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SUMMARY

The hyper-reduced-order model (HROM) is proposed for the thermal calculation with a constant moving
thermal load. Firstly, the constant velocity transient process is simplified to a steady-state process in the
moving frame. Secondly, the control volume is determined by the temperature rate, and the thermal
equilibrium equation in the moving frame is derived by introducing an advective term containing the
loading velocity. Thirdly, the HROM is performed on the control volume with a moving frame formulation.
This HROM has been applied to the thermal loading on brick and ring disk specimens with a CPU gain of
the order of 7 (10 ). In addition, two strategies are proposed for the HROM to improve its precision.

Moreover, the high efficiency and high accuracy are kept for the parametric studies on thermal conductivity
and amplitude of heat flux based on the developed HROM. Copyright ©2015 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: Finite element methods; hyper-reduced-order model; quasi-static thermal analysis;
moving frame; control volume; streamline upwind PetrovGalerkin

1. INTRODUCTION

This paper presents a finite element(FE) formulation-based hyper-reduced-order model(HROM) for
quasi-static thermal analysis. The formulation is suitable for modeling material processes such as
welding and laser surfacing in a constant loading with a high efficiency.
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Quasi-static processes can be defined as processes, which are steady-state problems in either
a stationary or a moving configuration, and the system variables may have history-dependent
behavior [1]. A fixed (Lagrangian) frame (FF) formulation is usually adopted to model a history
dependent quasi-static problem by a transient analysis. A typical example of a quasi-static process is
welding process, where the transient thermal analysis in the FF is numerically solved using a time-
increment approach with a number of increments varying from hundreds to thousands. Besides,
the FF formulation also requires a fine mesh in the model or implementing an adaptive mesh in
the critical region around the heat source [2][3][4]. As a result, it is inefficient to employ the
FF formulation for quasi-static analyses from the computational point of view, especially for 3D
optimisation with multiple analysis.

Recently, the moving frame (MF) formulation is adopted for the quasi-static process to reduce
the computational cost [5]. This conception was originally proposed by Nguyen and Rahimian[6]
for the plastic problem. By this transformation, the evolution of temperature field can be modelled
as a steady-state problem in the MF: the enforcement of energy balance leads to a flow through a
control volume, which yields the corresponding governing equation. As a result, the history of the
temperature field in the MF can then be calculated along the path lines [7]. In the MF formulation,
an advective term introduced in the equilibrium equation leads to spurious oscillations of the
solution in a thin boundary layer near the outflow boundary. To control the advective-derivative
term and stabilize the oscillations, an artifical term is added only along the streamline direction
by Brooks and Hughes [8]. The technique used is the streamline upwind petrov-galerkin (SUPG)
method. However, the solution of the steady-state problem with the MF formulation requires the
appropriate specification of boundary conditions over inlet and outlet surfaces of the control volume.
As proposed by Balagangadhar et al.[5], the surface flux boundary conditions at these surfaces
are assumed to be consistent with the steady-state response of the studied field. However, the
computation is still costly with moving frame (MF) formulation if the control volume is too large.

To reduce the computational complexity for optimization procedures or parametric analyses, the
reduced-order model (ROM) can be a good choice [9]. The ROM is based on the projection of
the full-order model onto low dimensional reduced bases. Usually, ROMs based on the proper
orthogonal decomposition (POD) is proposed [10][11][12][13][14]. The primary step is to build
the reduced-basis (RB) with the most dominant modes of the POD of the snapshots, which contain
resolutions of problems involving large time spans or series of similar problems. Then the solution
of this reduced problem is decomposed using POD and projects the full-order model onto low
dimensional reduced bases [15]. In addition, various interpolation methods are reported to get
the adaptive RB for parametric studies [16][12][17][18]. However, the accuracy of the ROM
strongly depends on the relevancy of the selected RB [19][20][15]. Contrary to the POD-based
ROM method, the Proper Generalized Decomposition (PGD)-based ROMs [21] have been more
recently generalized to high-dimensional problems [22][23][24][25][26][27]. The aim of PGD is to
approximate a space-time solution as a sum of products of space and time functions, and the PGD
method is uaually coupled with the non-linear non-incremental LATIN solver [21] over the entire
time interval.

In this work, the POD-based hyper-reduced-order model (HROM) is proposed for the quasi-
static process, the model reduction is performed on the control volume with the MF formulation,

while the reduced bases are obtained from a series of representive control volumes determined by
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the temperature rate in the fixed frame. This HROM has been applied to the brick and ring disk

specimens. Finally, parametric studies are performed on the thermal conductivity and the amplitude
of heat flux.

2. UCED-ORDER MODEL BASED ON THE FIXED FRAME FORMULATION

Moving frame
‘0" (Fixed to the torch)

LBod\y.

Fixed frame
(Fixed to the body)

Figure 1. Fixed and moving frames

In the present work, a reference frame fixed to the material configuration, r, denotes a fixed frame
(FF). In the FF, the torch moves with a constant velocity: the state of the body changes in time.

