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Abstract - In this paper, an advanced model, based on 

recurrent high order neural networks, is developed for the 

prediction of the power output profile of a wind park. This 

model outperforms simple methods like persistence, as well 

as classical methods in the literature. The architecture of a 

forecasting model is optimised automatically by a new 

algorithm, that substitutes the usually applied trial-and-

error method. Finally, the on-line implementation of the 

developed model into an advanced control system for the 

optimal operation and management of a real autonomous 

wind-diesel power system, is presented. 
 

Keywords: Short-term wind power forecasting, recurrent 

neural networks, wind-diesel power systems. 

 

I.   INTRODUCTION 

 

Wind Energy Conversion Systems (WECS) appear as an 

attractive alternative for electricity generation, especially 

when integrated to isolated power systems, like the systems of 

islands or of rural areas. Although the integration of WECS 

results in important environmental and economic benefits [2, 4, 

14], the stochastic nature of the wind, imposes considerable 

difficulties on the optimal management of these power systems 

[7, 13]. 

The integration of efficient wind power forecasts in the 

power system control and management functions may result in 

a reduction of operating costs and in an improvement of the 

quality of service [1, 3, 4, 7, 14]. 

In the present paper, a recurrent high-order neural network 

model is developed for the short-term prediction of wind 

power. A main advantage of this type of neural networks over 

conventional ones, is that fast learning algorithms can be 

derived for the weights estimation, enabling it to be appropriate 

for on-line applications [9]. 

The developed model can be used for the prediction of 

wind speed or power in time-scales that can vary  between  

 

 

 

 

 

 

 

 

 

 

 

some seconds to some hours. However, this paper is mainly 

concerned with forecasts useful for the short-term scheduling 

of an autonomous power system that is, with forecasts of the 

WECS power output profile for the next 2 or 3 hours with a 

time step in the order of 10 minutes. 

The paper is structured as following : initially, the state-of-

the-art on the short-term wind forecasting problem is given. 

Then, a wind power forecasting model, is developed and 

evaluated using data from the wind-diesel power system of the 

Greek island of Lemnos. An algorithm for the optimisation of 

the architecture of a forecasting model is then presented. This 

algorithm optimises all the parameters that are critical for the 

generalisation capability of the model that is, its ability to 

predict data other than those on which it has been trained. 

Finally, the implementation of the developed model into an 

advanced control system for the optimal operation and 

management of the wind-diesel power system of the island of 

Lemnos, is presented.  

 

 II.   THE WIND POWER FORECASTING PROBLEM 
 

The main differences between the various wind forecasting 

models found in the literature are in :  

(i) the time-scale. It can be in the order of a few seconds when 

forecasts of wind speed, rather than power, are used for wind 

turbines control [2, 3, 5]. Alternatively, time-scale can be in the 

order of several minutes or even hours, when the objective is 

economic dispatch and power system planning. Such functions 

necessitate forecasts of the WECS power output profile [1, 4, 

7, 13, 14]. 

(ii) the methodology. In smaller time-scales, the time-series 

methodology is applied, according to which, past values of a 

process are used to predict future values [2-7]. In higher time-

scales of some hours or more, models based on meteorological 

information are usually used. These models produce forecasts a 

limited number of times per day and necessitate more 

parameters and considerable computer time compared to 

timeseries models [1].  

Since in this paper, short-term wind forecasting is 

considered, the timeseries approach will be followed. Results 

from the quite limited existing literature on this approach are 

presented below, indicating the level of wind predictability. 

The evaluation of the methods is based on comparison with the 

persistent method described in Section III.A.   

In [2], a Kalman filter technique is used for wind speed 

prediction in several time-scales. The improvement with 

respect to the persistent, on 1-minute data, is in the order of 4 
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to 10 % relative to the root mean square (RMS) criterion of 

errors.  The  performance  of  the  method  becomes   very 

small or  negative when 10-minute averaged data are used. 

