
HAL Id: hal-01433283
https://minesparis-psl.hal.science/hal-01433283

Submitted on 12 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wilson-Dirac Operator Revisited on Multicore Vector
Computers
Claude Tadonki

To cite this version:
Claude Tadonki. Wilson-Dirac Operator Revisited on Multicore Vector Computers. [Research Report]
Mines ParisTech - PSL Research University - Centre de Recherche en Informatique (CRI). 2016. �hal-
01433283�

https://minesparis-psl.hal.science/hal-01433283
https://hal.archives-ouvertes.fr


Wilson-Dirac Operator Revisited on Multicore
Vector Computers

Claude Tadonki
Mines ParisTech - PSL Research University
Centre de Recherche en Informatique (CRI)

35, rue Saint-Honoré, 77305, Fontainebleau Cedex (France)
Email: claude.tadonki@mines-paristech.fr

Abstract—We revisit the Wilson-Dirac operator, also refered
as Dslash, on multicore vector machines. The Wilson-Dirac
operator is the major computing kernel in Lattice Quantum
ChromoDynamics (LQCD), which is the canonical discrete for-
malism for Quantum ChromoDynamics (QCD) investigations.
QCD is the theory of sub-nuclear particles physics, aiming at
modeling the strong nuclear force, which is responsible for the
interactions of nuclear particles. Based on LQCD formalism,
intensive simulations are performed following the Monte Carlo
paradigm. Informative observations are expected from large-scale
and numerically sensitive LQCD simulations. The corresponding
computing demand is therefore tremendous, thus the serious
consideration for powerful supercomputers. Designing efficient
LQCD codes on modern (mostly hybrid) supercomputers requires
to efficiently exploit all available levels of parallelism including
accelerators. Since the Wilson-Dirac operator is a coarse-grain
stencil computation performed on huge volume of data, any
performance and scalability related investigation should skillfully
address memory accesses and interprocessor communication
overheads. In order the lower the latter, an explicit shared
memory implementation should be considered at the node level,
since this will lead to a less complex data communication graph.
This the main focus of the current paper, where we provide,
explain, and discuss a multi-threaded vector implementation,
whose experimental results in double precision on the recently
released INTEL BROADWELL based machine show a competitive
absolute efficiency and a good scalability on one of its four NUMA
nodes. An extension to all available nodes is currently under
investigation through NUMA-awareness consideration.

545 cuba050new.aketitle

I. INTRODUCTION

Quantum ChromoDynamics (QCD) [21], the theory of
the strong nuclear force, can be numerically simulated on
massively parallel supercomputers using the Monte Carlo
paradigm and the lattice gauge theory (LQCD) approach (see
Vranas et al. [20]).

A typical LQCD simulation workflow iteratively involves
basic linear algebra computations on a huge number of vari-
ables. The major LQCD kernel is the inversion of the Dirac
operator, which is an important step during the synthesis
of a statistical gauge configuration sample. Indeed, in the
Hybrid Monte Carlo (HMC) algorithm [18], it appears in
the expression of the fermionic force, used to update the
momenta associated with the gauge fields along a trajectory.
The Wilson-Dirac matrix is sparse and implicit, thus iterative
solvers are the main option for its inversion. In addition,
some sensitive scenarios bring up almost null eigenvalues,

which fact exacerbates numerical instability and pushes far
away the required number of iterations to reach convergence.
Moreover, such a numerical sensitivity justifies the importance
of double precision computations. Some authors consider so-
called mixed-precision [4], which sacrifies the precision of
the core computation, while keeping the double precision
constraint for the convergence criterion. In the presence of
very small eigenvalues, thus a ill-conditioned Wilson-Dirac
matrix, the iteration process will be likely to diverge or the
way to convergence will be noticeably longer. The use of
mixed precision is motivated by the strong desire to use single
precision in order to have faster computations using GPUs for
instance or (larger) vector units. However, the penalty from
the numerical consequences might not be affordable in case
of numerically sensitive LQCD scenarios like the ones related
to very small pion mass. For all the aforementioned reasons,
the need for efficient high-precision implementations of the
Dirac operator is on the spotlight of both the HPC and the
LQCD communities.

A common way to parallelize LQCD applications is to
follow the domain decomposition paradigm, which means
to partition the lattice into sublattices and then assign each
sublattice to a computing node (see [4], [13]). This yields a
standard SPMD model which is then mapped onto a given
parallel machine. Thus, tuning an individual computing node
to efficiently perform a critical part of the simulation is a
genuine LQCD contribution. Indeed, the impact of optimizing
the computation on a single compute node is that the com-
munication graph related to data exchanges (mostly through
MPI) will be of a smaller size, thus less complex. Thereby,
the interprocessor communication overhead should be signifi-
cantly lowered. This is very important for large scale LQCD
on supercomputers, where each node has to communicate with
its 8 “neighbors” (stencil computation), thus the unacceptable
communication overhead usually observed in that context.
Number of authors have studied LQCD implementation on
various supercomputers [20]. However, the relative efficiency
of standard frameworks on large computing clusters is likely
to be mixed, sometimes unacceptable. The main reason is
that, current and future supercomputers potentially have a
noticeable computing power (breathtaking for some of them),
but all levels of parallelism need to be skillfully harnessed in
order to harvest a significant fraction of the overall computing



potential. In addition, memory accesses and data exchanges,
never counted on the theoretical peak performance, are dom-
inant in LQCD computations.