2.1. Fixed frame formulation

The equations in the FF are obtained by application of the energy balance equation. It yields the

following governing equation for transient heat transfer analysis:

dl
P dt

where p is the density of the following body, C,, is the specific heat capacity, T is the temperature,

(r,t) =V-(kVT) (r,1)+ Q(r,1) (D

k is the thermal conductivity, Q is the internal heat generation rate, ¢ is the time, r is the coordinate
in the reference configuration and </ is the spatial gradient operator.
The initial temperature field is given by 7' = T for the entire volume V, where T is the prescribed
initial temperature. The following boundary conditions are applied on the surfaces:
T° = T? on the surface I'j, with prescribed temperature 2)

q° = ¢ on the surface T';, with prescribed heat flux 3)

where T and g represent the prescribed temperature and surface flux, respectively.
VT -n=h(T%—T) on the surface I'3, for convective heat transfer 4)

where n is the unit outward normal to the surface '3, 7¢ is the external ambient temperature.
After integration by parts and the divergence theorem on the integral form of Eq.1 with Eqs.3 and

4, the weak form can be expressed by:
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/ {VﬁkVT—i—prpdT—TQ} dQ—/ TqdT— [ Th(T*—T)dr =0 5)
Q dt T, Iy

2.2. Finite element discretization in the fixed frame
By applying FE discretization and numerical integration from Eq. 5, the global equilibrium equation
can be expressed by

CYT +K“T =P (6)

where C is the matrix of specific heat capacity, K¢ is thermal conductance matrix, P°¢ is the
thermal loading vector and T is the nodal temperature vector. The matrices K°? and C®, and vector
P are constructed by the elemental matrices as follows.

K% =3 K° + X H
C% =%,C* 7)
P = X,P% + I P TP

The explicit form of the elemental matrices is given below:

K= [ k(B)'BdQ
Qt’

H = / hINTNAT
3
co— /Q PC,N'NAQ ®)
Py = / ONT4Q
QE
P, = [ aNTar
3

P{ = | hTN'dr
l“€

3

By the discretisation in time field, the above spatial discretization equation can be expressed by

C At+K90) T,y +(—C9/ Ar+K9(1-6))T, = (1—0)P + 0P, 9)

where 6 is the interpolation coefficient and defined as: 0 < 6 < 1. In this work, a backward
difference with 6 = 1 is adopted.

2.2.1. Creation of the reduced-basis (RB) The reduced basis is calculated by a matrix containing
all solutions for each time ¢ and for each benchmark problem 1 ... S. This matrix is constructed as
follows:

Tret = [Ty ... Ts]
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By performing a singular value decomposition (SVD) of the constructed reference matrix Tt (n
> m), we can obtain the POD bases of the temperature field, ®.

o, 0 - 0
0 o
: o [MT
Ter=®2Y = D, ... (1),,] 0 - 0 o] (10)
0 0 0] |YL

® ¢ *" is a unitary matrix containing space vectors, ' € R™ ™ a unitary matrix
ectors, and X € R™ contains diagonal and non-negative singular values o; in
a decreasing order.

2.2.2. Truncated SVD The following decomposition Eq.11 is the truncated SVD of T.
Approximation of the problem solution is faster when truncated SVD is used.
Tt~ @101 Y] +@2 0 Y+ +®@; 6; X} +- -+ Dy 0 Y (11

where the mode number k is determined by Eq. 12 from a sens of energy, the sum of selected
singular values should contain 99 % energy compared to that of the total one.

i=k .
_ 20
=M .
X7y

nr (12)

To better explain the Hyper-reduced-order model(HROM), the POD reduced-order model is firstly
presented in the following sub-section.

2.2.3. POD reduced-order model The POD reduced-order model is actually a model reduction
technique, in which the complete solution is projected onto a small dimensional subspace ®[18].
Based on conventional FE method, the discrete form of the equilibrium equation at time step ¢ can
be expressed by the selected first modes of containing the largest part of “energy” of all modes:

(@) (C/ At +K0) DT, | =

((ID)T {P7(1-6)+ 6P —(—C“/At+K“(1-0))T,} (13)
The resolution of the this system reduced the unknowns from m (the degree of freedom of the
system) to k (the selected model number of ®). As a result, an approximation of the solution
T= (DTn+] can be obtained very fast.
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2.2.4. Hyper-reduced-order model (HROM) formulation in the fixed frame For the POD method,
the number of constitutive equations that need to be resolved to estimate the temperature field is
not modified. Indeed, the main computational cost is determined by the number of constitutive
equations, especially for the nonlinear problem. One way to reduce the number of constitutive
equations is to create a reduced integration domain (RID), where the calculation of constitutive
equations is only considered. Moreover, the orthogonal condition in Eq. 13 does not mean that all
the residuals of the equilibrium equations must be equal to zero, thus it allows us to introduce the
RID only on a part of the global domain by the selection matrix IT.

With the selected modes of the POD bases @, the formulation of the HROM can be expressed by

(I TT(C*Y/ A1+ K40) @T, 1) =
)" TI{P (1 - 0) + 6P| — (—C*/ A1+ K9 (1 - 6))T,} (14)

where IT is a rectangular boolean matrix, which allows to perform the selection of degrees of
freedom needed for the HROM. Usually, the components of first largest vaules of the selected modes
are considered, more details can be referred to Ryckelynck [11] and Zhang et al. [18]. Finally, the

temperature field is obtained for the entire model by

Toi1 =T,y (15)

2.2.5. Difficulties of applying HROM in the fixed frame From the transient thermal analysis as
sescribed in sub-section 4.1 for a moving thermal load on a brick specimen, the snapshots of all time
steps are collected as the Ty.¢. To obtain enough mode number for representing the reference matrix
T , the singular value decomposition(SVD) is performed on the temperature and temperature
increment of the whole model. The obtained plots are given in Fig. 2.

