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Defining a theory, such as arithmetic, geometry, or set theory, in predicate logic just requires
to chose function and predicate symbols and axioms, that express the meaning of these symbols.
Using, this way, a single logical framework, to define all these theories, has many advantages.

First, it requires less efforts, as the logical connectives, ∧, ∨, ∀... and their associated
deduction rules are defined once and for all, in the framework and need not be redefined for
each theory. Similarly, the notions of proof, model... are defined once and for all. And general
theorems, such as the soundness and the completeness theorems, can be proved once and for
all.

Another advantage of using such a logical framework is that this induces a partial order
between theories. For instance, Zermelo-Fraenkel set theory with the axiom of choice (ZFC)
is an extension of Zermelo-Fraenkel set theory (ZF), as it contains the same axioms, plus the
axiom of choice. It is thus obvious that any theorem of ZF is provable in ZFC, and for each
theorem of ZFC, we can ask the question of its provability in ZF. Several theorems of ZFC,
that are provable in ZF have been identified, and these theorems can be used in extensions of
ZF that are inconsistent with the axiom of choice.

Finally, using such a common framework permits to combine, in a proof, lemmas proved in
different theories: if T is a theory expressed in a language L and T ′ a theory expressed in a
language L′, if A is expressed in L∩L′, A⇒ B is provable in T , and A is provable in T ′, then
B is provable in T ∪ T ′.

Despite these advantages, several logical systems have been defined, not as theories in pred-
icate logic, but as independent systems: Simple type theory, also known as Higher-order logic,
is defined as an independent system—although it is also possible to express it as a theory in
predicate logic. Similarly, Intuitionistic type theory, the Calculus of constructions, the Calcu-
lus of inductive constructions... are defined as independent systems. As a consequence, it is
difficult to reuse a formal proof developed in an automated or interactive theorem prover based
on one of these formalisms in another, without redeveloping it. It is also difficult to combine
lemmas proved in different systems: the realm of formal proofs is today a tower of Babel, just
like the realm of theories was, before the design of predicate logic.

The reason why these formalisms have not been defined as theories in predicate logic is that
predicate logic, as a logical framework, has several limitations, that make it difficult to express
modern logical systems.
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1. Predicate logic does not allow the use of bound variables, except those bound by the
quantifiers ∀ and ∃. For instance, it is not possible to define, in predicate logic, a unary
function symbol 7→, that would bind a variable in its argument.

2. Predicate logic ignores the propositions-as-types principle, according to which a proof π
of a proposition A is a term of type A.

3. Predicate logic ignores the difference between reasoning and computation. For example,
when Peano arithmetic is presented in predicate logic, there is no natural way to compute
the term 2 × 2 into 4. To prove the theorem 2 × 2 = 4, several derivation steps need to
be used while a simple computation would have sufficed.

4. Unlike the notions of proof and model, it is not possible to define, once and for all, the
notion of cut in predicate logic and to apply it to all theories expressed in predicate logic:
a specific notion of cut must be defined for each theory.

5. Predicate logic is classical and not constructive. Constructive theories must be defined in
another logical framework: constructive predicate logic.

This has justified the development of other logical frameworks, that address some of these
problems. Problem 1 has been solved in extensions of predicate logic such as λ-Prolog and
Isabelle. Problems 1 and 2 have been solved in an extension of predicate logic, called the Logical
Framework, also known as the λΠ-calculus, and the λ-calculus with dependent types. Problems
3 and 4 have been solved in an extension of predicate logic, called Deduction modulo theory.
Combining the λΠ-calculus and Deduction modulo theory yields the λΠ-calculus modulo theory,
a variant of Martin-Löf’s logical framework, which solves problems 1, 2, 3, and 4.

Problem 5 can also be solved in this logical framework.
In previous work, we have shown that all functional Pure type systems, in particular the

Calculus of Constructions, could be expressed in this framework.
Our goal in this talk is twofold: first, we want to go further and show that other systems can

be expressed in the λΠ-calculus modulo theory, in particular classical systems, logical systems
containing a programming language as a subsystem such as FoCaliZe, simple type theory,
and extensions of the Calculus of constructions with universes and inductive types. Second, we
want to demonstrate this expressivity, not just with adequacy theorems, but also by showing
that large libraries of formal proofs coming from automated and interactive theorem provers
can be translated to and checked in Dedukti, our implementation of the λΠ-calculus modulo
theory. To do so, we shall translate to Dedukti proofs developed in various systems: the au-
tomated theorem proving systems Zenon, Zenon modulo, iProver, and iProverModulo,
the system containing a programming language as a subsystem, FoCaLiZe, and the interactive
theorem provers HOL and Matita.

We show this way that the logical framework approach scales up and that it is mature
enough, so that we can start imagining a single library of formal proofs expressed in different
theories, developed in different systems, but formulated in a single framework.

The talk presents several examples of theories that have been expressed in Dedukti, and
several large libraries of proofs expressed in these theories and translated to Dedukti. It
presents ongoing work to express more theories, and to reverse engineer these proofs. Before
that, it presents the λΠ-calculus modulo theory and the Dedukti system.
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