi in

a decreasing order.

2.2.2. Truncated SVD The following decomposition Eq.11 is the truncated SVD of T.

Approximation of the problem solution is faster when truncated SVD is used.

Tref ≃ Φ1 σ1 ϒT
1 +Φ2 σ2 ϒT

2 + · · ·+Φi σi ϒT
i + · · ·+Φk σk ϒT

k (11)

where the mode number k is determined by Eq. 12 from a sens of energy, the sum of selected

singular values should contain 99 % energy compared to that of the total one.

ηT =
Σi=k

i=1σi

Σi=m
i=1 σi

(12)

To better explain the Hyper-reduced-order model(HROM), the POD reduced-order model is firstly

presented in the following sub-section.

2.2.3. POD reduced-order model The POD reduced-order model is actually a model reduction

technique, in which the complete solution is projected onto a small dimensional subspace Φ[18].

Based on conventional FE method, the discrete form of the equilibrium equation at time step t can

be expressed by the selected first modes of containing the largest part of ”energy” of all modes:

(Φ)T (Ceq/△ t +Keqθ)ΦT̃n+1 =

(Φ)T {Peq
n (1−θ)+θP

eq
n+1 − (−Ceq/△ t +Keq (1−θ))Tn} (13)

The resolution of the this system reduced the unknowns from m (the degree of freedom of the

system) to k (the selected model number of Φ). As a result, an approximation of the solution

T = ΦT̃n+1 can be obtained very fast.

5
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2.2.4. Hyper-reduced-order model (HROM) formulation in the fixed frame For the POD method,

the number of constitutive equations that need to be resolved to estimate the temperature field is

not modified. Indeed, the main computational cost is determined by the number of constitutive

equations, especially for the nonlinear problem. One way to reduce the number of constitutive

equations is to create a reduced integration domain (RID), where the calculation of constitutive

equations is only considered. Moreover, the orthogonal condition in Eq. 13 does not mean that all

the residuals of the equilibrium equations must be equal to zero, thus it allows us to introduce the

RID only on a part of the global domain by the selection matrix Π.

With the selected modes of the POD bases Φ, the formulation of the HROM can be expressed by

(ΠΦ)T Π(Ceq/△ t +Keqθ)ΦT̃n+1 =

ΠΦ)T Π{Peq
n (1−θ)+θP

eq
n+1 − (−Ceq/△ t +Keq (1−θ))Tn} (14)

where Π is a rectangular boolean matrix, which allows to perform the selection of degrees of

freedom needed for the HROM. Usually, the components of first largest vaules of the selected modes

are considered, more details can be referred to Ryckelynck [11] and Zhang et al. [18]. Finally, the

temperature field is obtained for the entire model by

Tn+1 = ΦT̃n+1 (15)

2.2.5. Difficulties of applying HROM in the fixed frame From the transient thermal analysis as

sescribed in sub-section 4.1 for a moving thermal load on a brick specimen, the snapshots of all time

steps are collected as the Tref. To obtain enough mode number for representing the reference matrix

T , the singular value decomposition(SVD) is performed on the temperature and temperature

increment of the whole model. The obtained plots are given in Fig. 2.
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(a) SVD on temperature
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(b) SVD on temperature increment

Figure 2. SVD on temperature evaluation of the entire model of the brick specimen

By SVD on temperature Fig. 2(a), 147 modes are needed to get a ratio of 99% for the singular

value from a sense of energy by Eq. 12, which leads to more selected elements in the RID. So

it’s not practical to adopt the POD bases of temperature field for the entire model. Then the SVD

6
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on temperature increment is performed in Fig. 2(b). Unfortunately, almost all the singular values

give the same amplitude, and 171 modes have to be considered for the POD bases of temperature

increment. Obviously, the above two choices defeat the purpose of model reduction and limit the

efficiency of the reduced POD models.

Fortunately, the SVD on temperature field in the control volume at the stabilized time steps can

resolve the above mentioned problem, which will be introduced in the following section.

3. R-REDUCED-ORDER MODEL BASED ON THE MOVING FRAME

FORMULATION

In this section, the quasi-static problem is considered as a steady-state problem in a moving

frame (MF) formulation. Moreover, the hyper-reduced-order model is proposed based on the MF

formulation in a control volume.

3.1. Moving frame formulation

Let us consider the case where the velocity and heat input are constant, the body is infinitely long in

the direction of the velocity and its shape is uniform along that direction: the state of the body does

not change in time if the moving frame (MF) x is fixed to the torch (Fig. 1).

