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ISMM05 Speial Issue:Image �ltering using morphologial amoebasRomain Lerallut ∗ , Étienne Deenière, Fernand MeyerCentre de Morphologie Mathématique, Éole des Mines de Paris35 rue Saint-Honoré, 77305 Fontainebleau, FraneAbstratThis paper presents morphologial operators with non-�xed shape kernels, or amoe-bas, whih take into aount the image ontour variations to adapt their shape.Experiments on graysale and olor images demonstrate that these novel �lters out-perform lassial morphologial operations with a �xed, spae-invariant struturingelement for noise redution appliations. Proof-of-onepts tests are then performedon 3D images to show the high noise-redution apaity of amoeba-based �lters.Key words: Anisotropi �lters, noise redution, morphologial �lters, olor �lters,3D image proessing
1 IntrodutionNoise is possibly the most annoying problem in the �eld of image proessing.There are two ways to work around it: either design partiularly robust algo-rithms that an work in noisy environments, or try to eliminate the noise ina �rst step while losing as little relevant information as possible and onse-quently use a normally robust algorithm.There are of ourse many algorithms that aim at reduing the amount of noisein images. Most are quite e�etive but also often remove thin elements suhas anals or peninsulas. Even worse, they an displae the ontours and thusreate additional problems in a segmentation appliation.
∗ Corresponding Author.Email address: lerallut�mm.ensmp.fr (Romain Lerallut).Preprint submitted to Elsevier Siene 22 September 2005



(a) Original image (b) Filtered image () ReonstrutedimageFig. 1. Classi noise �ltering (b) removes muh ontour information. Reonstrution() �nds not only the ontours, but also all the noise onneted to the objet.In mathematial morphology we often ouple one of these noise-redution�lters to a reonstrution �lter that attempts to reonstrut only relevant in-formation, suh as ontours, and not noise. However, a faithful reonstrutionan be problemati when the ontour itself is orrupted by noise. This anause great problems in some appliations whih rely heavily on lean on-tour surfaes, suh as 3D visualization, so a novel approah was proposed:morphologial amoebas. An amoeba (here Amoeba proteus) is agenus of protozoa that moves by projet-ing pseudopods and is a well-known rep-resentative uniellular organism. They arefound in sluggish waters all over the world,both fresh and salt, as well as in soils andas parasites. They now begin a new life inthe �eld of image proessing.2 Amoebas: dynami struturing elementsPrinipleClassi �lter kernelFormally at least, lassi �lters work on a �xed-size sliding window, be theymorphologial operators (erosion, dilation) or onvolution �lters, suh as thedi�usion by a Gaussian. If the shape of that window does not adapt itself to2



the ontent of the image (see �gure 2), the results deteriorate. For instane, anisotropi Gaussian di�usion smooths the ontours when its kernel steps overa strong gradient area.
Fig. 2. Closing of an image by a large struturing element. The struturing elementdoes not adapt its shape and merges two distint objets.Amoeba �lter kernelHaving made this observation, Perona and Malik [1℄ (and others after them)have developed anisotropi �lters that inhibit di�usion through strong gra-dients. The �rst work on non-�xed shape struturing elements was done byBraga-Neto in [7℄ though it was restrited to alternate sequential �lters ofopenings and losings. We were inspired by these examples to de�ne morpho-logial �lters whose kernels adapt to the ontent of the image in order to keepa ertain homogeneousness inside eah struturing element (see �gure 3) whileat the same time keeping their size in hek. Tomasi and Manduhi have de-sribed in [5℄. the idea of oupling performed a geometri distane betweenpixels and a distane between their values, whih o�ers remarkable propertiesfor our intended use.The interest of this approah, ompared to the analytial one is that it does notdepart greatly from what we use in mathematial morphology, and thereforemost of our algorithms an be made to use amoebas with little additionalwork. Most of the underlying theoretial groundwork for the morphologialapproah has been desribed by Jean Serra in his study [2℄ of struturingfuntions, although until now it has seen little pratial use.
Fig. 3. Closing of an image by an amoeba. The amoeba does not ross the ontourand as suh preserves even the small anals.The shape of the amoeba must be omputed for eah pixel around whih it is3