10° 10°
10 ‘W%
= Singular val lized by %. 10°F
0l ingular value (normalized by ici)i
()
B © o Singular value (normalized by Zo, )‘
10 =10
£
<
10
10 "°f
10 ¢
il
10 6 L L L 10 20 L L L
0 50 100 150 200 0 50 100 150 200
Number of singular value Number of singular value
(a) SVD on temperature (b) SVD on temperature increment

Figure 2. SVD on temperature evaluation of the entire model of the brick specimen

By SVD on temperature Fig. 2(a), 147 modes are needed to get a ratio of 99% for the singular
value from a sense of energy by Eq. 12, which leads to more selected elements in the RID. So
it’s not practical to adopt the POD bases of temperature field for the entire model. Then the SVD
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on temperature increment is performed in Fig. 2(b). Unfortunately, almost all the singular values
give the same amplitude, and 171 modes have to be considered for the POD bases of temperature
increment. Obviously, the above two choices defeat the purpose of model reduction and limit the
efficiency of the reduced POD models.

Fortunately, the SVD on temperature field in the control volume at the stabilized time steps can
resolve the above mentioned problem, which will be introduced in the following section.

3. R-REDUCED-ORDER MODEL BASED ON THE MOVING FRAME
FORMULATION

In this section, the quasi-static problem is considered as a steady-state problem in a moving
frame (MF) formulation. Moreover, the hyper-reduced-order model is proposed based on the MF

formulation in a control volume.

3.1. Moving frame formulation

Let us consider the case where the velocity and heat input are constant, the body is infinitely long in
the direction of the velocity and its shape is uniform along that direction: the state of the body does
not change in time if the moving frame (MF) x is fixed to the torch (Fig. 1).

In the MF system, a reference configuration is fixed both in space and time. The material
configuration is moving at a velocity —v with respect to the reference configuration. As a result,
the reference configuration is a control volume through which the material flows (Fig. 3). For a
solid body flowing through a control volume, the equation with zero viscous dissipation is derived
by enforcing energy balance over the control volume [1].

- —_—

T < -i-c, X T < _,-_cr
/. Laser Torch Moving frame
Outlet /7 (Fixed to the torch) '\'
nlet

Control volume
(Vo)

r 4
-—

Fixed frame
(Fixed to the body)

Figure 3. Moving frame in the control volume

dT
pCy - =V-(VT)+Q (16)

The derivative of temperature in the flowing body with respect to time is given by

ar _ar | ar dx
dt  Jt  Ox; dt

where x is the material system coordinate, translating with a velocity —v in space by Eq. 18

a7
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X=r—Vt (18)
Then Eq.17 can be expressed as
dr JT
- _v.VT 19
ot " (19)

For a body flowing with a steady constant velocity, Eq.16 yields

dT
PCp—r —PCy(v-VT) = V-(kVT) +0Q (20)

Actually, Eq. 20 represents the transient MF equation. As we look for the stationary process which
should have a constant heat input and flow velocity in the control volume. The control volume will
then have a steady state temperature profile. Then the MF equation for a quasi-static process can be

simplified as follows:

—pCy(v-VT)=V-(kVT)+Q @1

The boundary conditions in the MF configuration are similar to those in the fixed configuration.
The temperature and the heat flux boundary conditions are given by Eqgs.2 and 3. However
the boundary conditions are modelled separately, since time is mapped onto space in the MF
configuration. The new boundary conditions are given by

T = T° on the surface, entering into the control volume (22)

T = T on the surface, going out of the control volume (23)

By the boundary condition of Eqgs. 3 and 4, the weak form of Eq.16 can be expressed by

/[VA~kVT—7A”pCv~VT—TpQ}dQ—/ TqdU— | Th(T,—~T)ar=0 (24
JQ I I3

For the weak form of MF formulation Eq.24, the boundary conditions Eq.2, Eq.22 and Eq. 23 are
stongly enforced. However, the temperature (Eq.23) on the outlet surface is not yet known at this
time.

3.2. Finite element discretization
By applying FE discretization and numerical integration from Eq. 24, the equilibrium equation is
given by

(C9+K“)T =P (25)

where C?? =X, C¢ is the matrix of specific heat capacity containing the material flowing velocity,
and C¢ is expressed by C¢ = [ pcNTvI BdQ.
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3.3. Hyper-reduced-order model

Since the temperature field is assumed to be sufficiently uniform in the velocity direction near
the inlet and outlet edges, an approximate zero surface flux is prescribed across the boundaries
as proposed by Balagangadhar et al.[5].

Therefore in the MF, the problem becomes a stationary one, where the coordinate x is in a control
volume through which the material configuration flows. The hyper-reduced-order model (HROM) is
performed on the control volume, and the reduced bases can be obtained from SVD of temperature
field from a series of control volumes. Specifically, the temperature field should be extracted by the

frame transformation.

T(x,t;) =T (r,t;) withx=r-vt (26)

3.3.1. Control volume determination The question is now following: how to determine the
representative control volume for the SVD analysis? In this work, the temperature rate is evaluated
to find both inlet and outlet surfaces. Let us define:

AT
T=— 27
A (27

t the control volume is determined by V. = | volume in Vgope such that T >=T,,

as shown in Fig. 3. If the velocity of heat source is not known, the temperature rate can be also

used to determine the velocity direction by post-processing of the temperature distribution.