For the critical case of solving Wilson-Dirac system, a
domain decomposition approach associated with the deflation
technique (related to small eigenvalues) is studied by Luscher
in [13]. A mixed-precision solution accelerated with GPUs
is proposed by Clark et al. [4]. . A hybrid threaded-MPI
approach is presented in [16] by Smelyanskiy et al. QCD
implementations on the IBM-CELL are reported and discussed
in [3], [8], [17], an a dedicated cluster of CELLs is presented
in [14] by Pleiter. An implementation on Intel Xeon Phi by
Joo et al. can be found in [9]. This panorama will be extended
and detailed in the related work section.

The main argument of this paper is that the way to get closer
to a significant global efficiency on supercomputers is to put
a serious design effort at the level of the computing node,
harnessing all aspects related to its potential performance. In
addition to lowered the data communication overhead because
of a less complex interprocessor exchanges, data redundancy
is also reduced by this explicit shared memory implementation
on local nodes. This is the basis of our main contribution from
this work, where we provide efficient strategies for memory
and data management, vector computing, and multithreading,
all illustrated by very promising experimental results. We
focus on one evaluation of the Wilson-Dirac operator, also
called Dslah. Since Wilson-Dirac inversion is exclusively
done through iterative approaches, making each iteration faster
should certainly improve the overall performance, beside those
approaches which try to reduce the number of iterations
through purely numerical techniques (not our concern here).
Beside our factual achievements, this paper aims at providing
a pedagogical and instructive HPC material related to high
performance LQCD.

The rest of the paper is organized as follows. The next
section provided basic and computing LQCD backgrounds,
followed by basic computing considerations. Next, we discuss
important HPC facts related to large-scale LQCD. Related
work is presented in section V, while our methodology and
efforts are presented in section VI, followed by experimental
results in section VII. Section VIII present some future works,
and section IX concludes the paper.

II. LQCD BACKGROUND AND COMPUTATION

LQCD models the time-space universe as a four dimensional
grid. In practice, a regular bounded grid is considered through
a subset of N4, which can be represented as {0, 1, · · · , Lt −
1}×{0, 1, · · · , Lx−1}×{0, 1, · · · , Ly−1}×{0, 1, · · · , Lz−
1}, where Lt, Lx, Ly , and Lz are the size of each dimension
respectively. The size of the lattice for a given scenario,
commonly written in the form Lt×Lx×Ly×Lz , is somehow
correlated with the underlying space density. That’s why large-
scale LQCD is a serious target for cutting-edge investigations
in particle physics. Each point x of the lattice, commonly
referred as a site, is connected to its height neighbors x± ei,
i = 1, 2, 3, 4, where ei are the vector of canonical basis of

N4, and each ±ei operation is performed modulo Li at the
ith component. This yields a regular symmetric graph.

Five 4 × 4 special matrices, called Dirac γ-matrices, are
defined below

γ0 =


0 0 -1 0
0 0 0 -1

-1 0 0 0
0 -1 0 0

 γ1 =


0 0 0 -i
0 0 -i 0
0 i 0 0
i 0 0 0

 (1)

γ2 =


0 0 0 -1
0 0 1 0
0 1 0 0

-1 0 0 0

 γ3 =


0 0 -i 0
0 0 0 i
i 0 0 0
0 i 0 0

 (2)

γ5 =


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

 (3)

The Wilson-Dirac operator can be expressed as follow:

Dψ(x) = Aψ(x) −
1

2

3∑
µ=0

{ [(I4 − γµ)⊗ Ux,µ]ψ(x+ eµ)+

[(I4 + γµ)⊗ U†x−µ̂,µ]ψ(x− eµ)}

(4)

where
• In is the identity matrix of order n,
• eµ is the µth vector of the canonical basis of {0, 1}4,
• A is a 12×12 complex matrix of the form αI12 +β(ν⊗
γ5), where α, β are complex coefficients and ν a 3 × 3
complex matrix,

• x is a given point of the lattice (a site), which is a finite
subset of N4,

• ψ is an array over the lattice (called quark field or Wilson
vector), and for each site x, ψ(x) is a 12-components
complex vector (called spinor) ,

• Ux,µ is a 3×3 complex matrix (called gluon field matrix,
gauge matrix, or SU3 matrix), which is associated to the
link (x, x+ eµ), and also to the reverse link (x+ eµ, x),

• ⊗ is the matrix tensor product
• A† = ĀT (i.e. transpose of the conjugate matrix)

For a given quark field ψ, Dψ is obtained by computing
Dψ(x) for all sites of the lattice, and the result is also a
quark field of the same length. Equation (4) shows that Dψ(x)
is a linear combination of the components of ψ(x). Thus,
it is consistent to see Dψ as a matrix-vector product, and
thereby consider D as an implicit square matrix (the Wilson-
Dirac matrix). This matrix-product, sometimes referred in the
literature as Wilson Dslash operation (WD), is the most time
consuming kernel as it involves a significant amount of floating
point operations on larger lattices and is done very frequently.