Fig. 4. Shape of an amoeba at various positions on an image.
Fig. 5. Behavior of an amoeba on various relief types. Strong gradients should slowor even hamper the growth of the amoebaentered. Figure 4 shows the shape of an amoeba depending on the positionof its enter. Note that in �at areas suh as the enter of the dis, or thebakground, the amoeba is maximally strethed, while it is relutant to rossontour lines.When an amoeba has been de�ned, most morphologial operators and manyother types of �lters an be used on it: median, mean, rank �lters, erosion, di-lation, opening, losing, even more omplex algorithms suh as reonstrution�lters, levelings, �oodings, et.ConstrutionAmoeba distaneIn general, a �ltering kernel of radius r is formally de�ned on a square (ora hexagon) of that radius, that is to say on the ball of radius r relative tothe norm assoiated to the hosen onnetivity. We will keep this de�nitionhanging only the norm, using one that takes into aount the gradient of theimage, so that we get the behavior desribed in �gure 5.De�nition 1 Let dpixel be a distane de�ned between the values of the image,for example a di�erene of gray-value, or a olor distane.4



Let σ = (x = x0, x1, . . . , xn = y) a path between points x and y. Let λ be areal positive number. The length of the path σ is de�ned as
L(σ) =

n
∑

i=0

[1 + λ.dpixel(Image(xi), Image(xi+1))]The �amoeba distane� with parameter λ is thus de�ned as:










dλ(x, x) = 0

dλ(x, y) = minσ L(σ),minimum taken on all paths between x and yIt it important to realize that dpixel has no geometrial aspet, it is a distaneomputed only on the values of the pixels of the image. Furthermore, if n isthe number of pixels of a path σ, then L(σ) ≥ n (sine λ ≥ 0), whih boundsthe maximal extension of the amoeba.This distane also o�ers an interesting inlusion property:Property 1 At a given radius r the family of the balls Bλ,r relative to thedistane dλ is dereasing (for the inlusion),
0 ≤ λ1 ≤ λ2 ⇒ ∀(x, y), dλ1

(x, y) ≤ dλ2
(x, y)

⇒ ∀r ∈ R
+,Bλ1,r ⊃ Bλ2,rWhih may be useful when building hierarhies of �lters, suh as a family ofalternate sequential �lters with strong gradient-preserving properties.The pilot imageWe have found that the noise in the image an often distort the shape of theamoeba. For this reason, we often ompute the shape of the amoeba on anotherimage. One the shape is omputed, the values are sampled on the originalimage and proessed by the �lter (mean, median, max, min, . . . ). Usually,the other image is the result of a strong noise removal �ltering of the originalimage that dampens the noise while preserving as muh as possible the largerontours. A large Gaussian works fairly well, and an be applied very quiklywith advaned algorithms, however we will see below that iterating amoeba�lters yields even better results. 5



3 Amoebas in pratieAdjuntionErosions and dilations an easily be de�ned on amoebas. However it is nees-sary to use adjoint erosions and dilations when using them to de�ne openingsand losings:
δ(X) =

⋃

x∈X Bλ,r(x)

ǫ(X) = {x/Bλ,r(x) ⊂ X}These two operations are at the same time adjoint and relatively easy toompute, ontrary to the symmetrial ones that use the transposition, whihis not easy to ompute for amoebas. See [2℄ for a disussion of the variousforms of adjuntion and transposition of struturing funtions.AlgorithmsThe algorithms used for the erosion and dilation are quite similar to those usedwith regular struturing elements, with the exeption of the step of omputingthe shape of the amoeba.The opening using these algorithms an be seen as the gray-level extension ofthe lassi binary algorithm of �rst taking the enters of the irles that �tinside the shape (erosion), and then returning the union of all those irles(dilation). See [10℄ for a more detailed desription of the algorithms used foradjoint erosion and dilation.ComplexityThe theoretial omplexity of a simple amoeba-based �lter (erosion, dilation,mean, median) an be asymptotially approximated by:
T (n, k, op) = O

