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ISMM05 Spe
ial Issue:Image �ltering using morphologi
al amoebasRomain Lerallut ∗ , Étienne De
en
ière, Fernand MeyerCentre de Morphologie Mathématique, É
ole des Mines de Paris35 rue Saint-Honoré, 77305 Fontainebleau, Fran
eAbstra
tThis paper presents morphologi
al operators with non-�xed shape kernels, or amoe-bas, whi
h take into a

ount the image 
ontour variations to adapt their shape.Experiments on grays
ale and 
olor images demonstrate that these novel �lters out-perform 
lassi
al morphologi
al operations with a �xed, spa
e-invariant stru
turingelement for noise redu
tion appli
ations. Proof-of-
on
epts tests are then performedon 3D images to show the high noise-redu
tion 
apa
ity of amoeba-based �lters.Key words: Anisotropi
 �lters, noise redu
tion, morphologi
al �lters, 
olor �lters,3D image pro
essing
1 Introdu
tionNoise is possibly the most annoying problem in the �eld of image pro
essing.There are two ways to work around it: either design parti
ularly robust algo-rithms that 
an work in noisy environments, or try to eliminate the noise ina �rst step while losing as little relevant information as possible and 
onse-quently use a normally robust algorithm.There are of 
ourse many algorithms that aim at redu
ing the amount of noisein images. Most are quite e�e
tive but also often remove thin elements su
has 
anals or peninsulas. Even worse, they 
an displa
e the 
ontours and thus
reate additional problems in a segmentation appli
ation.
∗ Corresponding Author.Email address: lerallut�
mm.ensmp.fr (Romain Lerallut).Preprint submitted to Elsevier S
ien
e 22 September 2005



(a) Original image (b) Filtered image (
) Re
onstru
tedimageFig. 1. Classi
 noise �ltering (b) removes mu
h 
ontour information. Re
onstru
tion(
) �nds not only the 
ontours, but also all the noise 
onne
ted to the obje
t.In mathemati
al morphology we often 
ouple one of these noise-redu
tion�lters to a re
onstru
tion �lter that attempts to re
onstru
t only relevant in-formation, su
h as 
ontours, and not noise. However, a faithful re
onstru
tion
an be problemati
 when the 
ontour itself is 
orrupted by noise. This 
an
ause great problems in some appli
ations whi
h rely heavily on 
lean 
on-tour surfa
es, su
h as 3D visualization, so a novel approa
h was proposed:morphologi
al amoebas. An amoeba (here Amoeba proteus) is agenus of protozoa that moves by proje
t-ing pseudopods and is a well-known rep-resentative uni
ellular organism. They arefound in sluggish waters all over the world,both fresh and salt, as well as in soils andas parasites. They now begin a new life inthe �eld of image pro
essing.2 Amoebas: dynami
 stru
turing elementsPrin
ipleClassi
 �lter kernelFormally at least, 
lassi
 �lters work on a �xed-size sliding window, be theymorphologi
al operators (erosion, dilation) or 
onvolution �lters, su
h as thedi�usion by a Gaussian. If the shape of that window does not adapt itself to2



the 
ontent of the image (see �gure 2), the results deteriorate. For instan
e, anisotropi
 Gaussian di�usion smooths the 
ontours when its kernel steps overa strong gradient area.
Fig. 2. Closing of an image by a large stru
turing element. The stru
turing elementdoes not adapt its shape and merges two distin
t obje
ts.Amoeba �lter kernelHaving made this observation, Perona and Malik [1℄ (and others after them)have developed anisotropi
 �lters that inhibit di�usion through strong gra-dients. The �rst work on non-�xed shape stru
turing elements was done byBraga-Neto in [7℄ though it was restri
ted to alternate sequential �lters ofopenings and 
losings. We were inspired by these examples to de�ne morpho-logi
al �lters whose kernels adapt to the 
ontent of the image in order to keepa 
ertain homogeneousness inside ea
h stru
turing element (see �gure 3) whileat the same time keeping their size in 
he
k. Tomasi and Mandu
hi have de-s
ribed in [5℄. the idea of 
oupling performed a geometri
 distan
e betweenpixels and a distan
e between their values, whi
h o�ers remarkable propertiesfor our intended use.The interest of this approa
h, 
ompared to the analyti
al one is that it does notdepart greatly from what we use in mathemati
al morphology, and thereforemost of our algorithms 
an be made to use amoebas with little additionalwork. Most of the underlying theoreti
al groundwork for the morphologi
alapproa
h has been des
ribed by Jean Serra in his study [2℄ of stru
turingfun
tions, although until now it has seen little pra
ti
al use.
Fig. 3. Closing of an image by an amoeba. The amoeba does not 
ross the 
ontourand as su
h preserves even the small 
anals.The shape of the amoeba must be 
omputed for ea
h pixel around whi
h it is3