Solving a linear system, whose the principal matrix is the
Wilson-Dirac matrix is an important LQCD operation that is
performed several times along a trajectory. Since the Wilson-
Dirac matrix is implicit and sparse from its specification,
iterative solvers are so far the only considered approaches to



solve the corresponding linear system, called the Wilson-Dirac
equation. In addition, for some specific but important physics
parameters, the matrix is ill-conditioned, which severely in-
creases the number of iterations to reach an acceptable level of
convergence. This noticeable repetition of the Dslash operation
clearly justifies the need for very fast implementations.

III. BASIC AND TYPICAL COMPUTING CONSIDERATIONS

There is a number of important facts to know or consider
when it comes to deal with LQCD implementations. We
describe some of them.

A. Data complexity

All data structures are based on complex data type, which
means a structure composed with two floating point numbers.
Then, all arithmetic operations follow their corresponding
specifications on complex numbers. The update of one spinor
involves height input spinors and the height SU(3) matrices
of the corresponding links. This yields a volume of data (in
Bytes) given by

8(12× 2× p+ 9× 2× p) = 336p, (5)

where p is the size of the actual floating point number, which
is typically 4 bytes (resp. 8 bytes) for single (resp. double)
precision, 2 × p stands for the derived complex type. We
will later see that the choice between single precision and
double precision is not only a matter of data size. For a
given lattice of size L = Lt × Lx × Ly × Lz , we see
that 336 × L × p bytes of data will be moving within the
computing system. The PetaQCD project [1], for instance,
was targeting 256× 1283 double precision simulations, which
means 336 × 256 × 1283 × 16 bytes = 1.3125 × 250 bytes =
1.3125 petabytes of effective data transfer at various levels.
This aspect sometimes appears as the main reason for using
large clusters, since the aggregation of available (distributed)
memories should be sufficient to house all working data.

B. Organization of the Computation

Computing Wilson-Dslash is typically done by traversing
the whole lattice while updating the corresponding spinor at
each site. This yields one dependence-free main loop, whose
the body implements equation (4). The effective scheduling of
this main loop, if different from the natural 4D lexicographic
order, should be managed with the aim of addressing explicit
data reuse or content sharing among the caches, following a
skillful analysis of the data dependence graph. Unfortunately,
the coarse granularity of the computation makes the potential
of this effort rather marginal in practice, unless it goes along
with an explicit mechanism that implements a specific data
management strategy [16].
Concerning the calculation of Dψ(x) following equation (4),
some factorizations should be applied in order to put in
common the major floating point operations. Indeed, let first
observe that a relation of the form v = (I4−sγµ)u, where u, v

are two 4-components complex vectors and s = ±1, can be
computed as follows (for s = 1, the case s = −1 is similar):

µ = 0 µ = 1
v1 = u1 + u3
v2 = u2 + u4
v3 = v1
v4 = v2

v1 = u1 + iu4
v2 = u2 + iu3
v3 = −iv2
v4 = −iv1

µ = 2 µ = 3
v1 = u1 + u4
v2 = u2 − u3
v3 = −v2
v4 = v1

v1 = u1 + iu3
v2 = u2 − iu4
v3 = −iv1
v4 = iv2

(6)

We see from (6) that only the first two components v1 and
v2 need to be computed, and afterwards the remaining two
components v3 and v4 are derived by considering a factor
in {1,−1, i,−i}. This saving is the major computing benefit
of scheme (6), especially when a matrix-vector product is
involved in between as we are going to illustrate in our
main calculation. Considering the so-called normal factors
decomposition of the tensor product and the associated com-
mutativity [19], we get

(I4 − sγµ)⊗ U = ((I4 − sγµ)⊗ I3)(I4 ⊗ U) (7)
= (I4 ⊗ U)((I4 − sγµ)⊗ I3) (8)

In (4), each term of the form [(I4 − sγµ)⊗ U ]ψ(x) becomes

[(I4−sγµ)⊗U ]ψ(x) = (I4⊗U)
︷ ︸︸ ︷
((I4 − sγµ)⊗ I3)ψ(x) (9)

By (virtually) block partitioning the 12-components vector
ψ(x) (we use ψ for simplicity) into 3-components vectors
(sometimes referred as su3 vectors) ψ(k) = (ψk, ψk+1, ψk+2),
for k = 1, · · · , 4, we get a 4-components block vector
expressed by ψ̃ = (ψ(1), ψ(2), ψ(3), ψ(4)). Using this block
representation, we get ((I4 − sγµ) ⊗ I3)ψ = (I4 − sγµ)ψ̃,
which can then be calculated using (6), provided we replace
uk by ψ(k). Having thereby evaluate ω = (I4 − sγµ)ψ̃, we
finally have to compute ϕ = (I4 ⊗ U)ω, which is equivalent
to (ϕ(1), ϕ(2), ϕ(3), ϕ(4)) = (Uω(1), Uω(2), Uω(3), Uω(4)).

C. Even-odd Partitioning

Noticing that the update of a given site (t, x, y, z) involves
height sites (t, x, y, z)±ei, i = 0, 1, 2, 3, we see that summing
up all the components of two dependent sites respectively
yields a difference of 1. Therefore, we might think of partition-
ing the lattice into two subsets, based on the parity of the sum
of their components, thus the odd (resp. even) sublattice. The
main advantage of this partitioning is that data dependencies
are only between the odd sublattice and the even sublattice,
with the gauge matrices seated on the corresponding links.
This organization simplifies the macroscopic data exchanges
and improves read/write data locality. There is less attention
in the literature for gauge matrices sharing, we address this in
our work as we will shall see.