In the MF system, a reference configuration is fixed both in space and time. The material

configuration is moving at a velocity −v with respect to the reference configuration. As a result,

the reference configuration is a control volume through which the material flows (Fig. 3). For a

solid body flowing through a control volume, the equation with zero viscous dissipation is derived

by enforcing energy balance over the control volume [1].

r

x

Laser Torch
Moving frame

(Fixed to the torch)

Fixed frame
(Fixed to the body)

Control volume

         (Vc)

V

Inlet
Outlet

T < Tcr 
T < Tcr

Figure 3. Moving frame in the control volume

ρCp

dT

dt
= ∇ · (k∇T )+Q (16)

The derivative of temperature in the flowing body with respect to time is given by

dT

dt
=

∂T

∂ t
+

∂T

∂xi

dxi

dt
(17)

where x is the material system coordinate, translating with a velocity −v in space by Eq. 18

7
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x = r−vt (18)

Then Eq.17 can be expressed as

dT

dt
=

∂T

∂ t
−v ·∇T (19)

For a body flowing with a steady constant velocity, Eq.16 yields

ρCp

dT

dt
−ρCp (v ·∇T ) = ∇ · (k∇T )+Q (20)

Actually, Eq. 20 represents the transient MF equation. As we look for the stationary process which

should have a constant heat input and flow velocity in the control volume. The control volume will

then have a steady state temperature profile. Then the MF equation for a quasi-static process can be

simplified as follows:

−ρCp (v ·∇T ) = ∇ · (k∇T )+Q (21)

The boundary conditions in the MF configuration are similar to those in the fixed configuration.

The temperature and the heat flux boundary conditions are given by Eqs.2 and 3. However

the boundary conditions are modelled separately, since time is mapped onto space in the MF

configuration. The new boundary conditions are given by

T = T 0 on the surface, entering into the control volume (22)

T = T out on the surface, going out of the control volume (23)

By the boundary condition of Eqs. 3 and 4, the weak form of Eq.16 can be expressed by

∫

Ω

[
∇ ˆ · k∇T − T̂ρCv ·∇T − T̂ ρQ

]
dΩ−

∫

Γ2

T̂ qdΓ−
∫

Γ3

T̂ h(Ta −T )dΓ = 0 (24)

For the weak form of MF formulation Eq.24, the boundary conditions Eq.2, Eq.22 and Eq. 23 are

stongly enforced. However, the temperature (Eq.23) on the outlet surface is not yet known at this

time.

3.2. Finite element discretization

By applying FE discretization and numerical integration from Eq. 24, the equilibrium equation is

given by

(Ceq +Keq)T = Peq (25)

where Ceq = ΣeCe is the matrix of specific heat capacity containing the material flowing velocity,

and Ce is expressed by Ce =
∫

Ωe ρcNT vT BdΩ.

8
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3.3. Hyper-reduced-order model

Since the temperature field is assumed to be sufficiently uniform in the velocity direction near

the inlet and outlet edges, an approximate zero surface flux is prescribed across the boundaries

as proposed by Balagangadhar et al.[5].

Therefore in the MF, the problem becomes a stationary one, where the coordinate x is in a control

volume through which the material configuration flows. The hyper-reduced-order model (HROM) is

performed on the control volume, and the reduced bases can be obtained from SVD of temperature

field from a series of control volumes. Specifically, the temperature field should be extracted by the

frame transformation.

T(x, ti) = T(r, ti)with x = r - v t (26)

3.3.1. Control volume determination The question is now following: how to determine the

representative control volume for the SVD analysis? In this work, the temperature rate is evaluated

to find both inlet and outlet surfaces. Let us define:

Ṫ =
ΔT

Δt
(27)

t the control volume is determined by Vc = | volume in Vglobal such that Ṫ >= Ṫcr

as shown in Fig. 3. If the velocity of heat source is not known, the temperature rate can be also

used to determine the velocity direction by post-processing of the temperature distribution.

3.3.2. Hyper-reduced-order model in the moving frame It should be mentioned that the SVD

operation is performed on the control volumes. With the selected modes of the POD bases Φ, the

formulation of the HROM can be expressed by

(ΠΦ)T Π(Keq +Ceq)ΦT̃ = (ΠΦ)T Π Peq (28)

Finally, the temperature field is obtained for the control volume by T = ΦT̃.