Fig. 4. Shape of an amoeba at various positions on an image.
Fig. 5. Behavior of an amoeba on various relief types. Strong gradients should slowor even hamper the growth of the amoeba
entered. Figure 4 shows the shape of an amoeba depending on the positionof its 
enter. Note that in �at areas su
h as the 
enter of the dis
, or theba
kground, the amoeba is maximally stret
hed, while it is relu
tant to 
ross
ontour lines.When an amoeba has been de�ned, most morphologi
al operators and manyother types of �lters 
an be used on it: median, mean, rank �lters, erosion, di-lation, opening, 
losing, even more 
omplex algorithms su
h as re
onstru
tion�lters, levelings, �oodings, et
.Constru
tionAmoeba distan
eIn general, a �ltering kernel of radius r is formally de�ned on a square (ora hexagon) of that radius, that is to say on the ball of radius r relative tothe norm asso
iated to the 
hosen 
onne
tivity. We will keep this de�nition
hanging only the norm, using one that takes into a

ount the gradient of theimage, so that we get the behavior des
ribed in �gure 5.De�nition 1 Let dpixel be a distan
e de�ned between the values of the image,for example a di�eren
e of gray-value, or a 
olor distan
e.4



Let σ = (x = x0, x1, . . . , xn = y) a path between points x and y. Let λ be areal positive number. The length of the path σ is de�ned as
L(σ) =

n
∑

i=0

[1 + λ.dpixel(Image(xi), Image(xi+1))]The �amoeba distan
e� with parameter λ is thus de�ned as:










dλ(x, x) = 0

dλ(x, y) = minσ L(σ),minimum taken on all paths between x and yIt it important to realize that dpixel has no geometri
al aspe
t, it is a distan
e
omputed only on the values of the pixels of the image. Furthermore, if n isthe number of pixels of a path σ, then L(σ) ≥ n (sin
e λ ≥ 0), whi
h boundsthe maximal extension of the amoeba.This distan
e also o�ers an interesting in
lusion property:Property 1 At a given radius r the family of the balls Bλ,r relative to thedistan
e dλ is de
reasing (for the in
lusion),
0 ≤ λ1 ≤ λ2 ⇒ ∀(x, y), dλ1

(x, y) ≤ dλ2
(x, y)

⇒ ∀r ∈ R
+,Bλ1,r ⊃ Bλ2,rWhi
h may be useful when building hierar
hies of �lters, su
h as a family ofalternate sequential �lters with strong gradient-preserving properties.The pilot imageWe have found that the noise in the image 
an often distort the shape of theamoeba. For this reason, we often 
ompute the shape of the amoeba on anotherimage. On
e the shape is 
omputed, the values are sampled on the originalimage and pro
essed by the �lter (mean, median, max, min, . . . ). Usually,the other image is the result of a strong noise removal �ltering of the originalimage that dampens the noise while preserving as mu
h as possible the larger
ontours. A large Gaussian works fairly well, and 
an be applied very qui
klywith advan
ed algorithms, however we will see below that iterating amoeba�lters yields even better results. 5



3 Amoebas in pra
ti
eAdjun
tionErosions and dilations 
an easily be de�ned on amoebas. However it is ne
es-sary to use adjoint erosions and dilations when using them to de�ne openingsand 
losings:
δ(X) =