D. Gauge Matrices Storage and Management

There is one gauge matrix per link in the lattice, thus 4L
gauge matrices for a lattice of length L, since each site has
8 neighbors and the graph is symmetric. This yields a huge
amount of data that need to be stored and managed efficiently
since there is poor reuse of gauge matrices. Indeed, each of
them is used only two times (one time in some cases), whereas
each spinor is used height times. Thus, gauge matrices are
serious source of (compulsory) cache misses, waste of memory
bandwidth and cache pollution. The later is due to the fact a
gauge matrix, whose size is 9×2×{4, 8}, does not fully covers
typical 64-bits cache lines. In order to reduce the impact of
this, and maybe to simplify the indexing, the so-called gauge
copy is applied. The idea is to store contiguously the 8 gauge
matrices of each site, which explicitly doubles the volume
of data but yields a significant (memory) performance im-
provement. Moreover, since memory accesses is dominant in
any case, the so-called SU(3)-reconstruct might be considered.
Indeed, the third row of a SU(3) matrix can be reconstructed
(on the fly) by taking the complex conjugate of the cross
product of the first two rows (i.e. u3 = u1 ∧ u2). This 2-row
gauge field compression is exploited in [4] and in this work.

E. Important Numerical Aspects

High-precision LQCD simulations require a special atten-
tion regarding numerical issues, we point out two of them.
First, the reversibility property, which can be seen as a kind of
numerical determinism, aims at ensuring that the calculations
made along a trajectory are predictable, and the consistency
of the computed results remains whether flowing forward or
backward. Thus, every computation scheme should preserve
this reversibility, which restriction might prevent from consid-
ering whatever efficient but too specific or “black-box”-like
subroutines.
For several reasons including the reversibility and the quality
of the results for better estimates of the targeted physical
quantities, the need for highly accurate calculations is relevant,
thus the use of double precision computations, which is strictly
the case for our investigations in this paper. The temptation
of single precision looks strong, as it reduces (by half) the
volume of data and leads to higher processor performance as
we will detailed later. A mixed precision [4] approach might
be an acceptable compromise.
As previously mentioned, for some particular physics parame-
ters, the Wilson-Dirac matrix is known to have almost null
eigenvalues, which seriously complicates its inversion. The
case would be certainly worst with single or mixed precision.
Thus, using double precision (or higher if possible), even if
more computationally challenging, is the price for robustness,
accuracy and stability.

IV. TECHNICAL HPC CONSIDERATIONS ON THE WAY TO
EFFICIENT LARGE-SCALE LQCD

Here we point out number of important facts that should be
taken into account at the best in order to harvest an increasing
fraction of the available computing power. How observations

will be bottom-up following the level of parallelism.
Let start by pointing this performance of 0.5 GFlops/core
reported by G. Grosdidier [7] when running tmLQCD [10]
on 10,000 cores of the CURIE-FAT machine [6]. The machine
is based on Xeon X7560 8C 2.26GHz processor, thus a peak
of 9 GFlops per core. We then see that each core is running at
5% if its theoretical peak performance, which is unacceptable.

Among the reasons why large-scale LQCD might show
some inefficiencies with standard codes, first there is a lack
of low-level parallelism, which thereby reduces the theoretical
performance expectation by a factor 4, since most of modern
processors now have at least 128-bytes vector registers (4
double precision components).
Memory performance is also a bottleneck. Indeed, as we
have previously explained, computing Wilson Dslash implies
a noticeable memory activity with lot of redundant accesses
and waste of memory bandwidth. Indeed, the volume of a
single spinor (resp. SU(3) matrix) is 192 bytes (resp. 144
bytes). Thus, regarding the L1 cache with its typical 64-bytes
cache line, there is no waste coming from spinors use since
each of them perfectly fits into 3 cache lines, whereas for
SU(3) matrices there is a waste of 192− 144 = 48 bytes per
access (unless we are in the gauge copy mode). Considering
other levels of the cache, which implies wider cache lines
for some architectures, the situation gets worse. We later
explain how our data packing, primarily designed for vector
computing, also improves the memory efficiency. Another
memory issue is cache pollution. Indeed, SU(3) matrices,
which are heavily loaded during the computation, have a poor
or no reuse. This is not the case, at least by specification, for
the spinors, since each of them is used to compute 8 spinors.
The benefit from this spinor reuse is likely to be hampered by
the aforementioned SU(3) pollution.
Another important source of performance penalty is the in-
terprocessor communication overhead when running on dis-
tributed memory parallel machines. Indeed, in addition to the
natural cost of data transfers, there is a strong gap between
the ideal 8D-torus topology required for LQCD computations
and the physical topology of existing supercomputers. More-
over, most of the time, there is less attention in providing
a suitable virtual topology that will reduce this gap. Hybrid
implementations are certainly a relevant approach to reduce
the need for explicit data exchanges, but this requires to have
an efficient intranode implementation, which is the essence
of this paper. With the advent of multi-socket processors, thus
with a significant number of cores, designing efficient scalable
LQCD code is challenging because of NUMA side effects,
whose illustrative case studies can be found in [11], [12].