In [3], ARMA models achieve an improvement w.r.t. the 

persistent in the order of 5-12 % on 2-second data (horizon up 

to 20 seconds), and 9-14 % on 1-minute data (horizons up to 10 

minutes). The performance of multilayer feed-forward neural 

networks for the prediction of wind power is found to be very 

close to the persistent when 10-second data are used [5], while 

the improvement for one-step prediction of 1-minute data is 

11% and for 10-min data is 8% [6]. A similar performance on 

1- and 10-minute data is also obtained by Radial Basis 

Functions [6]. 

In [7], various models like ARMA and bilinear ones are 

developed for wind power forecasting. They achieve an 

improvement of 7 to 12 % with respect to the persistent, for a 

forecast horizon of 2 hours and time-steps of 30 minutes. 

Finally, statistically evaluated results on multi-step ahead 

forecasting of timeseries with a resolution in the order of ten 

minutes are not found in the literature. 

 

III.  WIND POWER FORECASTING METHODOLOGY 
  

 Two main approaches may be followed in order to 

generate wind power forecasts : 

(i) to develop an explicit prediction model for wind power, in 

which it will be possible to consider wind speed, wind 

direction etc. as explanatory variables.   

(ii) to develop a prediction model for wind speed and a second 

model for the transformation of wind speed to power. As 

transformation model can be used the manufacturer’s 

characteristic curve of the wind turbine (WT) power output 

as a function of wind speed. If however, the point of 

measurement of wind speed is different than the hub height 

of a wind turbine, then the transformation model should 

account for the spatial variations of  wind. 

In the case-study of Section IV, where the wind park power 

output profile is predicted and the wind speed measurements 

are made by a unique anemometer - as is usually the case in 

applications, the first approach gave better results. The 

consideration of the WT characteristic curve as a 

transformation model gave poor results, while an advanced 

transformation model did not give any advantages over the first 

approach. Similar results are also reported in [7]. 
 

A.   The Naive Predictors 
 

When an advanced forecasting model is not available, 

forecasts may be obtained with a minimal effort and data 

manipulation and can be based solely on the most recent 

information available. Such forecasts are referred to as Naive 

forecasts. One such method (Persistent or Naive_1 method), is 

to use the most recent datum available ( )P t ,  as forecast 

( ) /P t k t+  for each one of the future time-steps that is : 

( ) ( ) / P t k t P t+ = for  k=1,...,n. A slightly more sophisticated 

method would be to use the average of m past values 

(Naive_m) as forecast : 

( ) ( ) /P t k t
m

P t im

i

m

+ = −
=

−


1

0

1

,  k =1,...,n.    (1) 

The forecasting errors over a set of data, are used to 

calculate various performance criteria like the Root Mean 

Square (RMS) of errors both for Naive and advanced methods. 

The benefit gained by the use of an advanced method is 

typically measured as a percentage improvement on a certain 

criterion (e.g. RMS)  [2-7]. 

 

 

B.   The Advanced Neural Network Model 

 

Recently, increasing interest has been shown for the use of 

Recurrent Neural Networks, for modelling and identification of 

dynamic systems. These networks dispose dynamic elements in 

the form of feedback connections. This distinguishes them 

from feedforward neural networks, where the output of one 

neuron is connected only to neurons in the next layer. In the 

simple case, the state history of each neuron is determined by a 

difference equation of the form : 
 

( ) ( ) ( ) ( )x t a x t b w t y ti i i i ij j

j

+ = + 1        (2) 

 

where xi  is the state of the i-th neuron, a bi i,  are constants, 

wij  is the synaptic weight connecting the j-th input to the    i-th 

neuron, and y j  is the j-th input to the above neuron. Each y j  

is either an external input or the state of a neuron passed 

through a sigmoidal function, i.e., ( )y S xj j= where ( )S .  is a 

sigmoidal nonlinearity. The dynamic behaviour and stability 

properties of models described by (2) have been studied by 

various researchers like Grossberg [8].  

High-order networks are expansions of the first-order 

Hopfield and Cohen-Grossberg [8] models that allow higher-

order interactions between neurons. In a recurrent second-

order  neural network the total input to the neuron is not only a 

linear combination of the components y j , but also of their 

products y yj k . Moreover, one can pursue along this line and 

include higher-order interactions represented by triplets y y yj k l

, quadruplets, etc. This class of neural networks form a 

recurrent higher-order neural network (RHONN). 