⋃

x∈X Bλ,r(x)

ǫ(X) = {x/Bλ,r(x) ⊂ X}These two operations are at the same time adjoint and relatively easy to
ompute, 
ontrary to the symmetri
al ones that use the transposition, whi
his not easy to 
ompute for amoebas. See [2℄ for a dis
ussion of the variousforms of adjun
tion and transposition of stru
turing fun
tions.AlgorithmsThe algorithms used for the erosion and dilation are quite similar to those usedwith regular stru
turing elements, with the ex
eption of the step of 
omputingthe shape of the amoeba.The opening using these algorithms 
an be seen as the gray-level extension ofthe 
lassi
 binary algorithm of �rst taking the 
enters of the 
ir
les that �tinside the shape (erosion), and then returning the union of all those 
ir
les(dilation). See [10℄ for a more detailed des
ription of the algorithms used foradjoint erosion and dilation.ComplexityThe theoreti
al 
omplexity of a simple amoeba-based �lter (erosion, dilation,mean, median) 
an be asymptoti
ally approximated by:
T (n, k, op) = O

[

n ∗
(

op(kd) + amoeba(k, d)
)]Where n is the number of pixels in the image, d is the dimensionality of theimage (usually 2 or 3), k is the maximum radius of the amoeba, op(kd) is the6




ost of the operation and amoeba(k, d) is the 
ost of 
omputing the shape ofthe amoeba for a given pixel.The shape of the amoebas is 
omputed by a 
ommon region-growing imple-mentation using a priority queue. Depending on the priority queue used, the
omplexity of this operation is slightly more than O(kd) (see [3℄ and [4℄ foradvan
ed queueing data stru
tures).Therefore, for erosion, dilation or mean as operators, we have a 
omplexity ofa little more than O(n∗kd) whi
h is the 
omplexity of a �lter on a �xed-shapekernel. It has indeed been veri�ed in pra
ti
e that, while being quite slowerthan with �xed-shape kernels (espe
ially optimized ones), �lters using amoe-bas tend to follow rather well the predi
ted 
omplexity, and do not explode(tests have been performed on 3D images, size 512x512x100, with amoebaswith sizes up to 21x21x21).4 ResultsAlternate sequential �ltersThe images of �gure 6 
ompare the di�eren
es between alternate sequential�lters (ASF) built on 
lassi
 �xed shape kernels and ASFs on amoebas inthe �ltering of the image of a retina. The �lter should be able to redu
e theamount of ba
kground noise while preserving the shape of the vessels.Median and meanIn the 
ontext of image enhan
ement, we have found that a simple mean ormedian 
oupled with an amoeba forms a very powerful noise-redu
tion �lter.The images in �gure 7 show the median and the mean 
omputed on amoebas
ompared to those built on regular square kernels. The pilot image that drivesthe shape of the amoeba is the result of a standard Gaussian �lter of size3 on the original image, and the distan
e dpixel is the absolute di�eren
e ofgray-levels.For the �lters using amoebas, the median �lter preserves well the 
ontour, butthe mean �lter gives a more �aestheti
ally pleasing� image. In either 
ase, theresults are 
learly superior to �lterings by �xed-shape kernels, as seen in the�gure 7. 7



(a) Original (b) Normal ASF: �rstpass (
) Normal ASF: se
-ond pass

(d) Amoeba ASF: �rstpass (e) Amoeba ASF: se
-ond pass (f) Amoeba ASF:fourth passFig. 6. Alternate sequential �lters on 
lassi
 kernels and on amoebas. The amoebapreserves extremely well the blood vessels while strongly �attening the other areas.Mean and median for 
olor imagesIn the 
ase of 
olor images, the mean is repla
ed by the mean on ea
h 
olor
omponent of the RGB 
olor spa
e. For the �median�, the point 
losest to thebary
enter is 
hosen. Other distan
es or 
olorspa
es 
an be used, dependingon the appli
ation, the type of noise and the quality of the 
olor information.IterationThe quality of the �ltering strongly depends on the image that determinesthe shape of the amoeba. The previous examples have used the original image�ltered by a Gaussian, but this does not always yield good results (also see[6℄). 8



