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ISMMO05 Special Issue:
Image filtering using morphological amoebas

Romain Lerallut * | Etienne Decenciére, Fernand Meyer

Centre de Morphologie Mathématique, Ecole des Mines de Paris
35 rue Saint-Honoré, 77305 Fontainebleau, France

Abstract

This paper presents morphological operators with non-fixed shape kernels, or amoe-
bas, which take into account the image contour variations to adapt their shape.
Experiments on grayscale and color images demonstrate that these novel filters out-
perform classical morphological operations with a fixed, space-invariant structuring
element for noise reduction applications. Proof-of-concepts tests are then performed
on 3D images to show the high noise-reduction capacity of amoeba-based filters.

Key words: Anisotropic filters, noise reduction, morphological filters, color filters,
3D image processing

1 Introduction

Noise is possibly the most annoying problem in the field of image processing.
There are two ways to work around it: either design particularly robust algo-
rithms that can work in noisy environments, or try to eliminate the noise in
a first step while losing as little relevant information as possible and conse-
quently use a normally robust algorithm.

There are of course many algorithms that aim at reducing the amount of noise
in images. Most are quite effective but also often remove thin elements such
as canals or peninsulas. Even worse, they can displace the contours and thus
create additional problems in a segmentation application.

* Corresponding Author.
Email address: lerallut@cmm.ensmp.fr (Romain Lerallut).

Preprint submitted to Elsevier Science 22 September 2005



(a) Original image (b) Filtered image (c)  Reconstructed
image

Fig. 1. Classic noise filtering (b) removes much contour information. Reconstruction
(c) finds not only the contours, but also all the noise connected to the object.

In mathematical morphology we often couple one of these noise-reduction
filters to a reconstruction filter that attempts to reconstruct only relevant in-
formation, such as contours, and not noise. However, a faithful reconstruction
can be problematic when the contour itself is corrupted by noise. This can
cause great problems in some applications which rely heavily on clean con-
tour surfaces, such as 3D visualization, so a novel approach was proposed:
morphological amoebas.

An amoeba (here Amoeba proteus) is a
genus of protozoa that moves by project-
ing pseudopods and is a well-known rep-
resentative unicellular organism. They are
found in sluggish waters all over the world,
both fresh and salt, as well as in soils and
as parasites. They now begin a new life in
the field of image processing.

2 Amoebas: dynamic structuring elements

Principle

Classic filter kernel

Formally at least, classic filters work on a fixed-size sliding window, be they
morphological operators (erosion, dilation) or convolution filters, such as the
diffusion by a Gaussian. If the shape of that window does not adapt itself to



the content of the image (see figure 2), the results deteriorate. For instance, an
isotropic Gaussian diffusion smooths the contours when its kernel steps over
a strong gradient area.

Fig. 2. Closing of an image by a large structuring element. The structuring element
does not adapt its shape and merges two distinct objects.

Amoeba filter kernel

Having made this observation, Perona and Malik [1] (and others after them)
have developed anisotropic filters that inhibit diffusion through strong gra-
dients. The first work on non-fixed shape structuring elements was done by
Braga-Neto in [7] though it was restricted to alternate sequential filters of
openings and closings. We were inspired by these examples to define morpho-
logical filters whose kernels adapt to the content of the image in order to keep
a certain homogeneousness inside each structuring element (see figure 3) while
at the same time keeping their size in check. Tomasi and Manduchi have de-
scribed in [5]. the idea of coupling performed a geometric distance between
pixels and a distance between their values, which offers remarkable properties
for our intended use.

The interest of this approach, compared to the analytical one is that it does not
depart greatly from what we use in mathematical morphology, and therefore
most of our algorithms can be made to use amoebas with little additional
work. Most of the underlying theoretical groundwork for the morphological
approach has been described by Jean Serra in his study [2] of structuring
functions, although until now it has seen little practical use.

Fig. 3. Closing of an image by an amoeba. The amoeba does not cross the contour
and as such preserves even the small canals.

The shape of the amoeba must be computed for each pixel around which it is



Fig. 4. Shape of an amoeba at various positions on an image.