3.3.2. Hyper-reduced-order model in the moving frame It should be mentioned that the SVD
operation is performed on the control volumes. With the selected modes of the POD bases @, the

formulation of the HROM can be expressed by
(M) T1 (K, + C,) ®T = (D) T P, (28)

Finally, the temperature field is obtained for the control volume by T = oT.
As the temperature rate is assumed to be uniform at both inlet and outlet of the control volume,
the temperature of the whole domain can be resolved with few elements in the control volume.

3.3.3. Selection of reduced integration domain (RID) To select the elements in the reduced
integration domain (RID) for the HROM, the gradient in the thermal loading direction V on the POD
bases is evaluated by Eq.29. To avoid the ill-posed problem of Eq. 28, 10 maximum components of
each gradient basis are selected to get enough elements for HROM analysis.
Doy =v' 9® _ 7B (29)
ox

Besides, the error measure is defined by Eq. 30

T —-T
e = || HROM FEH (30)
ITre||
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The CPU gain is defined as
(FE

TGain = “HROM (31)
[Online

4. APPLICATION OF HROM TO THE MOVING THERMAL LOADS

The objective of this section is to apply the HROM to the moving thermal loads on two typical
workpieces: the brick and the ring disk with parallel inner and outer surfaces, where the same section
areas (b h) and the section ratios of 4 (b/h or h/b) are adopted for the geometries of two workpieces
(Figs. 4(b) and 14(b)).

4.1. Application to a brick specimen

As given in Fig. 4, the brick specimen is under a moving thermal load of Vj along the line
of symmetry. Since the loading and the structure are symmetric, only half of the workpiece is
considered and is discretized into 36000 TET4 elements and 10450 nodes. To simplify the thermal
analysis, all the surfaces are assumed to be adiabatic except the loading point at the top surface.

(a) Geometrical design (b) Problem adopted

Figure 4. Thermal loading set-up of the brick specimen

The detailed geometrical, loading and physical properties can be obtained from Tables. I and 1I.
Besides, the laser diameter of 4 mm is adopted.

[ (mm) [ (mm) [,(mm) N.N EN MS.(mm) ET HFMW) V(mm/s)
24 6 400 10450 36000 2. TET4 480 4.

Notes: "N.N” means Node Number; "E.N”’ means Element number; "E.T” means Element type;”H.F’ means
Heat flux.; "M.S.” means Mesh size
Table 1. Geometrical description of the FE model of the brick specimen

The temperature evolution along line of symmetry obtained by the transient thermal calculation is
given in Fig. 5(a). The temperature profiles present the similar tendency except the initial and final
few time steps. The temperature profiles of time steps 99 and 180 are extracted in Fig. 5(b). The
temperature profile of time step 99 is shifted onto to that of time step 180: the two profiles are the
same except the boundary edge part for the temperature profile of time step 99.

Besides, the temperature profiles in the plane of symmetry are also presented in Fig. 6(a), where
four parallel lines along the velocity direction are selected: Ly, L, L3, Ls4. It can be seen that

10
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Notation Name Values
Cp Specific heat capacity 710.0 J kg T.K!
A Thermal conductivity ~ 46.1 W.m~'.K~!
p Density 7850 kg.m ™3
Ty Initial temperature 25.°C

Table II. Thermal parameters of the studied problem of the brick specimen

MNH)HHHHHH‘HH)HHHHH‘)HHHHHN

oottt

’ \
WWMWWMWA

lk\\\\\\k\\\\\\\\\k\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\k\\\M\M\m\\&\\&\\\\\\\\\\\\\\\\\\\&\\\\\\\\m&

’ —— Time step 99 —— Time step 99
—— Time step 180 Time step 180
600 600

400 ‘ 400
|
200 J | 200 L

Temperature (°C)

]llllﬂlllllltllllllltlllllﬂlllllﬂlllllﬂ‘llllllﬂllllllltlllllltlllllﬂllllllltlllllltlllllﬂllllllﬂllllllllﬂ

A

0 100 200 300 400 % 200 a0 % 200 400
Coordinate in Y direction (mm) Coordinate in Y direction (mm)
(a) Temperature along the line of symmetry (b) Selection analysis

Figure 5. Temperature evolution along the line of symmetry of the brick specimen

the temperature is already stabilized after 200 mm along the velocity direction Vj, and all the
temperature values behind the loading points converge to around 100°C, which agrees with the
assumption of Balagangadhar et al.[5].

1500 600
1000 4000
I
N
~ 200 / /
G 500 Z V\
2 0 200 400 0 200 400
g L1"(mm) L2 (mm)
8 300 250
5 Co
e Ih 200
200 ,‘ /‘ |
| M‘ 150
P ‘ 100
100 ‘ j’ ‘ ‘
r; Ll 50
3 p ry 0 0
Y 0 200 400 0 00 400
La \l/ L3 (mm) L4 7%m)
(a) Lines in the plane of symmetry (b) Temperature profiles of the lines

Figure 6. Temperature profile in the plane of symmetry of the brick specimen

4.1.1. Control volume determination for the brick specimen Following the assumption of the
uniform temperature distribution near inlet and outlet, the control volume is determined by the
temperature rate (Eq. 27) as shown in Fig. 7 with a critical value of 7 = 0.1 °C/s.

11
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(f) Time step: 199

Figure 7. Temperature rate evolution with a critical value of 0.1 (°C/s) of the brick specimen

At the inital stages, the high ratio values located at the loading point near the boundary
surface(Fig. 7(a)). After a few time steps, the rate profile stabilizes to a constant shape and size,
as shown from time steps 40 to 188 (Figs. 7(b) to 7(e)), and this constant shape can be chosen as
a control volume. Similarly to the initial stage, the different temperature ratio profile is also given
in the final stage (Fig. 7(f)). To avoid the curved boundary surface, the sectional surfaces locate at

Ymax and y,,;, are considered as the inlet and outlet surfaces, respectively. As a result, the volume
between inlet and outlet surfaces is chosen as the control volume.