(a) Original (b) Usual me-dian (
) Amoebamedian (d) Amoebamean

Fig. 7. Results of a �
lassi
� median �ltering and two amoeba-based �lterings: amedian and a mean on Edouard Manet's painting �Le �fre�.It is frequent indeed that a small detail of the image be ex
essively smoothedin the pilot image, and thus disappears 
ompletely in the result image. Onthe other hand, noisy pixels may be left untou
hed if the pilot image doesnot eliminate them. A possible solution is to improve the quality of the pilotimage, so that it helps the amoeba in preserving these features. Su
h an imageshould be well-smoothed in �at regions, while preserving as well as possiblethe 
ontour information. One good method to 
ompute su
h an image wouldbe of 
ourse to use an amoeba-based �lter !We will pro
eed in two steps: the �rst one follows the s
heme des
ribed ear-lier, using the Gaussian-�ltered original image as a pilot, with large amoebas,and outputs a well-smoothed image in �at areas while preserving as mu
has possible the most important 
ontours. The se
ond step takes the originalimage as input and the �ltered image as a pilot, with smaller amoebas. Theseamoebas don't need to be as large as the �rst ones, sin
e their shapes will be
omputed on a very smooth image, and therefore they will preserve well the�ner details. 9



(a) Original (b) Usual me-dian (
) Amoebamedian (d) Amoebamean

Fig. 8. Color images: results of a �
lassi
� median �ltering, and two amoeba-based�lterings: a median and a mean. As a simple extension of the grays
ale approa
h,ea
h 
hannel of the pilot image has been independently smoothed by a Gaussian ofsize 3.Although this re�nement of the pilot image 
ould be iterated, we have foundin pra
ti
e that on
e is enough to redu
e the noise dramati
ally (see �gure 9).This method is also very useful for 
olor images, sin
e the amoeba-based pilotimage provides better 
olor 
oupling through the use of an appropriate 
olordistan
e than simply merging the results of a Gaussian �ltering of ea
h 
hannelindependently.5 Appli
ation to 3D images3D images and 
ontour noiseWhile noise redu
tion is a ni
e bonus for 2D images, things are di�erent with3D medi
al images ([9℄). The visualization algorithms often use lo
al gradient10



(a) Original (b) Pilot image: Gaus-sian �lter (
) Pilot image:amoeba mean �lter

(d) Result image: amoeba mean withGaussian pilot (e) Result image: amoeba mean withamoeba pilotFig. 9. Comparison between two pilot images: a Gaussian one, and one based ona strong amoeba-based �ltering. With the amoeba pilot image the hand is betterpreserved, and the eyebrows do not begin to merge with the eyes, 
ontrary to theGaussian-based pilot image. Having both less noise and stronger 
ontours in the pilotimage also enables the use of smaller values on the lambda parameter so that theamoeba will stret
h more in the �atter zones, and thus have a stronger smoothinge�e
t in those zones, while preserving the position and dynami
s of the 
ontours11



(a) Ideal image (b) Noisy imageFig. 10. A syntheti
 3D volume presenting many similarities with medi
al images ofthe 
ardia
 regions. Left: original image. Right: image with addition of noise.information for the 
omputation of the shading of the voxels and many appli-
ations, espe
ially in the medi
al �eld, use mostly the 
ontour information tovisualize the various obje
ts and as su
h are very vulnerable to noise on the
ontours (see �gure 10).When displaying dire
tly 3D data (as opposed to studying a sta
k of 2D im-ages), it is essential that the user be able to see the obje
ts they are interestedin. This is why most modern renderers in
lude a 
omplex transparen
y andshading model that makes it possible to peek far inside the image to displaythe interesting obje
ts. To make a quantitative analysis easier, a syntheti
image was 
reated that presents many similarities with 3D s
anner images,espe
ially images of the 
ardia
 region: strong textures and thin vessels topreserve.Figure 10 illustrates the problem due to strong noise in a 3D image and �g-ure 11 shows that levelings are ine�e
tive as they suppress the noise insidethe obje
ts but not on the 
ontours. However, as with most morphologi
altools, amoebas are adimensional and 
an be used without modi�
ation on 3Dimages.Median �ltering with amoebasOne important aspe
t of the �ltering of su
h medi
al images is that thoseimages are monospe
tral: 
oloring and, ultimately, tissue identi�
ation is doneusing a look-up table. This means that a shifting of the values may have a12