V. RELATED WORK

LQCD is a major in both QCD and HPC communities. For
the reasons previously explained, LQCD simulations can be
computationally challenging for some interesting scenarios.
Thus, this hot topic is so far being investigated in various
directions.



The basis of LQCD computation are explained by Luscher
in [13]. The paper also discussed the so-called delfation
technique, whose the main aim is to overcome the effects of
almost null eigenvalues. Urbach describes in [18] the hybrid
Monte-Carlo algorithm with multiple time scale integration
and mass preconditioning.

General implementations and experimentations on large
computing clusters are discussed by Vranas in [20], and also
by Grosdidier [7] within the scope of the PETAQCD project
[1]. In [14], Pleiter presents the QPACE cluster based on IBM
PowerXCell 8i and dedicated to LQCD. A hybrid threaded-
MPI approach on multi-core based parallel systems is studied
by Smelyanskiy et al. in [16].

Accelerators-based solutions are provided for the IBM
CELL by Belletti et al. [3], Ibrahim and Bodin [8], and
Tadonki et al. [17]. The case of GPUs is studied by Clark et
al. in [4], where a mixed precision is considered and analyzed.

A complete and operational LQCD framework named
tmLQCD is provided by Urbach in [10]. Since LQCD compu-
tation kernels are built up from basic linear algebra routines
with special data structures, dedicated computing libraries are
released for generic use like QDP++ [15], which provides
a data-parallel programming environment suitable for Lattice
QCD, and Chroma [5], an open source LQCD toolbox.

A systematic DSL code generation approach is provided by
Barthou et al. in [2]. The corresponding framework, named
QIRAL, provides a high level language for LQCD code
generation together with the associated engine.

VI. OUR PERFORMANCE IMPROVEMENT TECHNIQUES

A. Context and Scenario for our Primary Investigations

We consider a hyperthreaded quad-core machine based on
2.4 GhZ Intel Cori i7, 8 GB of DDR3 main memory, private
L2 cache of 256 KB per core and a shared L3 cache of 6
MB. The processor is capable of running 256-bit-wide vector
instructions with AVX intrinsics. This yield a theoretical peak
performance of 2.4 × 4 = 9.6 GFlops per core in double
precision, thus 38.4 GFlops for the whole processor. Our
LQCD scenario is a 32 × 163 configuration, with the gauge
matrices stored following the gauge copy strategy. There is
no strong need to consider larger lattices on a node, as the
domain decomposition approach will generally allocates a
rather medium size sublattice to a single node when running
on a large computing cluster.
Starting with a standard Dslash implementation, with the
main loop (fully inlined) equally distributed among (Pthread)
threads following the sublattices partitioning, and compiled
using gcc 4.9 with optimization level -O3, we obtain the results
displayed in table Table I.

#threads t(s) GFlops %Peak speedup
1 0.0506 4.17 45 % 1
2 0.0257 8.20 45 % 1.97
4 0.0213 9.91 27 % 2.38
8 0.0154 13.70 37 % 3.29

TABLE I
BASELINE PERFORMANCES FROM THE FIRST STAGE CODE

We see that standard code yields 45% of the peak on a
single core, which is the conjunction of the basic optimizations
previously explained, in addition to the ones from the compiler
and maybe the Turbo Boost . The performance drops down to
27% with all the four cores, and 37% with hyperthreading.
We will appreciate the impact of our effort on this basis.
We emphasize on the fact that our machine has only 4
physical cores, and the 8 threads case is for hyperthreading.
The reader should keep this on while inspecting each piece
of performance results in this section. In addition, double
precision is considered in all cases.

B. Pool of Tasks Approach

A part from memory contention that we address further, the
observed moderate scalability of the threads (beyond 2 threads)
might come from threads starvation. Our first action in this
direction is to create a pool of tasks (sublattices), and leave
the threads dynamically provision themselves from that pool,
task after task, with mutual exclusion managed by the mutex
mechanism and thread-cpu binding applied in order to avoid
threads migration at runtime. By doing this, we observe that
all threads end up at nearly the same time, depending on the
granularity of the pool. Note that, even if the threads have the
same task load following the standard block distribution, there
are several side effects which might yield unequal running
times among the threads, this is more pronounced in the
NUMA context. Table I shows our experimental results with
a pool of tasks.

#threads t(s) GFlops %Peak speedup
1 0.0476 4.42 48 % 1
2 0.0251 8.38 46 % 1.89
4 0.0166 12.72 34 % 2.86
8 0.0132 15.87 44 % 3.60

TABLE II
PERFORMANCE OF THE POOL OF TASKS SCHEDULING

We observe an improvement of the scalability, thus a better
overall performance. Table III shows the performances with
various number of tasks in the pool ranging from 4 to 4096.



4 8 16 32 64 128
4 threads 9.78 9.47 11.24 12.37 12.51 12.72
8 threads 10.02 12.52 13.85 15.52 13.10 15.87

256 512 1024 2048 4096 -
4 threads 12.20 12.29 11.76 12.45 13.26 -
8 threads 16.99 13.52 16.25 15.80 8.33 -

TABLE III
GFLOPS PERFORMANCE WITH VARIOUS POOL CARDINALITIES

We see that a pool of 128 tasks is the most suitable.