12



A DEMONSTRATION OF THE INT. J. NUMER. METH. ENGNG CLASS FILE 13

Finally, the representative control volume (Fig. 8(a)) contains 16200 elements. It’s interesting to
plot the temperature distribution of the rest part of the workpiece in Fig. 8(b): the temperature of the
part behind the control volume converges to 100 °C, which corresponds to Fig. 6(b); the part ahead
of the control volume keeps its initial temperature. However, with the present control volume, the
computation is still costly for linear thermal properties or future thermo-elasto-plastic problem. The
hyper-reduced-order model(HROM) is then proposed for the control volume.

°C 160
°C) 1000 3 (°C)
900 - #00 140
350
3 120
1 700 300 N\ |
{ 250 N ‘ - 100
1500 20075 J
. 80
150 N\
300 e 60
! 50 40
25 0 4 10 20MM25
x
(a) The control volume (b) The rest part

Figure 8. Temperature distribution in the control volume at time step 152 of the brick specimen: 16200
elements, 4732 nodes

4.1.2. Model reduction for the brick specimen By the SVD of control volume of 46 stabilized time
steps (from time steps 143 to 188), the plot of the normalized singular values is given in Fig. 9. Only
one mode is needed to obtain 99% energy for the model reduction according to Eq. 12.

107 &

[

-
OI

= Singular value (normalized by Lo, )

Amplitude

0 10 20 30 40 50
Number of singular value

Figure 9. SVD on the temperature of the control volumes of the brick specimen

In the following part of this sub-section, parametric studies are performed on the precision of the

temperature distribution by the different mode and temperature rate. It should be mentioned that

13
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10 maximum values of the temperature gradient of each selected basis is adopted to obtain enough
elements in the RID, more details can be referred to Ryckelynck [11] and Zhang et al. [18].
For the fixed temperature rate of 7 = 0.1 °C/s:

Cases Selection ratio C.V.(Vo) RID. elements

Mod. M.N.S. 1(s) T(°Cls) E. N. E. N.
Casel 1 10 - 0.1 16200 4732 80 14
Case2 2 10 - 0.1 16200 4732 80 14
Case3 3 10 - 0.1 16200 4732 | 144 28
Case4 4 10 - 0.1 16200 4732 | 214 48
Case5 1 10 - 0.15 14940 4368 80 14
Case6 2 10 - 0.15 14940 4368 144 28
Case7 1 10 - 0.2 14220 4160 80 14
Case8 2 10 - 0.2 14220 4160 | 144 28
Case9 1 10 - 0.3 13140 3848 80 14
Casel0 2 10 - 0.3 13140 3848 144 28

Full model - - - - 36000 10450 - -

Notes: Mod.: Modes; M.N.S.: The number of the maximum values of each selected basis gradient; 7: Scaling
Coefficient; C.V.: control volume; E.: Elements; N.: Nodes; RID.: Reduced integration domain
Table III. RID information of different mode and temperature rate of the brick specimen

C.T.(s) Error(%)
Off. On. TGain Glo. M.T.
Casel 64178 228 % 1.02¢% | 11.82 11.82
Case2 633.32  296e* 7.85¢’ | 291.16 165.54
Case3 63638 1.4le™* 1.65¢% | 2.30 0.27
Case4 637.89 1.52¢* 1.53¢ | 0.059  0.060
Case5 56440 3.15e¢° 6.62¢% | 11.82  11.82
Case6 563.68 690e> 337¢% | 0.53 0.53
Case7 51586 3.00e> 7.74¢% | 11.82  11.82
Case8 518.76 820e> 283¢e% | 0.53 0.53
Case9 456.65 240e> 9.68ed | 11.82  11.82
Casel0 | 46352 790e> 294¢® | 053 0.53
Full model - 23229.96 - - -
Notes: C.T.: Computational time; Off.: Offline; On.: Online; Glo.: Global; M.T.: Maximum Temperature.
Table I'V. Simulation results of different mode and temperature rate of the brick specimen

Cases

With one mode, 80 elements are selected in thermal loading zone of the control volume at time
step 152, as shown in Figs. 10(a) and 10(b). The predicted temperature distribution of all the nodes
and the nodes along Linel in the control volume are given in Figs. 11(a) and 11(b), respectively.

By the temperature distribution along Linel for 1 mode at 7 = 0.1 °C/s, the temperatures near
the inlet well agree with the one from full model obtained by transient thermal calculation, while
the values of the thermal loading point and near the outlet show difference compared to these of the
full model, where the temperature in the loading point presents the same error (around 11.82%) as
that of all the nodes in the control volume. Besides, the CPU gain of 10% is obtained. By 2 modes,
the selected elements (case2 in Table III) are the same as the case of the 1 mode, which leads to
high error (case2 in Table IV). It means the ill-posed reduced problem occurs (Zhang et al. [18]

and Ryckelynck [11]). Then more elements (144) are selected with 3 modes near the inlet surface

14
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160 20
10
0

(d) Selected elements(144): 3 modes

(e) Control volume: 4 modes (f) Selected elements(214): 4 modes

Figure 10. Selected elements for HROM with different modes of the brick specimen

(Fig. 10(d)), which decreases the temperature error of the loading point to 0.27%. However, the
disagreement near the oulet is still observed as shown in Fig. 11(d).