Fig. 5. Behavior of an amoeba on various relief types. Strong gradients should slow
or even hamper the growth of the amoeba

centered. Figure 4 shows the shape of an amoeba depending on the position
of its center. Note that in flat areas such as the center of the disc, or the
background, the amoeba is maximally stretched, while it is reluctant to cross
contour lines.

When an amoeba has been defined, most morphological operators and many
other types of filters can be used on it: median, mean, rank filters, erosion, di-
lation, opening, closing, even more complex algorithms such as reconstruction
filters, levelings, floodings, etc.

Construction

Amoeba distance

In general, a filtering kernel of radius r is formally defined on a square (or
a hexagon) of that radius, that is to say on the ball of radius r relative to
the norm associated to the chosen connectivity. We will keep this definition
changing only the norm, using one that takes into account the gradient of the
image, so that we get the behavior described in figure 5.

Definition 1 Let dpize; be a distance defined between the values of the image,
for example a difference of gray-value, or a color distance.



Let 0 = (x = xo,21,...,2, = y) a path between points x and y. Let X be a
real positive number. The length of the path o is defined as

Z + A dpz:vel [mage(xz) [mage(xwrl))]
=0

The “amoeba distance” with parameter X is thus defined as:

da(z,z) =0

dx(z,y) = min, L(0), minimum taken on all paths between z and y

It it important to realize that dy;,e has no geometrical aspect, it is a distance
computed only on the values of the pixels of the image. Furthermore, if n is
the number of pixels of a path o, then L(o) > n (since A > 0), which bounds
the maximal extension of the amoeba.

This distance also offers an interesting inclusion property:

Property 1 At a given radius v the family of the balls By, relative to the
distance dy is decreasing (for the inclusion),

0 < )\1 < )\2 = V(:c,y),dh(a:,y) < d)\2<SL’,y)

= Vr € R+,B)\1,r D) B)\Q,r

Which may be useful when building hierarchies of filters, such as a family of
alternate sequential filters with strong gradient-preserving properties.

The pilot image

We have found that the noise in the image can often distort the shape of the
amoeba. For this reason, we often compute the shape of the amoeba on another
image. Once the shape is computed, the values are sampled on the original
image and processed by the filter (mean, median, max, min, ...). Usually,
the other image is the result of a strong noise removal filtering of the original
image that dampens the noise while preserving as much as possible the larger
contours. A large Gaussian works fairly well, and can be applied very quickly
with advanced algorithms, however we will see below that iterating amoeba
filters yields even better results.



3 Amoebas in practice
Adjunction

Erosions and dilations can easily be defined on amoebas. However it is neces-
sary to use adjoint erosions and dilations when using them to define openings
and closings:

6(X) = Upex Bar()
e(X) = {z/By,(z) C X}

These two operations are at the same time adjoint and relatively easy to
compute, contrary to the symmetrical ones that use the transposition, which
is not easy to compute for amoebas. See |2] for a discussion of the various
forms of adjunction and transposition of structuring functions.

Algorithms

The algorithms used for the erosion and dilation are quite similar to those used
with regular structuring elements, with the exception of the step of computing
the shape of the amoeba.

The opening using these algorithms can be seen as the gray-level extension of
the classic binary algorithm of first taking the centers of the circles that fit
inside the shape (erosion), and then returning the union of all those circles
(dilation). See [10] for a more detailed description of the algorithms used for
adjoint erosion and dilation.

Complezxity

The theoretical complexity of a simple amoeba-based filter (erosion, dilation,
mean, median) can be asymptotically approximated by:
T(n,k,op) =0 [n * (op(kd) + amoeba(k, d))}

Where n is the number of pixels in the image, d is the dimensionality of the
image (usually 2 or 3), k is the maximum radius of the amoeba, op(k?) is the



cost of the operation and amoeba(k, d) is the cost of computing the shape of
the amoeba for a given pixel.

The shape of the amoebas is computed by a common region-growing imple-
mentation using a priority queue. Depending on the priority queue used, the
complexity of this operation is slightly more than O(k?) (see [3] and [4] for
advanced queueing data structures).