(a) Simple median, radius 2 (b) Median followed by by level-ingFig. 11. Although the median �lters mu
h noise away, the re
onstru
tion (needed tore
over the position of the 
ontours) re
onstru
ts most of the noise on the bordersof the obje
t, removing most of the transparen
y.dramati
 e�e
t on the visualization and 
onsequently on the interpretationof the images. This is why we have 
hosen to �rst test the median: with itsproperty of returning only values existing in the image, the median lessensthe risk of misinterpretation. However, traditional median �ltering does notpreserve well the 
ontours, and may remove small details whi
h may be 
ru
ialto a physi
ian's analysis, hen
e the use of amoebas.For ea
h pixel the pro
essing is done in two steps: �rst 
ompute the shapeof the amoeba 
entered on the pixel and then sample the values of the pixelinside the amoeba, feed them to the median operator and write the result atthe 
enter of the amoeba in the output image.Results for 3D imagesFigure 12 shows the result of a median �lter 
omputed on amoebas. It is plainto see that most of the transparen
y e�e
t has been preserved, whi
h indi
atesthat most of the noise has been �ltered on the 
ontours as well as inside theobje
ts.Figure 13 is a zoom of �gure 12 
entered on the thin stru
tures. On
e againwe have good results in the preservation of those elongated stru
tures. This isabsolutely essential sin
e this type of features in
lude 
riti
al body parts su
has blood vessels, nerves, et
. 13



(a) Noisy image (b) Noisy image �ltered by me-dian 
omputed on amoebasFig. 12. The median applied to the amoeba re
overs most of the informationvery well, in
luding thin details. The 
leaner gradient on the 
ontours results ina near-perfe
t transparen
y e�e
t.

(a) Original image (zoomed) (b) Amoeba median �lter(zoomed)Fig. 13. The amoeba-based median �lter re
overs very well the 
ontours, as well asthe transparen
y.It is extremely hard to quantify in a meaningful way the results of su
h a�ltering, espe
ially sin
e the usual signal-to-noise ratio does not express wellthe fa
t that we may tolerate small variations in many pla
es but not a fewstrong variations in 
riti
al areas. A more meaningful measure for this problemwas developed by Boehm in [9℄. This measure is tied to a 3D volume renderer14



(ray-
aster) by 
omparing the visibility of ea
h voxel in the �ltered imagewith that of the 
orresponding voxel in the ideal image. When a voxel inthe �ltered image 
ontributes in the same amount to the visualization as the
orresponding voxel in the ideal image, then its asso
iated quality measure isequal to one. The greater the di�eren
e between both 
ontributions, the 
loserto zero the measure will be. Results are then averaged in the whole image aswell as separately on ea
h 
omponent.Figure 14 shows a 
omparison between an amoeba-based median �lter and a
lassi
 alternate sequential �lter (ASF). The results show 
learly that whilethe ASF is as good as the amoeba on the larger stru
tures (spheres B2, B3and B5), it fails 
ompletely to preserve the thin stru
tures su
h as the rings.Furthermore, there is a 
lear shift of the values, espe
ially on the outermostrings, whi
h may 
ause diagnosti
 errors.Simple optimizationsAn important fa
t to take into a

ount is that the radius parameter is like anamount of energy given to the amoeba. It 
an be used either to 
limb slopes(with a penalty given by the λ parameter) or it 
an be used to expand in�at areas. This amount of energy needs to be quite high so that the amoeba
an jump over noisy pixels (though not too high so that it does not 
ross toomu
h over strong gradient lines). However su
h a high energy means that in�at areas the amoeba will grow to a very large size, whi
h means that notonly will the shape be 
ostly to 
ompute but the resulting sample of pixelvalues will be quite large and so the �lter operator will be a