Consider now a discreet time RHONN consisting of n 

neurons and m inputs. The state xi  of the i-th neuron is 

governed by a difference equation of the form [9] : 
 

( ) ( ) ( ) ( )x t a x t b w t z ti i i i ik

k

L

k+ = +
=

1
1

  (3) 

 

 

where zk  is defined as : 
( )

z yk j

d k

j I

j

k

=


 ,  I I IL1 2, , ,  is a  

collection of L not-ordered subsets of  1 2, , , m n+ , and 

( )d kj  are non-negative integers. The vector y with the inputs 

to each neuron is defined by : 
 

 

( ) ( ) ( ) ( ) 

y

     =  

= =+ +y y y y

S x S x S u S u

n n m n

T

n m

T

1 1

1 1

, , , , , 

 , , , , ,

 

 
              (4) 
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where  u = u u um

T

1 2, , ,  is the external input vector to the 

network and  T denotes the transpose operator. The function 

( )S .  is a monotone increasing, differentiable sigmoidal 

function of the form : 
 

( )S x
e

x
=

+
−

−
 



1

1
     (5) 

 

where    are positive real numbers and   is a real number. 

The stochastic gradient method is used to derive the 

following learning rules for the weights estimation : 
 

( ) ( ) ( ) ( )w t w t z t e tik ik i k i+ = +1      (6) 

 

where ( ) ( ) ( )e t x t ti i i= −   denotes the prediction error, ( )i t  

is the measured value of the process and  i  is a small positive 

parameter denoting the learning rate. The value of the learning 

rate is reduced during the learning process in order to avoid 

residual fluctuations or instability. The reduction is made 

according to a learning rate schedule function of the "search-

then-converge" [10] type :  
 

( )
( )

 t
k

=
+

−





0

1
1

         (7) 

where 0  is the initial value of the learning rate, which is 

reduced by the small positive quantity   at each learning 

epoch k. The total number of learning epochs is denoted as K. 

Since the RHONN model is linear in the parameters (weights) 

the learning procedure leads to globally optimal values of the 

weights.   

Consider now that there is a dynamic process, whose 

input/output relation is given by a general difference equation 

of the form : 
 

( ) ( )( ) ( ) ,t f t t+ =1 u         (8) 

where  n
 is the scalar process output, u m

 is the 

scalar input of the process and ( )f .  is an unknown function. It 

has been shown in [9] that if (i) the function ( )f . satisfies some 

very mild continuity assumptions, (ii) the vector u(t) is 

available for measurable, (iii) the number L of high-order 

connections is sufficiently large, and (iv) an appropriate 

adaptive (learning) algorithm for adjusting the weights of the 

RHONN is available, then the RHONN model is possible to 

approximate the dynamic system to any degree of accuracy. 

Considering the problem of the wind power prediction, it is 

assumed that the dynamic process , governed by (8), is the 

future wind power profile. The objective is then, to find a 

neural network (NN) function ( )fM .  that can approximate ( )f .

. There are 3 main ways to represent this future profile or, in 

other words, to consider multi-step predictions [11] :   

 (i)  The first one is to consider that the process can be 

approximated by a unique NN with n outputs, each one giving 

a prediction for a different time-step. Then, the process   vector   

( ) t +1   and   the   RHONN   state   vector  

( )x t +1 are considered to be : 

 

 

 

( ) ( ) ( ) ( )  t P t P t P t n
T

+ = + + +1 1 2, ,   

( )   ( ) ( ) ( ) x t x x x P t t P t t P t n tn

T T
+ = = + + +1 1 21 2, ,   / ,  / ,  /   

 

 (ii)   Alternatively, it is possible to consider one NN with 

one output only for the first time-step. In this case the 

predictions are fed-back as input to the same NN model to give 

the output for the following time-steps. 

 (iii)  Finally, one can consider that the real process can 

be approximated by n different NNs, each one with one output 

corresponding to a different time-step.  
 