Therefore, for erosion, dilation or mean as operators, we have a complexity of
a little more than O(n * k%) which is the complexity of a filter on a fixed-shape
kernel. It has indeed been verified in practice that, while being quite slower
than with fixed-shape kernels (especially optimized ones), filters using amoe-
bas tend to follow rather well the predicted complexity, and do not explode
(tests have been performed on 3D images, size 512x512x100, with amoebas
with sizes up to 21x21x21).

4 Results

Alternate sequential filters

The images of figure 6 compare the differences between alternate sequential
filters (ASF) built on classic fixed shape kernels and ASFs on amoebas in
the filtering of the image of a retina. The filter should be able to reduce the
amount of background noise while preserving the shape of the vessels.

Median and mean

In the context of image enhancement, we have found that a simple mean or
median coupled with an amoeba forms a very powerful noise-reduction filter.

The images in figure 7 show the median and the mean computed on amoebas
compared to those built on regular square kernels. The pilot image that drives
the shape of the amoeba is the result of a standard Gaussian filter of size
3 on the original image, and the distance d,;;e is the absolute difference of
gray-levels.

For the filters using amoebas, the median filter preserves well the contour, but
the mean filter gives a more “aesthetically pleasing” image. In either case, the
results are clearly superior to filterings by fixed-shape kernels, as seen in the
figure 7.



a) Original (b) Normal ASF: first ) Normal ASF: sec-
pass ond pass
(d) Amoeba ASF: first ) Amoeba ASF: sec- (f)  Amoeba ASF:
pass ond pass fourth pass

Fig. 6. Alternate sequential filters on classic kernels and on amoebas. The amoeba
preserves extremely well the blood vessels while strongly flattening the other areas.

Mean and median for color images

In the case of color images, the mean is replaced by the mean on each color
component of the RGB color space. For the “median”, the point closest to the
barycenter is chosen. Other distances or colorspaces can be used, depending
on the application, the type of noise and the quality of the color information.

Iteration

The quality of the filtering strongly depends on the image that determines
the shape of the amoeba. The previous examples have used the original image
filtered by a Gaussian, but this does not always yield good results (also see

[6]).



(a) Original (b) Usual me- (¢c) Amoeba (d)  Amoeba

dian median mean

Fig. 7. Results of a “classic” median filtering and two amoeba-based filterings: a
median and a mean on Edouard Manet’s painting “Le fifre”.

It is frequent indeed that a small detail of the image be excessively smoothed
in the pilot image, and thus disappears completely in the result image. On
the other hand, noisy pixels may be left untouched if the pilot image does
not eliminate them. A possible solution is to improve the quality of the pilot
image, so that it helps the amoeba in preserving these features. Such an image
should be well-smoothed in flat regions, while preserving as well as possible
the contour information. One good method to compute such an image would
be of course to use an amoeba-based filter !

We will proceed in two steps: the first one follows the scheme described ear-
lier, using the Gaussian-filtered original image as a pilot, with large amoebas,
and outputs a well-smoothed image in flat areas while preserving as much
as possible the most important contours. The second step takes the original
image as input and the filtered image as a pilot, with smaller amoebas. These
amoebas don’t need to be as large as the first ones, since their shapes will be
computed on a very smooth image, and therefore they will preserve well the
finer details.



(a) Original (b) Usual me- (¢c) Amoeba (d)  Amoeba

dian median mean

Fig. 8. Color images: results of a “classic” median filtering, and two amoeba-based
filterings: a median and a mean. As a simple extension of the grayscale approach,
each channel of the pilot image has been independently smoothed by a Gaussian of
size 3.

Although this refinement of the pilot image could be iterated, we have found
in practice that once is enough to reduce the noise dramatically (see figure 9).

This method is also very useful for color images, since the amoeba-based pilot
image provides better color coupling through the use of an appropriate color
distance than simply merging the results of a Gaussian filtering of each channel
independently.