C. Scheduling for both Spinor and SU3 reuses

Spinors data dependencies are only between odd-even sites,
and two consecutive sites with the same parity share one
of their respective height dependent spinors. Thus, when
computing the spinors of an odd (resp. even) sublattice in
the lexicographical order of its sites, spinors reuse is granted
because of this recurrent memory footprint intersection. This
is why, even if there is a factor 8 data redundancy related
to spinors use, the corresponding impact on the effective
performance does not appear to be so offending.

The case of SU(3) matrices is different. First, each SU3
is used twice by a pair of two connected sites, thus the best
reuse one could achieve is bounded by a factor 2. A strict
application of the �gauge copy storage completely drops any
reuse expectation. Since the odd sublattice shares exactly the
same set of SU3 matrices with the even sublattice, we suggest
to keep the �gauge copy for the odd sites and pick up the
required SU(3) matrices for the even sites from their previous
locations. So, we sacrifice data locality for data sharing or
reuse. But this just a compromise as it applies only on the half
set of sites. We will later see that this counterpart disappears
with the way we organize the data for vector computing.

Putting together the previous two analyses including the
asymmetric management of the SU(3), we suggest to alterna-
tively iterate over the odd and the even sublattices in order to
target the maximum cache sharing for both spinors and SU(3)
matrices. Figure Fig. 1 depicts the scheduling for a binary
lattice. Thus, the horizontal walk is for spinors reuse, while
the vertical walk is for SU(3) matrices reuse.

Fig. 1. Alternating Even-Odd Scheduling

The results obtained with this approach are given in table
Table IV, were each even-odd switch is performed after a
small chunk of iterations rather than a single one as originally
presented.

#threads t(s) GFlops %Peak speedup
1 0.0499 4.23 44 % 1
2 0.0257 8.21 43 % 1.98
4 0.0177 11.88 32 % 2.81
8 0.0126 16.71 40 % 3.96

TABLE IV
IMPACT OF THE EVEN-ODD ALTERNATING SCHEDULING

We see a slight improvement of both scalability and overall
performance compared to the baseline. The most surprising
here is that this irregular indexing of the SU(3) matrices for
odd lattices is not so penalizing, this might be due to high-
level caches sharing as expected. We think that this aspect
needs more investigation, we leave it for future work.

D. AoS to SoA Approach for Efficient Vectorization

AoS-SoA is a well-know data layout transformation aiming
at creating regular data accesses depending on the target and
the computation paradigm. Vector computing is an important
candidate for this approach, since data to be processed should
be prepared for vector accesses. In our case, considering
double precision and 256-bit-wide vector registers, we just
replace the original complex data type
typedef struct { double re, im; } complex;
by
typedef struct { m256d re, im; } complex simd;
within the data structures associated to spinors and SU(3)
matrices. Afterwards, we design and implement a vector
version (using AVX intrinsics) of the linear algebra kernels.
Now comes the explicit data shuffling that is required in
order to have the vector operands ready for the compu-
tation. For instance, if we consider four spinor structures
s(j) = [s

(j)
1 , s

(j)
2 , · · · ], j = 1, 2, 3, 4, the corresponding vector

structure would be s = [s
(1)
1 s

(2)
1 s

(3)
1 s

(4)
1 , s

(1)
2 s

(2)
2 s

(3)
2 s

(4)
2 , · · · ].

The s(j) are not required to be consecutive in memory, thus
one might expect a penalty from the extra memory cost due to
this explicit packing. The stencil nature of LQCD computation
exacerbates this fear. Since SU(3) matrices are constant, they
are packed once before the computation, thus should not
be really counted as an extra dynamic processing. For the
spinors, there is no choice other than doing this on the fly.
The experimental performance of our effort in that direction
are reported in table Table V.

#threads t(s) GFlops %Peak speedup
1 0.0261 8.07 84 % 1
2 0.0144 14.68 76 % 1.82
4 0.0128 16.45 42 % 2.04
8 0.0140 15.03 39 % 1.86

TABLE V
PERFORMANCE WITH AOS-TO-SOA

We see an important factor 2 improvement on a single core
(and nearly the same on 2 cores), but a weak scaling beyond
2 cores. We now address this point by reducing the culprit



memory bandwidth and the expense of extra floating point
operations.

E. Two-rows SU3 reconstruct

We recall that the third row of a SU(3) matrix can be
reconstructed by taking the complex conjugate of the cross
product of the first two rows (i.e. u3 = u1 ∧ u2). Thus,
our data structure for SU3 matrices does no longer include
the third row, which is then reconstructed on the fly each
time needed. This strategy saves some memory bandwidth
and reduces cache pollution. The performance results on our
working scenario are shown in table Table VI, the extra flops
counting for the SU(3) reconstructs are not considered.

#threads t(s) GFlops %Peak speedup
1 0.0233 9.06 94 % 1
2 0.0139 15.12 79 % 1.67
4 0.0099 21.27 55 % 2.35
8 0.0094 22.38 58 % 2.47

TABLE VI
EFFECT OF THE TWO-ROWS RECONSTRUCT

We get an additional flops of 10% on a single core and 20%
globally, with a relative improvement of 40% and a better
scalability. This is also another evidence that the memory
bandwidth associated to SU3 matrices is critical. We now
move to the section devoted to our experimental results on
the newly released INTEL-BROADWELL processor.