As the temperature rate is assumed to be uniform at both inlet and outlet of the control volume,

the temperature of the whole domain can be resolved with few elements in the control volume.

3.3.3. Selection of reduced integration domain (RID) To select the elements in the reduced

integration domain (RID) for the HROM, the gradient in the thermal loading direction V on the POD

bases is evaluated by Eq.29. To avoid the ill-posed problem of Eq. 28, 10 maximum components of

each gradient basis are selected to get enough elements for HROM analysis.

ΦGV = vT ∂Φ

∂x
= vT BΦ (29)

Besides, the error measure is defined by Eq. 30

εT =
‖THROM −TFE‖

(30)
‖TFE  ‖

9
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Notation Name Values

Cp Specific heat capacity 710.0 J.kg−1.K−1

λ Thermal conductivity 46.1 W.m−1.K−1

ρ Density 7850 kg.m−3

T0 Initial temperature 25. ◦C

Table II. Thermal parameters of the studied problem of the brick specimen
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Figure 5. Temperature evolution along the line of symmetry of the brick specimen

the temperature is already stabilized after 200 mm along the velocity direction Vy, and all the

temperature values behind the loading points converge to around 100◦C, which agrees with the

assumption of Balagangadhar et al.[5].
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(b) Temperature profiles of the lines

Figure 6. Temperature profile in the plane of symmetry of the brick specimen

4.1.1. Control volume determination for the brick specimen Following the assumption of the

uniform temperature distribution near inlet and outlet, the control volume is determined by the

temperature rate (Eq. 27) as shown in Fig. 7 with a critical value of Ṫ = 0.1 ◦C/s.

11
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(a) Time step: 10 (b) Time step: 40

(c) Time step: 120 (d) Time step: 160

(e) Time step: 188 (f) Time step: 199

Figure 7. Temperature rate evolution with a critical value of 0.1 (◦C/s) of the brick specimen

At the inital stages, the high ratio values located at the loading point near the boundary

surface(Fig. 7(a)). After a few time steps, the rate profile stabilizes to a constant shape and size,

as shown from time steps 40 to 188 (Figs. 7(b) to 7(e)), and this constant shape can be chosen as

a control volume. Similarly to the initial stage, the different temperature ratio profile is also given

in the final stage (Fig. 7(f)). To avoid the curved boundary surface, the sectional surfaces locate at

ymax and ymin are considered as the inlet and outlet surfaces, respectively. As a result, the volume

between inlet and outlet surfaces is chosen as the control volume.

12
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Finally, the representative control volume (Fig. 8(a)) contains 16200 elements. It’s interesting to

plot the temperature distribution of the rest part of the workpiece in Fig. 8(b): the temperature of the

part behind the control volume converges to 100 ◦C, which corresponds to Fig. 6(b); the part ahead

of the control volume keeps its initial temperature. However, with the present control volume, the

computation is still costly for linear thermal properties or future thermo-elasto-plastic problem. The

hyper-reduced-order model(HROM) is then proposed for the control volume.
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Figure 8. Temperature distribution in the control volume at time step 152 of the brick specimen: 16200
elements, 4732 nodes

4.1.2. Model reduction for the brick specimen By the SVD of control volume of 46 stabilized time

steps (from time steps 143 to 188), the plot of the normalized singular values is given in Fig. 9. Only

one mode is needed to obtain 99% energy for the model reduction according to Eq. 12.
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Figure 9. SVD on the temperature of the control volumes of the brick specimen

In the following part of this sub-section, parametric studies are performed on the precision of the

temperature distribution by the different mode and temperature rate. It should be mentioned that
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10 maximum values of the temperature gradient of each selected basis is adopted to obtain enough

elements in the RID, more details can be referred to Ryckelynck [11] and Zhang et al. [18].

For the fixed temperature rate of Ṫ = 0.1 ◦C/s:

Cases
Selection ratio C.V.(Vc) RID. elements

Mod. M.N.S. τ(s) Ṫ (◦C/s) E. N. E. N.