5 Application to 3D images

3D images and contour noise

While noise reduction is a nice bonus for 2D images, things are different with
3D medical images ([9]). The visualization algorithms often use local gradient
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(a) Original (b) Pilot image: Gaus- (¢)  Pilot  image:
sian filter amoeba mean filter

(d) Result image: amoeba mean with (e) Result image: amoeba mean with
Gaussian pilot amoeba pilot

Fig. 9. Comparison between two pilot images: a Gaussian one, and one based on
a strong amoeba-based filtering. With the amoeba pilot image the hand is better
preserved, and the eyebrows do not begin to merge with the eyes, contrary to the
Gaussian-based pilot image. Having both less noise and stronger contours in the pilot
image also enables the use of smaller values on the lambda parameter so that the
amoeba will stretch more in the flatter zones, and thus have a stronger smoothing
effect in those zones, while preserving the position and dynamics of the contours
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(a) Ideal image (b) Noisy image

Fig. 10. A synthetic 3D volume presenting many similarities with medical images of
the cardiac regions. Left: original image. Right: image with addition of noise.

information for the computation of the shading of the voxels and many appli-
cations, especially in the medical field, use mostly the contour information to
visualize the various objects and as such are very vulnerable to noise on the
contours (see figure 10).

When displaying directly 3D data (as opposed to studying a stack of 2D im-
ages), it is essential that the user be able to see the objects they are interested
in. This is why most modern renderers include a complex transparency and
shading model that makes it possible to peek far inside the image to display
the interesting objects. To make a quantitative analysis easier, a synthetic
image was created that presents many similarities with 3D scanner images,
especially images of the cardiac region: strong textures and thin vessels to
preserve.

Figure 10 illustrates the problem due to strong noise in a 3D image and fig-
ure 11 shows that levelings are ineffective as they suppress the noise inside
the objects but not on the contours. However, as with most morphological
tools, amoebas are adimensional and can be used without modification on 3D
images.

Median filtering with amoebas

One important aspect of the filtering of such medical images is that those
images are monospectral: coloring and, ultimately, tissue identification is done
using a look-up table. This means that a shifting of the values may have a
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(a) Simple median, radius 2 (b) Median followed by by level-
ing

Fig. 11. Although the median filters much noise away, the reconstruction (needed to
recover the position of the contours) reconstructs most of the noise on the borders
of the object, removing most of the transparency.

dramatic effect on the visualization and consequently on the interpretation
of the images. This is why we have chosen to first test the median: with its
property of returning only values existing in the image, the median lessens
the risk of misinterpretation. However, traditional median filtering does not
preserve well the contours, and may remove small details which may be crucial
to a physician’s analysis, hence the use of amoebas.

For each pixel the processing is done in two steps: first compute the shape
of the amoeba centered on the pixel and then sample the values of the pixel
inside the amoeba, feed them to the median operator and write the result at
the center of the amoeba in the output image.

Results for 3D images

Figure 12 shows the result of a median filter computed on amoebas. It is plain
to see that most of the transparency effect has been preserved, which indicates
that most of the noise has been filtered on the contours as well as inside the
objects.

Figure 13 is a zoom of figure 12 centered on the thin structures. Once again
we have good results in the preservation of those elongated structures. This is
absolutely essential since this type of features include critical body parts such
as blood vessels, nerves, etc.

13



(a) Noisy image (b) Noisy image filtered by me-
dian computed on amoebas

Fig. 12. The median applied to the amoeba recovers most of the information
very well, including thin details. The cleaner gradient on the contours results in
a near-perfect transparency effect.

(a) Original image (zoomed) (b)  Amoeba median filter
(zoomed)

Fig. 13. The amoeba-based median filter recovers very well the contours, as well as
the transparency.

It is extremely hard to quantify in a meaningful way the results of such a
filtering, especially since the usual signal-to-noise ratio does not express well
the fact that we may tolerate small variations in many places but not a few
strong variations in critical areas. A more meaningful measure for this problem
was developed by Boehm in [9]. This measure is tied to a 3D volume renderer
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(ray-caster) by comparing the visibility of each voxel in the filtered image
with that of the corresponding voxel in the ideal image. When a voxel in
the filtered image contributes in the same amount to the visualization as the
corresponding voxel in the ideal image, then its associated quality measure is
equal to one. The greater the difference between both contributions, the closer
to zero the measure will be. Results are then averaged in the whole image as
well as separately on each component.