 The process input  ( )u t at time t is determined as : 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

u

                                         

t U t p U t p U t p U t p

U t p U t p

r r

s s s s r
T

s

 , , , , , , ,

, , , (9)

, , , ,

, ,

= − − − −

− −

[

]

1 1 1 1 1 2 2 1 2 2

1

1 2
  

 

 

where p Ji r ii,  , Ji  with i s= 1 2, , ,  and s is the number 

of different kinds of input data (e.g. wind power, speed, 

direction etc.). The total number of input variables in the model 

is m ri
i

s

=
=


1

 An example of ( )u t  can be :  

( ) ( ) ( ) ( ) ( ) ( ) ( ) u t U t U t U t U t U t U t
T

= − − − −1 1 1 2 2 21 3 4 9, , , , ,  

 

with U1  representing wind power, and U2  wind speed. 

 

C. Optimisation of the forecasting model architecture 
 

A major problem in time-series forecasting is the 

determination of the optimal architecture of a model. Usually, 

the trial-and-error method is applied to test various alternative 

model architectures and choose the one with the optimal 

generalisation capability. 

As generalisation, is defined the capability of a forecasting 

model to predict data other than those on which it has been 

trained. A model with too many free parameters will fit the 

training data arbitrarily closely, but will not necessarily lead to 

optimal generalisation. 

Two classes of generalisation criteria are usually used for 

model architecture selection [10, 15]. The first class contains 

criteria formed by a first term measuring the goodness of fit 

and a second term penalising the number of parameters in the 

model (e.g. Akaike Information Criterion [15]). The second 

class of criteria is based on the principle of cross-validation, 

according to which, the decisions on the model structure are 

made on a sample of data different than the sample used to 

estimate the parameters of the model. 

In this Section, an algorithm for the optimisation of  the 

architecture of a RHONN forecasting model, is presented. The 

optimisation criterion is based on the cross-validation 

approach, which has been extended to consider that the 

generalisation capability of a model can be ameliorated if  

training is stopped, before the model starts fitting the noise in 

the data [10]. The parameters that are optimised by the 

algorithm are the parameters with an influence on the 

generalisation capability of a model, that is :   

(i)  The number of past values of each kind of data that will 

be  used  as  input  in the model. A  preliminary  analysis  of  
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the available wind data showed that not important 

seasonallities are present. Hence, the set Ji  of orders for the i-

th type of data, is considered to contain consecutive values, 

that is  J pi i ri
= 0 1 2, , , , , . The algorithm optimises the 

number ri  of elements in Ji  which is : r pi i ri
= +, 1 . This 

optimisation leads automatically to a selection of data since in 

the case that ri
* = 0  then, the i-th type of data will not be 

considered as input to the model. 

(ii)  The parameters 0 , ,  r K  of the learning rate schedule 

given by (7). The optimisation of the number of training 

epochs K  leads to an optimal terminating point for the learning 

process. 

(iii)  Finally, the parameter  that determines the shape of 

the sigmoidal function (5) used in the neural network, is 

optionally optimised for each kind of input. It is noted that the 

parameters   in (5) are fixed to some constant values 

according to the range of possible values of the input x of the 

sigmoidal function. 

The vector of the candidate model architecture parameters 

is defined as : 
 

 q  , , , , , , , , ,= r r r Ks s

T

1 2 0 1     ,                (10) 
 

where the indices associated to  indicate that each kind of data 

is passed through a different sigmoidal function. 

According to the cross-validation approach, the available 

data set ( ) ( ) S P P T , ,= 1   is randomly partitioned into three 

subsets :  

• The learning set ( ) ( ) S P P TL L , ,= 1  , which is used for 

the estimation of the weights using (6).   

• The validation set ( ) ( ) S P T P TV L V , ,= +1  , which is 

used to take decisions on the architecture parameters. 

• Finally, the test set ( ) ( ) S P T P TT V , ,= +1  , which is 

neither used in the weights estimation, nor in the 

architecture optimisation, but only for the ultimate 

evaluation of the model. The performance on this set of 

data is compared with the performance of the Naive 

methods, or other advanced methods in the literature. 