[

n ∗
(

op(kd) + amoeba(k, d)
)]Where n is the number of pixels in the image, d is the dimensionality of theimage (usually 2 or 3), k is the maximum radius of the amoeba, op(kd) is the6



ost of the operation and amoeba(k, d) is the ost of omputing the shape ofthe amoeba for a given pixel.The shape of the amoebas is omputed by a ommon region-growing imple-mentation using a priority queue. Depending on the priority queue used, theomplexity of this operation is slightly more than O(kd) (see [3℄ and [4℄ foradvaned queueing data strutures).Therefore, for erosion, dilation or mean as operators, we have a omplexity ofa little more than O(n∗kd) whih is the omplexity of a �lter on a �xed-shapekernel. It has indeed been veri�ed in pratie that, while being quite slowerthan with �xed-shape kernels (espeially optimized ones), �lters using amoe-bas tend to follow rather well the predited omplexity, and do not explode(tests have been performed on 3D images, size 512x512x100, with amoebaswith sizes up to 21x21x21).4 ResultsAlternate sequential �ltersThe images of �gure 6 ompare the di�erenes between alternate sequential�lters (ASF) built on lassi �xed shape kernels and ASFs on amoebas inthe �ltering of the image of a retina. The �lter should be able to redue theamount of bakground noise while preserving the shape of the vessels.Median and meanIn the ontext of image enhanement, we have found that a simple mean ormedian oupled with an amoeba forms a very powerful noise-redution �lter.The images in �gure 7 show the median and the mean omputed on amoebasompared to those built on regular square kernels. The pilot image that drivesthe shape of the amoeba is the result of a standard Gaussian �lter of size3 on the original image, and the distane dpixel is the absolute di�erene ofgray-levels.For the �lters using amoebas, the median �lter preserves well the ontour, butthe mean �lter gives a more �aesthetially pleasing� image. In either ase, theresults are learly superior to �lterings by �xed-shape kernels, as seen in the�gure 7. 7



(a) Original (b) Normal ASF: �rstpass () Normal ASF: se-ond pass

(d) Amoeba ASF: �rstpass (e) Amoeba ASF: se-ond pass (f) Amoeba ASF:fourth passFig. 6. Alternate sequential �lters on lassi kernels and on amoebas. The amoebapreserves extremely well the blood vessels while strongly �attening the other areas.Mean and median for olor imagesIn the ase of olor images, the mean is replaed by the mean on eah oloromponent of the RGB olor spae. For the �median�, the point losest to thebaryenter is hosen. Other distanes or olorspaes an be used, dependingon the appliation, the type of noise and the quality of the olor information.IterationThe quality of the �ltering strongly depends on the image that determinesthe shape of the amoeba. The previous examples have used the original image�ltered by a Gaussian, but this does not always yield good results (also see[6℄). 8



(a) Original (b) Usual me-dian () Amoebamedian (d) Amoebamean

Fig. 7. Results of a �lassi� median �ltering and two amoeba-based �lterings: amedian and a mean on Edouard Manet's painting �Le �fre�.It is frequent indeed that a small detail of the image be exessively smoothedin the pilot image, and thus disappears ompletely in the result image. Onthe other hand, noisy pixels may be left untouhed if the pilot image doesnot eliminate them. A possible solution is to improve the quality of the pilotimage, so that it helps the amoeba in preserving these features. Suh an imageshould be well-smoothed in �at regions, while preserving as well as possiblethe ontour information. One good method to ompute suh an image wouldbe of ourse to use an amoeba-based �lter !We will proeed in two steps: the �rst one follows the sheme desribed ear-lier, using the Gaussian-�ltered original image as a pilot, with large amoebas,and outputs a well-smoothed image in �at areas while preserving as muhas possible the most important ontours. The seond step takes the originalimage as input and the �ltered image as a pilot, with smaller amoebas. Theseamoebas don't need to be as large as the �rst ones, sine their shapes will beomputed on a very smooth image, and therefore they will preserve well the�ner details. 9