By increasing the mode number to 4, the selected elements extend from 144 to 214 with the
additional elements at the outlet surface (Figs. 10(e), 10(f)), and the nodal temperatures on the inlet
and outlet surface are strongly enforced. By the above consideration, the temperature error of all
nodes decreases to 0.059 % by 4 modes finally (Fig. 11(e)), while the CPU gain keeps at 108.

Increasing the fixed temperature rate to 7" = 0.15 °C/s:

For T = 0.15 °C/s, less elements are selected for the control volume (14940 compared to 16200).
With 1 mode, the same errors are obtained as the temperature rate of 0.1 °C/s, while acceptable
errors are obtained with 2 modes for the enough selected elements in RID (case 6 in Table IV).
Similar tendency is also found for the temperature rates of 0.2 °C/s (cases 7 and 8) and 0.3 °C/s
(cases 9 and 10).

15
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Figure 11. Temperature distribution in the control volume based on the HROM of the brick specimen

It should be mentioned that the error of 11.82% is obtained with mesh size of 2 mm and 1
mode, the error can continue to decrease with finer mesh (1 mm) and one mode, while the high
computational cost is needed.

4.1.3. Stabilized streamline upwind PetrovGalerkin (SUPG) method To avoid mesh refining and
the selection of elements at the boundary surfaces, the streamline upwind PetrovGalerkin (SUPG)

16
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is adopted as prescribed in the work of Rajadhyaksha and Michaleris[1], then the weight function
of the advective term is modified by adding tv-VT

/Q[VA- \% —(TJrrv-VT)pCv-VT—TQ]dQ—/F Tqdr — i Th(T,—T)dT =0 (32)
2 3

where 7 is a coefficient which has the dimension of time (s). The following discretization process
and model reduction are similar to Eq.s 25 and 28.

By selecting appropriate scaling factor 7 (from casel to case4 in Table V), the good agreement
(error of 1.40%) can be obtained by 7= -0.25(s) (Fig. 12, the CPU gain is of the order of 7 (107).
The temperature profiles of all nodes and L; in the control volume are also given in Fig. 13.

With the scaling factor 7, the boundary conditions on the inlet and outlet surfaces is not necessary,
while the value of 7 needs to be determined is sensitive to different mesh size and loading velocity.

1200
1000t 1
—— Full model
O ool ©=0 ]
o —1=-0.1
g T=-0.25
*§ 600+ t=-05 B
(0]
3
S 400f ]
|_ —
200t 1
O 1 1 1
0 50 100 150 200

Coordinate in Y direction (mm)

Figure 12. Temperature distribution on the L; based on the HROM with one mode and different scaling
factors 7 of the brick specimen

For the increased temperature rates (0.15, 0.2 and 0.3 °C/s), the same errors are obtained with
less elements in control volumes (14940, 14220 and 13140 compared to 16200 for temperate rate
0.1°C/s), and the CPU gain keeps at 108, which means that the SUPG-based HROM can efficiently
predict the temperature distribution with 1 mode and less elements in the control volume.

4.2. Application to ring disk

To present a general example of thermal loading, the ring disk structure is also adopted. Due to the
symmetric loading and structure (Fig. 14(a)), only half of the structure is analyzed. The thermal
loading is applied along the circular top edge line of the external radial surface (Fig. 14(b)) with
a constant velocity of 4 mm/s and laser diameter of 4 mm. More detailed parameters are given
in Table VII, where the internal and external radii are 74 and 80 mm, respectively. For the FE
discretization, the mesh size of the radial external surface is also designed as 2 mm to keep consistent
with that of the brick specimen.

17
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Cases Selection ratio C.V.(Vy) RID. elements
Mod. M.N.S. 1©(s) T(°Cls) E. N. E. N.
Casel 1 10 0. 0.1 16200 4732 | 80 14
Case2 1 10 -0.1 0.1 16200 4732 | 80 14
Case3 1 10 -0.25 0.1 16200 4732 | 80 14
Cased 1 10 -0.5 0.1 16200 4732 | 80 14
Case5 1 10 -0.25 0.15 14940 4368 | 80 14
Case6 1 10 -0.25 0.2 14220 4160 | 80 14
Case7 1 10 -0.25 0.3 13140 3848 | 80 14
Full model - - - - 36000 10450 - -

Notes: Mod.: Modes; M.N.S.: The number of the maximum values of each selected basis gradient; 7: Scaling
Coefficient; C.V.: Control volume; E.: Elements; N.: Nodes; RID.: Reduced integration domain
Table V. RID information of different scaling factor and temperature rate of the brick specimen

C.T. (s) Error(%)
Off. On. Toain | Glo. M.T.
Casel 64178 228¢ % 1.02¢% | 11.82 11.82
Case2 637.94 240e* 9.68¢’ | 740 7.40
Case3 63629 320e % 726¢” | 140 140
Cased 636.76 231e* 1.01e® | 725 7.5
Case5 564.28 3.10e > 7.498% | 140 1.40
Case6 51735 3.10e> 7.49¢% | 1.40  1.40
Case7 456.08 2.40e  9.68¢ed | 140 140
Full model - 23229.96 - - -
Notes: C.T.: Computational time; Off.: Offline; On.: Online; Glo.: Global; M.T.: Maximum Temperature.
Table VI. Simulation results of scaling factor and temperature rate of the brick specimen