Figure 14 shows a comparison between an amoeba-based median filter and a
classic alternate sequential filter (ASF). The results show clearly that while
the ASF is as good as the amoeba on the larger structures (spheres B2, B3
and Bb), it fails completely to preserve the thin structures such as the rings.
Furthermore, there is a clear shift of the values, especially on the outermost
rings, which may cause diagnostic errors.

Simple optimizations

An important fact to take into account is that the radius parameter is like an
amount of energy given to the amoeba. It can be used either to climb slopes
(with a penalty given by the A parameter) or it can be used to expand in
flat areas. This amount of energy needs to be quite high so that the amoeba
can jump over noisy pixels (though not too high so that it does not cross too
much over strong gradient lines). However such a high energy means that in
flat areas the amoeba will grow to a very large size, which means that not
only will the shape be costly to compute but the resulting sample of pixel
values will be quite large and so the filter operator will be accordingly long. A
very simple yet dramatically effective optimization is thus to impose an upper
bound on the size of the amoeba, the value of which depends on the type of
noise and the characteristic size of the image elements. This can reduce the
cost of computation by an order of magnitude without any detectable loss of
effectiveness.

Another form of optimization is to compute the shape of the amoeba on a
slightly filtered version of the original image, such as a Gaussian filtering. This
will reduce small noise without moving too much the contours and enable the
use of smaller amoebas.

6 Conclusion and future work

We have presented here a new type of structuring element that can be used in
many morphological algorithms. By taking advantage of outside information,
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(a) Noisy image (b) Amoeba-based me- (c) ASF size 3

dian
Texture 50
Amoeba C—3
ASF3 s
1 - -
0.8 | -
0.6 -
0.4
0.2
B1 B2 B3 B4 B5 P1 P2 Rings Global

(d) Measure of the results

Fig. 14. Comparison of the results of an amoeba-based median filter and an alter-
nated sequential filter of size up to 3. The measure is performed on each component
of the image (spheres B1-B5, parallelepipeds P1 and P2, rings, and total average).

filters built upon those structuring elements can be made more robust on noisy
images and in general behave in a “more sensible” way than those based on
fixed-shape structuring elements. In addition, morphological amoebas are very
adaptable and can be used on color images as well as monospectral ones and,
like most morphological tools, they can be used on images of any dimension
(2D, 3D, ...). Depending on the application, alternate sequential filters are
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very effective when looking for very flat zones, whereas median and mean filters
output smoother images that may be more pleasing to the eye but could be
harder to segment.

It is possible to use amoebas to create reconstruction filters and floodings that
take advantage of the ability to parametrize the shape of the amoebas based
on the image content. However, the behaviors of the amoebas are much more
difficult to take into account when they are used in such complex algorithms.
In particular, if connexity is important (such as in a reconstruction filter),
then amoeba with a maximum radius of one pixel should be used.

The results show that simple extensions of the scalar algorithms to the RGB
space already yield excellent results, especially when iterating. The use of more
“perceptual” distances (HLS or LAB) would probably prevent some unwanted
blending of features, although this is as yet conjectural and will be the basis
of further work.

The filtering of 3D images by morphological amoebas, though still in its in-
fancy, seems very promising. Expressing the coupling between image data and
geometry through a kernel makes it possible to implement a much larger range
of filters to an image than was possible before. Another area where improve-
ment is to be expected is the computation of the shape of the amoeba. Not
only should it be possible to use elaborate gradient estimation such as pro-
posed in [6], but also providing more complex behaviors for the amoebas, such
as an incompressible minimum element, to guarantee at least some diffusion,
or on the contrary a minimum size requirement to prevent diffusion through
small holes.

Finally, it is important to notice that this amoeba framework is general enough
to accommodate other types of distances. The distance presented here couples
geometry and grey levels (or color distances), but other similar schemes can be
expressed in terms of amoebas. For instances, the approaches presented in [7|
and [8], which offer very interesting results, can be implemented by amoebas
with the appropriate distance, which thus inherit all the possibilities available
to the ones described in this paper. These various approaches show the viability
and the vitality of the amoeba framework, as well as its applicability to many
fields of research.
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