ordingly long. Avery simple yet dramati
ally e�e
tive optimization is thus to impose an upperbound on the size of the amoeba, the value of whi
h depends on the type ofnoise and the 
hara
teristi
 size of the image elements. This 
an redu
e the
ost of 
omputation by an order of magnitude without any dete
table loss ofe�e
tiveness.Another form of optimization is to 
ompute the shape of the amoeba on aslightly �ltered version of the original image, su
h as a Gaussian �ltering. Thiswill redu
e small noise without moving too mu
h the 
ontours and enable theuse of smaller amoebas.6 Con
lusion and future workWe have presented here a new type of stru
turing element that 
an be used inmany morphologi
al algorithms. By taking advantage of outside information,15



(a) Noisy image (b) Amoeba-based me-dian (
) ASF size 3
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(d) Measure of the resultsFig. 14. Comparison of the results of an amoeba-based median �lter and an alter-nated sequential �lter of size up to 3. The measure is performed on ea
h 
omponentof the image (spheres B1-B5, parallelepipeds P1 and P2, rings, and total average).�lters built upon those stru
turing elements 
an be made more robust on noisyimages and in general behave in a �more sensible� way than those based on�xed-shape stru
turing elements. In addition, morphologi
al amoebas are veryadaptable and 
an be used on 
olor images as well as monospe
tral ones and,like most morphologi
al tools, they 
an be used on images of any dimension(2D, 3D, . . . ). Depending on the appli
ation, alternate sequential �lters are16



very e�e
tive when looking for very �at zones, whereas median and mean �ltersoutput smoother images that may be more pleasing to the eye but 
ould beharder to segment.It is possible to use amoebas to 
reate re
onstru
tion �lters and �oodings thattake advantage of the ability to parametrize the shape of the amoebas basedon the image 
ontent. However, the behaviors of the amoebas are mu
h moredi�
ult to take into a

ount when they are used in su
h 
omplex algorithms.In parti
ular, if 
onnexity is important (su
h as in a re
onstru
tion �lter),then amoeba with a maximum radius of one pixel should be used.The results show that simple extensions of the s
alar algorithms to the RGBspa
e already yield ex
ellent results, espe
ially when iterating. The use of more�per
eptual� distan
es (HLS or LAB) would probably prevent some unwantedblending of features, although this is as yet 
onje
tural and will be the basisof further work.The �ltering of 3D images by morphologi
al amoebas, though still in its in-fan
y, seems very promising. Expressing the 
oupling between image data andgeometry through a kernel makes it possible to implement a mu
h larger rangeof �lters to an image than was possible before. Another area where improve-ment is to be expe
ted is the 
omputation of the shape of the amoeba. Notonly should it be possible to use elaborate gradient estimation su
h as pro-posed in [6℄, but also providing more 
omplex behaviors for the amoebas, su
has an in
ompressible minimum element, to guarantee at least some di�usion,or on the 
ontrary a minimum size requirement to prevent di�usion throughsmall holes.Finally, it is important to noti
e that this amoeba framework is general enoughto a

ommodate other types of distan
es. The distan
e presented here 
ouplesgeometry and grey levels (or 
olor distan
es), but other similar s
hemes 
an beexpressed in terms of amoebas. For instan
es, the approa
hes presented in [7℄and [8℄, whi
h o�er very interesting results, 
an be implemented by amoebaswith the appropriate distan
e, whi
h thus inherit all the possibilities availableto the ones des
ribed in this paper. These various approa
hes show the viabilityand the vitality of the amoeba framework, as well as its appli
ability to many�elds of resear
h.Referen
es[1℄ Perona, P. and Malik, J., �S
ale-spa
e and edge dete
tion using anisotropi
di�usion�, IEEE Transa
tions on Pattern Analysis and Ma
hine Intelligen
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