Cases

1200 T . . . 1200
10001 1 1000+
E 9 8001
800 —— Full model < —— Full model
—— HROM g ——HROM
©
]
a
£
o
2
0

0 1000 2000 3000 4000 5000 0 50 100 150 200

Node number Coordinate in Y direction (mm)
(a) All nodes: 1 mode, T=-0.25 (s) (b) Linel: 1 mode, T =-0.25 (s)

Figure 13. Temperature distribution in the control volume based on the SUPG and HROM of the brick
specimen

R (mm) Roe(mm) A(mm) M.S.(mm) NN EN ET HFMW) V (mm/s)
74 80 24 2 13052 54216 TET4 480 4
Notes: ”In.” means Inner; ”Ou.” means Outer; "M.S.” means mesh size; ”"N.N” means Node Number; "E.N”
means Element number; ”E.T” means Element type;”H.F” means Heat flux.
Table VII. Geometry description of the FE model of the ring disk
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(a) Full model (b) Half model

Figure 14. Geometrical model and boundary conditions of the ring disk

4.2.1. Control volume determination for the ring disk Firstly, the representative control volume
must be determined by the critical temperature rate. By Eq. 27, the temperature rate larger than 0.15

Cl/s are given in Fig. 15. Similarly to the brick specimen, the geometry shape of temperature rate is
not stable at the initial stage (Fig. 15(a), at time step 12). The regular profile starts to be stable after
time step 136 (Fig. 15(c)), even in the final stage.

To avoid the curved boundary surface, the sectional surfaces locate at 6,,,, and 6,,;, are considered
as the inlet and outlet surface, respectively. As a result, the volume between inlet and outlet surfaces
is chosen as the control volume. The temperature distributions in control volume and the rest part
are also given in Fig. 16 at time step 173 (86.5 s).

4.2.2. Model reduction for the ring disk Based on the control volume, 46 temperature field
snapshots are selected from time steps 143 to 188. In the following step, the SVD is performed
for the selected temperature snapshots, the singular values on temperature are distributed as shown
in Fig. 17. Again, one mode contains 99 % energy.

To keep computational efficiency, only one mode is selected for present problem. In this case, 80
elements and 14 nodes are selected in the thermal loading zone (Fig. 18(b)). However, the errors
for all nodes and the maximum temperature are larger than 10%. The the CPU gain is of the order
of 7 (10 ). By keeping the FE equilibrium equation (Eq. 25), more modes are needed. When the
mode number of 2 is selected, additional 45 elements are selected at the inlet (Fig. 18(d)), where
the temperature of the additionally selected nodes are considered as the initial one (25 °C). Based
on above HROM model in the control volume, the error of 0.60 % is obtained for all nodes and
the maximum temperature, respectively. The temperature profile of the HROM also shows good
agreements compared to that of FE model (Figs. 19(c), 19(d)), and the acceptable errors within
10% are obtained. The CPU gain still keeps at 10.

If we want to keep the computational efficiency, the SUPG strategy can be adopted with the
scaling factor as mentioned in Eq. 32. Fortunately, the scaling coefficient 7 with the same value
of -0.25s also works for the circle thermal loading case. As given in Fig. 19(e), good agreement
is obtained for all the nodes in the control volume. According the temperature plot along the
loading edge (Fig. 19(f)), the stable temperature distributions ahead and behind the loading point
can be easily observed, which proves the assumption for this more general loading case. Finally,
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Figure 15. Temperature rate evolution larger than 0.15 (°C/s) of the ring disk

high precision with the controlled errors of 0.12% is obtained for all the nodes and top edge line,
respectively. Further more, the CPU gain of 107 is still obtained.

It should be mentioned the SUPG strategy can be also ignored with further finer mesh (e.g.: 1
mm), which is similar to the case of the brick specimen.

20



A DEMONSTRATION OF THE INT. J. NUMER. METH. ENGNG CLASS FILE 21
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Figure 16. Temperature distribution in the control volume at time step 173 (86.5 s) of the ring disk, elements:
18360, nodes: 4472
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Figure 17. SVD on temperature snapshots of the ring disk

Cases Selection ratio C.V.(Vy) RID. elements
Mod. M.N.S. 1©(s) T(°Cls) E. N. E. N.
Casel 1 10 - 0.15 18360 4472 80 14
Case2 2 10 - 0.15 18360 4472 | 125 24
Case3 1 10 -0.25 0.15 18360 4472 80 14
Full model - - - - 54216 13052 - -

Notes: Mod.: Modes; M.N.S.: The number of the maximum values of each selected basis gradient; 7: Scaling
Coefficient; C.V.: control volume; E.: Elements; N.: Nodes; RID.: Reduced integration domain
Table VIII. RID information of different cases of the ring disk specimen

C.T.(s) Error (%)
Off. On. Toan | Glo. M.T.
Casel 822.08 2.40e % 2.85¢’ | 10.61 10.61
Case2 818.12 3.06e % 222¢’ | 0.16 0.16
Case3 82227 222e¢* 3.07¢’ | 012 0.12

Full model - 6804.74 - - -
Notes: C.T.: Computational time; Off.: Offline; On.: Online; Glo.: Global; M.T.: Maximum Temperature.