Following the above considerations, the architecture 

optimisation problem is formulated as : 
 

( ) ( ) ( )( )
( )

q     min
q

   q +
*

  

:  /
:

J P t k P t k tV

t k
P t k S

k

n

V

= + −
+

+ 
=


1

2

2

1

 

 

under the constraints : 
 

  1)  q q qmin max   

 

  2) ( ) , ; , *P f PM= u q w  

( ) ( ) ( )( )
( )

 3)  w      min
w

    w q

   

*: /  / ,

, ,

J P t k P t k t

P t k S k n

L

L

= + − +

 +  =

1

2

1

2



 

where ( )JV q  is the sum of square  prediction  errors  on  the  

 

validation set SV . Its minimisation gives the optimal value of 

the model architecture parameters q
* . 

The 1st constraint stands for the range of acceptable values 

for the architecture parameters. 

The 2nd constraint denotes that the predictions in the 

validation set are made using the neural network model 

described by (3), with an architecture determined by q and with 

optimal values of weights w* . 

Finally, the 3rd constraint denotes that the optimal values 

of the weights of a candidate model, are obtained by training 

the model on the data of the learning set SL  by using the 

learning rules (6) and according to the schedule defined by the 

parameters  0 , , K inside q.  

The above optimisation problem is solved using the non-

linear Simplex method of Box [12]. This method is based on 

the evaluation of the surface of the function ( )JV q . The 

method has been adapted to optimise both discrete (e.g. 

number of past data, number of epochs, etc.) and continuous 

variables (e.g. learning rate). 

 

IV.    EXPERIMENTAL RESULTS & DISCUSSION 

 

The case-study of the wind-diesel power system of the 

island of Lemnos is considered. The installed diesel capacity is 

13.25 MW, while 2 wind parks of a total capacity of 1.14 MW 

are installed [8 WTs of 55 kW, 7 WTs of 100 kW].   The short-

time scheduling of the above power system is performed by an 

advanced control system described below, and necessitates 

forecasts of the wind power profile of each wind park for an 

horizon of 2 hours with a time-step of 10 minutes [13].  

The wind park power profile is defined as the average wind 

turbines power of the park that is, as the ratio of the total wind 

park power at time t divided by the number of WTs in 

operation at t. Forecasts of the total wind park power would not 

be easily usable by the scheduling function, since this quantity 

does not contain any information on the number of WTs in 

operation. In addition, in the timeseries of the total wind park 

power, discontinuities due to switching operations of WTs, 

provoked by external, and hence unpredictable events (e.g. 

dispatching actions), are present. 

The measurements presented here have been obtained by 

the data acquisition system of the island and cover a period of 

five days with a time-step of 1 minute. These are 

measurements of the wind speed at each park (anemometer 

location), as well as of the power output of each WT. The 1-

minute wind speed data and the values of the average WTs 

power were averaged in 10-minutes intervals giving the 

timeseries of  Fig. 1. These timeseries have been divided into a 

learning set containing the initial 360 data, a validation set with 

100 data, and a test set with the last 190 data. Below, the 

results concerning only the second wind park (7x100kW), are 

presented. 

Three basic artificial neural network (ANN) configurations 

have been tested : (i) a network with 12 outputs, one for each 

time-step, denoted as ANN-a. (ii) A network with one output, 

which is used iteratively to give forecasts  for  all the 12  time-

steps,   denoted  as   ANN-b.   Its 
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Fig. 1 : Average wind turbines power and wind speed data from the 

island of Lemnos (Febr. 10-14, 1994). 
 

architecture has been optimised by considering in ( )JV q  the 

forecast errors of all the time-steps. (iii) A network similar to 

the previous one, denoted as ANN-c, which has been optimised 

by considering in ( )JV q  only the errors of the first time-step. 

High-order terms up to two were considered in all cases, 

while the neurons are fully interconnected via recurrent links. 