VII. EXPERIMENTAL PERFORMANCE MEASUREMENTS

A. Platform Description

We consider the newly released INTEL-BROADWELL-
BASED processor described in figure Fig. 2.

Fig. 2. INTEL-Broawell Main Specifications

Considering the available 256-bit-wide vector registers and
the corresponding vector processing capability using AVX2,
we obtain a peak performance of 2.2 × 4 = 8.8 GFlops/core
in double precision, which might be higher with the Turbo
Boost.

The numactl --hardware command gives the infor-
mation displayed in figure Fig. 3.

Fig. 3. Numa Specifications of our Hardware

From this NUMA observation, we say that the appreciation
of our experimental results should focus on the 11 cores of
a single node, since our implementation at this stage is not
explicitly numa-aware, with hyperthreading not activated at
the time of our experimentations.

B. Experimental results on INTEL-BROADWELL

Table VII presents our experimental results up to 11 threads,
where in each scenario, we bind the process to a single node
for the previously explained reasons.

#threads t(s) GFlops Peak %Peak speedup
1 0.0300 7.02 8.8 80 % 1
2 0.0159 13.28 17.6 75 % 1.89
3 0.0115 18.31 26.4 69 % 2.61
4 0.0087 24.19 35.2 69 % 3.45
5 0.0072 29.41 44.0 67 % 4.19
6 0.0062 33.93 52.8 64 % 4.83
7 0.0056 37.58 61.6 61 % 5.35
8 0.0053 39.91 70.4 57 % 5.69
9 0.0050 42.06 79.2 53 % 6.00

10 0.0048 44.32 88.0 50 % 6.25
11 0.0044 48.02 96.8 50 % 6.81

TABLE VII
PERFORMANCE ON ONE INTEL-BROADWELL NODE

We see that the performances on one core is impressive
and the absolute efficiency slowly decreases as the number
of threads is increasing. We end up with 50% of the peak
on a full node with its 11 cores. We need to stress the fact
our computations are performed in double precision. In [9]
for instance, where single precision is considered, a global
performance of 250 GFlops is obtained on an Intel Xeon Phi
5110P, whose peak performance is 1.053×16×60 = 1010.88
GFlops in single precision, thus a sustained efficiency of
25%. As stated previously, most of authors consider single
precision, as this reduces memory bandwidth and increases



the potential of vectorization, among other reasons. Showing
good performances in double precision is thus one of the
strength of this paper. However, some important points need
more investigation, and others are worth considering too. We
now describe a few of them.

VIII. FUTURE WORK

We point out some important aspects that we think should
be investigated deeply. We plan to keep investigating most of
them.

First, NUMA-awareness needs a serious attention. Indeed,
the trend in the design of modern high-performance processors
is to increase the number of cores, each of them with a
moderate clock frequency. The packaging of the processor
cores into different chips and different sockets, all of them
sharing the same efficient but complex memory system, yields
several NUMA nodes which should be skillfully addressed
in order to seek an acceptable level of scalability. The case
of LQCD, with the stencil nature of its computation, looks
challenging.

Because of the threads scalability issue, among other rea-
sons, the message passing paradigm seems to be widely
considered, even with shared memory systems. Although this
pragmatic approach is understandable in general, we think
that hybrid approaches are worth considering. Indeed, even if
message passing implementations can run as such on a shared
memory node, explicit data exchanges have a significant cost
and might trigger noisy synchronizations. For such exchanges,
as long as all communicating processes reside on the same
compute node, we are limited by the memory bandwidth
available. Once more nodes become involved, the network
bandwidth, usually much lower than the memory bandwidth,
becomes the limiting factor. The case applications that expose
heavy data exchanges like LQCD are particularly sensitive to
this aspect, whose intensive experimental studies should also
help to assess any technical guess.

As explained and illustrated in this paper, optimizing the
memory traffic associated to SU(3) matrices would certainly
yield a noticeable global performance improvement. Beside
existing approaches like the gauge copy and the two-rows com-
pression, other strategies should be examined. Our even-odd
alternating scheduling, intended to bring some level of SU(3)
reuse, is still providing a marginal effect at this stage, thus
needs a deeper exploration. In addition, explicit prefetching
mechanisms could be studied, at least at higher level caches.

Data exchanges in the context of distributed memory ma-
chines is also of a central importance. Indeed, it is likely to
consider large-scale computing clusters for LQCD simulations.
Even when following the way to hybrid implementations,
the number of communicating nodes remains important when
considering large supercomputers, and the gap between the
virtual topology (following the tasks graph) and the effective
one (following the interconnect of the machine) is usually
important and penalizing. Thus, in addition to considering a
shared memory approach at the computing node level, studies

that address interprocessor communication in the perspective
of better performances are of a keen interest.