Case1 1 10 - 0.1 16200 4732 80 14

Case2 2 10 - 0.1 16200 4732 80 14

Case3 3 10 - 0.1 16200 4732 144 28

Case4 4 10 - 0.1 16200 4732 214 48

Case5 1 10 - 0.15 14940 4368 80 14

Case6 2 10 - 0.15 14940 4368 144 28

Case7 1 10 - 0.2 14220 4160 80 14

Case8 2 10 - 0.2 14220 4160 144 28

Case9 1 10 - 0.3 13140 3848 80 14

Case10 2 10 - 0.3 13140 3848 144 28

Full model - - - - 36000 10450 - -

Notes: Mod.: Modes; M.N.S.: The number of the maximum values of each selected basis gradient; τ: Scaling
Coefficient; C.V.: control volume; E.: Elements; N.: Nodes; RID.: Reduced integration domain

Table III. RID information of different mode and temperature rate of the brick specimen

Cases
C.T.(s) Error(%)

Off. On. TGain Glo. M.T.

Case1 641.78 2.28e−4 1.02 e8 11.82 11.82

Case2 633.32 2.96e−4 7.85 e7 291.16 165.54

Case3 636.38 1.41e−4 1.65 e8 2.30 0.27

Case4 637.89 1.52e−4 1.53 e8 0.059 0.060

Case5 564.40 3.15 e−5 6.62 e8 11.82 11.82

Case6 563.68 6.90 e−5 3.37 e8 0.53 0.53

Case7 515.86 3.00 e−5 7.74 e8 11.82 11.82

Case8 518.76 8.20 e−5 2.83 e8 0.53 0.53

Case9 456.65 2.40 e−5 9.68 e8 11.82 11.82

Case10 463.52 7.90 e−5 2.94 e8 0.53 0.53

Full model - 23229.96 - - -
Notes: C.T.: Computational time; Off.: Offline; On.: Online; Glo.: Global; M.T.: Maximum Temperature.

Table IV. Simulation results of different mode and temperature rate of the brick specimen

With one mode, 80 elements are selected in thermal loading zone of the control volume at time

step 152, as shown in Figs. 10(a) and 10(b). The predicted temperature distribution of all the nodes

and the nodes along Line1 in the control volume are given in Figs. 11(a) and 11(b), respectively.

By the temperature distribution along Line1 for 1 mode at Ṫ = 0.1 ◦C/s, the temperatures near

the inlet well agree with the one from full model obtained by transient thermal calculation, while

the values of the thermal loading point and near the outlet show difference compared to these of the

full model, where the temperature in the loading point presents the same error (around 11.82%) as

that of all the nodes in the control volume. Besides, the CPU gain of 108 is obtained. By 2 modes,

the selected elements (case2 in Table III) are the same as the case of the 1 mode, which leads to

high error (case2 in Table IV). It means the ill-posed reduced problem occurs (Zhang et al. [18]

and Ryckelynck [11]). Then more elements (144) are selected with 3 modes near the inlet surface
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Figure 11. Temperature distribution in the control volume based on the HROM of the brick specimen

It should be mentioned that the error of 11.82% is obtained with mesh size of 2 mm and 1

mode, the error can continue to decrease with finer mesh (1 mm) and one mode, while the high

computational cost is needed.

4.1.3. Stabilized streamline upwind PetrovGalerkin (SUPG) method To avoid mesh refining and

the selection of elements at the boundary surfaces, the streamline upwind PetrovGalerkin (SUPG)

16
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is adopted as prescribed in the work of Rajadhyaksha and Michaleris[1], then the weight function

of the advective term is modified by adding τv ·∇T

∫

Ω

[
∇ ˆ · ∇ −

(
T̂ + τv ·∇T

)
ρCv ·∇T − T̂ Q

]
dΩ−

∫

Γ2

T̂ qdΓ−
∫

Γ3

T̂ h(Ta −T )dΓ = 0 (32)

where τ is a coefficient which has the dimension of time (s). The following discretization process

and model reduction are similar to Eq.s 25 and 28.

By selecting appropriate scaling factor τ (from case1 to case4 in Table V), the good agreement

(error of 1.40%) can be obtained by τ= -0.25(s) (Fig. 12, the CPU gain is of the order of 7 (107).

The temperature profiles of all nodes and L1 in the control volume are also given in Fig. 13.

With the scaling factor τ , the boundary conditions on the inlet and outlet surfaces is not necessary,

while the value of τ needs to be determined is sensitive to different mesh size and loading velocity.
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Figure 12. Temperature distribution on the L1 based on the HROM with one mode and different scaling
factors τ of the brick specimen

For the increased temperature rates (0.15, 0.2 and 0.3 ◦C/s), the same errors are obtained with

less elements in control volumes (14940, 14220 and 13140 compared to 16200 for temperate rate

0.1◦C/s), and the CPU gain keeps at 108, which means that the SUPG-based HROM can efficiently

predict the temperature distribution with 1 mode and less elements in the control volume.