The vectors of the optimal architecture parameters were found 

to be :  
 

 r1 r2 0  K 1 2 

ANN-a 2 1 0.02 0.11 61 3.28 2.72 

ANN-b 8 3 0.09 0.17 9 3.99 0.77 

ANN-c 6 5 0.01 0.05 23 3.66 0.76 
 

where r1  are the number of past wind power and r2  the 

number of past wind speed values. 

The improvement on the RMS criterion gained by the ANN 

models over Persistent is given in Fig. 2. From the use of the 

ANNs there is a clear gain concerning multi-step forecasts. 

ANN-a and ANN-b have a better performance than ANN-c on 

forecasts of longer time-steps. This is because in the 

architecture optimisation of these networks their performance 

in the whole horizon has been considered. Concerning one 

step-ahead forecasts, the best performance is achieved by 

ANN-c, which has been exclusively built for such forecasts. 

Although better results can be expected if a different model is 

built for each time-step, this approach is undesirable from the 

on-line implementation point of view. 

Finally,  it  is remarked  that  the length of the considered 
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Fig. 2 : RMS error of various methods and improvement of ANN 

method over simple methods. 

 

 

 

timeseries is certainly small for a complete statistical 

evaluation of the developed model. However, this case-study, 

has been selected for presentation here due to the on-line 

implementation of the developed model as described in the 

next Paragraph. In addition, from tests with longer timeseries 

from other sites, it was concluded that the above results can be 

considered as representative for the level of performance that 

can be obtained by the proposed method. 
 

Implementation in the existing Control System 
 

An advanced control system (CS) for the optimal operation 

and management of wind-diesel power systems has been 

developed in the frame of the EU project JOU2-CT92-0053 

[13]. The control system has been installed and is under 

evaluation in the wind-diesel power system of the island of 

Lemnos. 

The CS is aimed to assist the power system operators by 

proposing them optimal scenarios for the power system 

operation, so that maximum fuel saving is achieved, without 

deterioration of the quality of service to the consumers. The 

scenarios are generated by an economic dispatch module by 

taking into account load and wind power forecasts - see Fig. 3. 

The security of the power system is guaranteed by a security 

assessment module, which supervises the generation of the 

operation scenarios and rejects those that might lead to 

dynamically unsafe situations for the power system. 

Wind power forecasts are provided by a wind power 

forecasting (WPF) module, whose detailed operation within the 

control system is shown in Fig. 4. Various Naive predictors, as 

well as advanced models, have been integrated in the WPF 

module. The ANN-a RHONN model was chosen to be 

implemented due to its  globally  better performance compared 

to ANN-b and ANN-c. The role of Naive predictors is to 

replace advanced methods each time that the CS starts to 

operate. Then, a transient period is necessary for the auto-

adaptation of the   parameters of the  
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Fig. 3 : The architecture of the pilot control system 
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advanced models  to the new conditions. An advanced model 

starts to provide forecasts, when its adaptation leads to a 

performance superior to that of simple methods.  

The on-line operation of the power system, during the 

period of five days considered here, is analysed in [14]. The 

utilisation of advanced forecasts by the control system, during 

this period, results (i) in a decrease of the total number of 

start/stops of the diesel units, which may arise up to 30 %; (ii) 

in a decrease of the loss of load events; (iii) in an increase of 

fuel savings restricted to 1-2 % for this limited period; (iv) and 

finally in a higher utilisation of the available wind energy.  

 

 V.    CONCLUSIONS 
 

In the present paper, an advanced neural network based 

model for wind power timeseries forecasting has been 

developed. The performance of the model on forecasts 

appropriate for the short-term scheduling functions of an 

autonomous power system was examined. The model 

outperforms Naive methods, while the obtained results are 

superior to similar results of the known alternatives. This is due 

to advantages coming both from the adaptive neural network 

approach, as well as from the algorithm proposed here to 

optimise the architecture of the forecasting model.  This 

algorithm, which replaces the trial-and-error method, is aimed 

to maximise the generalisation capability of a forecasting 

model. It is of general value, since it is applicable to any 

timeseries analysis non-linear problem. 

Finally, the developed model has been implemented for on-

line use in the pilot control system for the wind-diesel power 

system of the Greek island of Lemnos. 
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