IX. CONCLUSION

We have presented our view and efforts on the Wilson
Dslash operator of LQCD. Considering the challenging double
precision case, we have been able to get more than 50% of the
overall peak on one 11-cores chip of the INTEL BROADWELL
based on Intel Xheon E5-2699 processors. Our initial efforts
on a single core, considering AoS-to-SoA transformation fol-
lowed by a fast corresponding AVX implementation, together
with the two-rows gauge compression, yields a sustained
performance beyond 80% of the peak. We think that, when it
comes to large computing clusters, harvesting the potential of
single node at the best, before moving to the message passing
extension, will have a good impact on the overall performance.
This is one of our ongoing work.

ACKNOWLEDGMENT

This work was initiated from the PetaQCD projet funded
by a grant from ANR, the french national agency for research,
through the program COSINUS. We also expresse our sincere
gratitude to Philippe Thierry from INTEL to have provided us
an access to their Broadwell-based machine.

REFERENCES

[1] https://www.petaqcd.org/?lang=en
[2] D. Barthou, G. Grosdidier, M. Kruse, O. Pène, and C. Tadonki, QIRAL:

A High Level Language for Lattice QCD Code Generation, ETAPS 2012,
Tallin - Estonia (2012)

[3] F. Belletti, G. Bilardi, M. Drochner, N. Eicker, Z. Fodor, D. Hierl, H.
Kaldass, T. Lippert, T. Maurer, N. Meyer, A. Nobile, D. Pleiter, A.
Schaefer, F. Schifano, H. Simma, S. Solbrig, T. Streuer, R. Tripiccione,
and T. Wettig. QCD on the Cell Broadband Engine, Oct 2007.

[4] Clark, M.A., Babich, R., Barros, K., Brower, R.C., Rebbi, C.: Solving
Lattice QCD systems of equations using mixed precision solvers on
GPUs. Comput. Phys. Commun. 181 (2010) 15171528.

[5] R. G. Edwards, Balint Jó, and T. Jefferson, The Chroma Software System
for Lattice QCD
http://arxiv.org/pdf/hep-lat/0409003.pdf

[6] QDP++,
http://www.top500.org/system/177003.

[7] G.Grosdidier, Scaling stories, PetaQCD Final Review Meeting, Or-
say,France, Sept. 27th 28th 2012.

[8] K. Z. Ibrahim and F. Bodin, Implementing Wilson-Dirac operator on
the cell broadband engine, ICS ’08: Proceedings of the 22nd annual
international conference on Supercomputing, pp. 4-14, Island of Kos,
Greece, 2008.

[9] B. Joó, D. D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany,
V. W Lee, P. Dubey, and W. Watson, Lattice QCD on Intel Xeon Phi
https://software.intel.com/sites/default/files
/article/401382/qcd-isc2013.pdf

[10] K. Jansen and C. Urbach, tmLQCD: a program suite to simulate Wilson
Twisted mass Lattice QCD, Computer Physics Communications, vol.
180(12), p. 2717-2738, 2009.

[11] Y. Li, I. Pandis, R. Mueller, V. Raman, and G. Lohman, NUMA-aware
algorithms: the case of data shuffling
http://www.pandis.net/resources/cidr13numashuffling.pdf
2013.

[12] R. Al-Omairy, G. Miranda, H. Ltaief, R. M. Badia, X. Martorell, J.
Labarta, and D. Keyes, Dense Matrix Computations on NUMA Architec-
tures with Distance-Aware Work Stealing, Upercomputing Frontiers and
Innovations, vol. 2(1), 2015.

[13] M. Luscher, Implementation of the lattice Dirac operator, 2006.
[14] D. Pleiter, QPACE: Power-efficient parallel architecture based on IBM

PowerXCell 8i,EnA-HPC, Hamburg,17 September 2010.



[15] QDP++,
http://usqcd.jlab.org/usqcd-docs/qdp++/.

[16] Smelyanskiy, M., Vaidyanathan, K., Choi, J., Joo, B., Chhugani, J.,
Clark, M.A., Dubey, P.: High-performance lattice QCD for multi-core
based parallel systems using a cache-friendly hybrid threaded-MPI
approach In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. SC 11
(2011) 69:169:11

[17] C. Tadonki, G. Grosdidier, and O. Pene, An efficient CELL library for
Lattice Quantum Chromodynamics, International Workshop on Highly
Efficient Accelerators and Reconfigurable Technologies (HEART) in con-
junction with the 24th ACM International Conference on Supercomputing
(ICS), pp. 67-71, Epochal Tsukuba, Tsukuba, Japan, June 1-4, 2010.
ACM SIGARCH Computer Architecture News, vol 38(4) 2011.

[18] C. Urbach, K. Jansen, A. Shindler, and U. Wenger, HMC Algorithm with
Multiple Time Scale Integration and Mass Preconditioning, Computer
Physics Communications, vol. 174, p. 87, 2006.

[19] C. Van Loan, Computational Framework for the Fast Fourier Transform,
SIAM, 1992.

[20] P. Vranas, M. A. Blumrich, D. Chen, A. Gara, M. E. Giampapa, P.
Heidelberger, V. Salapura, J. C. Sexton, R. Soltz, G. Bhanot, Massively
parallel quantum chromodynamics, IBM J. RES. & DEV. VOL. 52 NO.
1/2 JANUARY/MARCH 2008.

[21] F. Wilczek, What QCD Tells Us About Nature and Why We Should
Listen, Nuc. Phys. A 663, 320, 2000.