4.2. Application to ring disk

To present a general example of thermal loading, the ring disk structure is also adopted. Due to the

symmetric loading and structure (Fig. 14(a)), only half of the structure is analyzed. The thermal

loading is applied along the circular top edge line of the external radial surface (Fig. 14(b)) with

a constant velocity of 4 mm/s and laser diameter of 4 mm. More detailed parameters are given

in Table VII, where the internal and external radii are 74 and 80 mm, respectively. For the FE

discretization, the mesh size of the radial external surface is also designed as 2 mm to keep consistent

with that of the brick specimen.

17



A
c
c
e

p
te

d
 M

a
n

u
s
c
ri
p

t
18 Y.ZHANG ET AL.

Cases
Selection ratio C.V.(Vc) RID. elements

Mod. M.N.S. τ(s) T (◦C/s) E. N. E. N.

Case1 1 10 0. 0.1 16200 4732 80 14

Case2 1 10 -0.1 0.1 16200 4732 80 14

Case3 1 10 -0.25 0.1 16200 4732 80 14

Case4 1 10 -0.5 0.1 16200 4732 80 14

Case5 1 10 -0.25 0.15 14940 4368 80 14

Case6 1 10 -0.25 0.2 14220 4160 80 14

Case7 1 10 -0.25 0.3 13140 3848 80 14

Full model - - - - 36000 10450 - -

Notes: Mod.: Modes; M.N.S.: The number of the maximum values of each selected basis gradient; τ: Scaling
Coefficient; C.V.: Control volume; E.: Elements; N.: Nodes; RID.: Reduced integration domain

Table V. RID information of different scaling factor and temperature rate of the brick specimen

Cases
C.T. (s) Error(%)

Off. On. TGain Glo. M.T.

Case1 641.78 2.28e−4 1.02 e8 11.82 11.82

Case2 637.94 2.40 e−4 9.68 e7 7.40 7.40

Case3 636.29 3.20 e−4 7.26 e7 1.40 1.40

Case4 636.76 2.31 e−4 1.01e8 7.25 7.25

Case5 564.28 3.10 e−5 7.49e8 1.40 1.40

Case6 517.35 3.10e−5 7.49 e8 1.40 1.40

Case7 456.08 2.40e−5 9.68 e8 1.40 1.40

Full model - 23229.96 - - -
Notes: C.T.: Computational time; Off.: Offline; On.: Online; Glo.: Global; M.T.: Maximum Temperature.

Table VI. Simulation results of scaling factor and temperature rate of the brick specimen
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Figure 13. Temperature distribution in the control volume based on the SUPG and HROM of the brick
specimen

R (mm) ROu.(mm) h(mm) M.S.(mm) N.N E.N E.T H.F (W ) V (mm/s )

74 80 24 2 13052 54216 TET4 480 4

Notes: ”In.” means Inner; ”Ou.” means Outer; ”M.S.” means mesh size; ”N.N” means Node Number; ”E.N”
means Element number; ”E.T” means Element type;”H.F” means Heat flux.

Table VII. Geometry description of the FE model of the ring disk
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(a) Time step: 12 (b) Time step: 72

(c) Time step: 136 (d) Time step: 180

(e) Time step: 228 (f) Time step: 251

Figure 15. Temperature rate evolution larger than 0.15 (◦C/s) of the ring disk

high precision with the controlled errors of 0.12% is obtained for all the nodes and top edge line,

respectively. Further more, the CPU gain of 107 is still obtained.

It should be mentioned the SUPG strategy can be also ignored with further finer mesh (e.g.: 1

mm), which is similar to the case of the brick specimen.
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Figure 16. Temperature distribution in the control volume at time step 173 (86.5 s) of the ring disk, elements:
18360, nodes: 4472
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Figure 17. SVD on temperature snapshots of the ring disk

Cases
Selection ratio C.V.(Vc) RID. elements

Mod. M.N.S. τ(s) T (◦C/s) E. N. E. N.