Table IX. Simulation resutls for different cases of the ring disk specimen

Cases
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(a) The control volume: 1 mode (b) Selected elements(85): 1 mode
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(c) The control volume: 2 modes (d) Selected elements(125): 2 modes

Figure 18. Selected elements in the control volume at time step 173 (86.5 s) of the ring disk

5. PARAMETRIC STUDIES

To check the versatility of the HROM, parametric studies are performed on thermal conductivity and
the loading amplitude for the brick specimen, in which the Case?2 is considered as the reference one
for varying thermal and loading parameters. To keep the consistency for all cases, the temperature
rate 0.1 °C/s is adopted to determine the control volume. By the constant loading amplitude, three
different thermal conductivities of 36.1, 46.1 and 56.1 W.m~'.K~! are employed, correponding
to cases 1, 2 and 3 in Table X. With the temperature rate 0.1 °C/s, the element numbers of 18720,
16200 and 14580 are obtained for the control volume for cases 1, 2 and 3. It should be mentioned that
the thermal conductivity is a very sentitive physical parameter for determining one stable thermal
system according to simulation tests. For the lower thermal conductivity, more elements should be
selected for the limited computational time and the stricted selection temperature rate 0.1 °C/s(less
element number can be achived with higher selection temperature rate). For the higher thermal
conductivity, the stable system is easily formed, then less elements are selected for the control
volume. Actually, more strict selection temperature rate (small value) can be applied for higher
thermal conductivity.

With the model number and the number of the maximum values of each selected basis gradient
less than 10, the selected elements in the control volume are in the level of less than 400, where
Case3 shows the highest value because of high mode number of 7. The Online computational times
show that the HROM is quite efficiency for all the three cases, while the Offline computational
time is greatly influenced by the number of control volume as given in Table XI. In addition, good
agreements (Fig. 20) are obtained as well as the high CPU gain of 108.
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Figure 19. Temperature distribution in the control volume based on the HROM of the ring disk

Different values of heat flux of 440, 480 and 520 W for studying the effect of loading amplitude,
corresponding to Cases 4, 2 and 5, are selected. As given in Table XI, the element number of the
control volume increases with the laser power, while the variation of the elements in the control
volume is less than 1000. Moreover, the selected elements and nodes for the RID show slight
difference, similarly for the selected positions as shown in Figure 21. Due to few selected elements
in the RID, the HROM always keeps high efficiency for all cases, and the good precision is kept
with four modes as shown in Figure 21 and Table XI.
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Cases | Conductivity | HF. Modesselifi.t;\?.ré.ratl(;(OC/s) E.C'V'(VC%\I. I;I.D ' eleml\?.n .
Casel 36.1 480 | 4 10 01 | 18720 5460 | 214 48
Case2 46.1 480 | 4 10 0.1 | 16200 4732 | 214 48
Case3 56.1 480 | 7 10 0.1 | 14580 4264 | 357 75
Cased 46.1 440 | 4 10 0.1 | 16020 4680 | 229 48
Case5 46.1 50 | 4 10 0.1 | 16560 4836 | 214 48
Full model - - - ) - 36000 10450 | - ;

Notes: H.F.: Heat flux; M.N.S.: The number of the maximum values of each selected basis gradient; 7:
Scaling Coefficient; C.V.: control volume; E.: Elements; N.: Nodes; RID.: Reduced integration

domain
Table X. RID information of different thermal conductivity with the same modes and temperature rate of the
brick specimen

C.T.(s) Error (%)
Off. On. TGain Glo. M.T.
Casel 71289 1.72e* 135€% | 0.18 0.16
Case2 | 637.89 152e* 1.53¢%|0.059 0.060
Case3 | 57259 1.63e* 143e¥| 023 025
Case4 | 57756 1.65¢™* 1.41e® | 0.089 0.092
Case5 | 65471 1.76e™* 1.32¢e% | 0.092 0.091
Full model - 23229.96 - - -
Notes: C.T.: Computational time; Off.: Offline; On.: Online; Glo.: Global; M.T.: Maximum Temperature.
Table XI. Simulation results for parametric studies based on HROM for brick specimen

Cases

6. CONCLUSIONS

To resolve a quasi-static thermal process, an efficient hyper-reduced-order model(HROM) approach
using one moving frame (MF) formulation has been proposed. The proposed model is achieved by
the reduction of two times: 1) The control volume is selected to represent the whole model; 2) The
HROM is applied to steady-state-based control volume.

The developed approach is applied to the moving thermal loading problems for brick and ring disk
specimens. To increase the computational precision, two strategies are proposed: one can increase
the mode number, which leads to more selected elements and decreases the computational efficiency
(CPU gain of 10 ); one can also employ the streamline upwind PetrovGalerkin (SUPG) method,
which keeps the highly computational efficiency with only one mode for a constant velocity (CPU
gain of 10 ). However, the time dimensional scaling facor is necessary to be determined for different
cases.

With the same cross section and mesh size for both brick and ring disk specimens under the same
magnitude of thermal loading velocity, the scaling factor is independent of velocity direction. Based
on the above two strategies, besides the high precision, the online run-times ratio of the HROM
in the moving frame than the standard FE model in fixed frame is obtained at least by 7 orders of
magnitudes (10 ).

Based on the proposed HROM, parametric studies on thermal conductivity and heat flux show
high accuracy and high efficiency. The thermal conductivity is very sensitive for determining the
control volume for maintaining the stable state, while the heat flux shows slight influence on the

selected elements in the reduced integration domain.
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Figure 20. Parametric studies on the thermal conductivity for the control volume based on the HROM of the

brick disk
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Figure 21. Parametric studies on the loading amplitude for the control volume based on the HROM of the
brick disk
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