Case1 1 10 - 0.15 18360 4472 80 14

Case2 2 10 - 0.15 18360 4472 125 24

Case3 1 10 -0.25 0.15 18360 4472 80 14

Full model - - - - 54216 13052 - -

Notes: Mod.: Modes; M.N.S.: The number of the maximum values of each selected basis gradient; τ: Scaling
Coefficient; C.V.: control volume; E.: Elements; N.: Nodes; RID.: Reduced integration domain

Table VIII. RID information of different cases of the ring disk specimen

Cases
C.T.(s) Error (%)

Off. On. TGain Glo. M.T.

Case1 822.08 2.40e−4 2.85 e7 10.61 10.61

Case2 818.12 3.06 e−4 2.22 e7 0.16 0.16

Case3 822.27 2.22 e−4 3.07 e7 0.12 0.12

Full model - 6804.74 - - -
Notes: C.T.: Computational time; Off.: Offline; On.: Online; Glo.: Global; M.T.: Maximum Temperature.

Table IX. Simulation resutls for different cases of the ring disk specimen
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Figure 19. Temperature distribution in the control volume based on the HROM of the ring disk

Different values of heat flux of 440, 480 and 520 W for studying the effect of loading amplitude,

corresponding to Cases 4, 2 and 5, are selected. As given in Table XI, the element number of the

control volume increases with the laser power, while the variation of the elements in the control

volume is less than 1000. Moreover, the selected elements and nodes for the RID show slight

difference, similarly for the selected positions as shown in Figure 21. Due to few selected elements

in the RID, the HROM always keeps high efficiency for all cases, and the good precision is kept

with four modes as shown in Figure 21 and Table XI.
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Cases Conductivity H.F.
Selection ratio C.V.(Vc) RID. elements

Modes M.N.S. T (◦C/s) E. N. E. N.

Case1 36.1 480 4 10 0.1 18720 5460 214 48

Case2 46.1 480 4 10 0.1 16200 4732 214 48

Case3 56.1 480 7 10 0.1 14580 4264 357 75

Case4 46.1 440 4 10 0.1 16020 4680 229 48

Case5 46.1 520 4 10 0.1 16560 4836 214 48

Full model - - - - - 36000 10450 - -

Notes: H.F.: Heat flux; M.N.S.: The number of the maximum values of each selected basis gradient; τ:
Scaling Coefficient; C.V.: control volume; E.: Elements; N.: Nodes; RID.: Reduced integration
domain

Table X. RID information of different thermal conductivity with the same modes and temperature rate of the
brick specimen

Cases
C.T.(s) Error (%)

Off. On. TGain Glo. M.T.

Case1 712.89 1.72 e−4 1.35 e8 0.18 0.16

Case2 637.89 1.52 e−4 1.53 e8 0.059 0.060

Case3 572.59 1.63 e−4 1.43 e8 0.23 0.25

Case4 577.56 1.65 e−4 1.41 e8 0.089 0.092

Case5 654.71 1.76 e−4 1.32 e8 0.092 0.091

Full model - 23229.96 - - -
Notes: C.T.: Computational time; Off.: Offline; On.: Online; Glo.: Global; M.T.: Maximum Temperature.

Table XI. Simulation results for parametric studies based on HROM for brick specimen

6. CONCLUSIONS

To resolve a quasi-static thermal process, an efficient hyper-reduced-order model(HROM) approach

using one moving frame (MF) formulation has been proposed. The proposed model is achieved by

the reduction of two times: 1) The control volume is selected to represent the whole model; 2) The

HROM is applied to steady-state-based control volume.

The developed approach is applied to the moving thermal loading problems for brick and ring disk

specimens. To increase the computational precision, two strategies are proposed: one can increase

the mode number, which leads to more selected elements and decreases the computational efficiency

(CPU gain of 10 ); one can also employ the streamline upwind PetrovGalerkin (SUPG) method,

which keeps the highly computational efficiency with only one mode for a constant velocity (CPU

gain of 10 ). However, the time dimensional scaling facor is necessary to be determined for different

cases.

With the same cross section and mesh size for both brick and ring disk specimens under the same

magnitude of thermal loading velocity, the scaling factor is independent of velocity direction. Based

on the above two strategies, besides the high precision, the online run-times ratio of the HROM

in the moving frame than the standard FE model in fixed frame is obtained at least by 7 orders of

magnitudes (10 ).

Based on the proposed HROM, parametric studies on thermal conductivity and heat flux show

high accuracy and high efficiency. The thermal conductivity is very sensitive for determining the

control volume for maintaining the stable state, while the heat flux shows slight influence on the

selected elements in the reduced integration domain.
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