(a) Original (b) Usual me-dian () Amoebamedian (d) Amoebamean

Fig. 8. Color images: results of a �lassi� median �ltering, and two amoeba-based�lterings: a median and a mean. As a simple extension of the graysale approah,eah hannel of the pilot image has been independently smoothed by a Gaussian ofsize 3.Although this re�nement of the pilot image ould be iterated, we have foundin pratie that one is enough to redue the noise dramatially (see �gure 9).This method is also very useful for olor images, sine the amoeba-based pilotimage provides better olor oupling through the use of an appropriate olordistane than simply merging the results of a Gaussian �ltering of eah hannelindependently.5 Appliation to 3D images3D images and ontour noiseWhile noise redution is a nie bonus for 2D images, things are di�erent with3D medial images ([9℄). The visualization algorithms often use loal gradient10



(a) Original (b) Pilot image: Gaus-sian �lter () Pilot image:amoeba mean �lter

(d) Result image: amoeba mean withGaussian pilot (e) Result image: amoeba mean withamoeba pilotFig. 9. Comparison between two pilot images: a Gaussian one, and one based ona strong amoeba-based �ltering. With the amoeba pilot image the hand is betterpreserved, and the eyebrows do not begin to merge with the eyes, ontrary to theGaussian-based pilot image. Having both less noise and stronger ontours in the pilotimage also enables the use of smaller values on the lambda parameter so that theamoeba will streth more in the �atter zones, and thus have a stronger smoothinge�et in those zones, while preserving the position and dynamis of the ontours11



(a) Ideal image (b) Noisy imageFig. 10. A syntheti 3D volume presenting many similarities with medial images ofthe ardia regions. Left: original image. Right: image with addition of noise.information for the omputation of the shading of the voxels and many appli-ations, espeially in the medial �eld, use mostly the ontour information tovisualize the various objets and as suh are very vulnerable to noise on theontours (see �gure 10).When displaying diretly 3D data (as opposed to studying a stak of 2D im-ages), it is essential that the user be able to see the objets they are interestedin. This is why most modern renderers inlude a omplex transpareny andshading model that makes it possible to peek far inside the image to displaythe interesting objets. To make a quantitative analysis easier, a synthetiimage was reated that presents many similarities with 3D sanner images,espeially images of the ardia region: strong textures and thin vessels topreserve.Figure 10 illustrates the problem due to strong noise in a 3D image and �g-ure 11 shows that levelings are ine�etive as they suppress the noise insidethe objets but not on the ontours. However, as with most morphologialtools, amoebas are adimensional and an be used without modi�ation on 3Dimages.Median �ltering with amoebasOne important aspet of the �ltering of suh medial images is that thoseimages are monospetral: oloring and, ultimately, tissue identi�ation is doneusing a look-up table. This means that a shifting of the values may have a12



(a) Simple median, radius 2 (b) Median followed by by level-ingFig. 11. Although the median �lters muh noise away, the reonstrution (needed toreover the position of the ontours) reonstruts most of the noise on the bordersof the objet, removing most of the transpareny.dramati e�et on the visualization and onsequently on the interpretationof the images. This is why we have hosen to �rst test the median: with itsproperty of returning only values existing in the image, the median lessensthe risk of misinterpretation. However, traditional median �ltering does notpreserve well the ontours, and may remove small details whih may be ruialto a physiian's analysis, hene the use of amoebas.For eah pixel the proessing is done in two steps: �rst ompute the shapeof the amoeba entered on the pixel and then sample the values of the pixelinside the amoeba, feed them to the median operator and write the result atthe enter of the amoeba in the output image.Results for 3D imagesFigure 12 shows the result of a median �lter omputed on amoebas. It is plainto see that most of the transpareny e�et has been preserved, whih indiatesthat most of the noise has been �ltered on the ontours as well as inside theobjets.Figure 13 is a zoom of �gure 12 entered on the thin strutures. One againwe have good results in the preservation of those elongated strutures. This isabsolutely essential sine this type of features inlude ritial body parts suhas blood vessels, nerves, et. 13



(a) Noisy image (b) Noisy image �ltered by me-dian omputed on amoebasFig. 12. The median applied to the amoeba reovers most of the informationvery well, inluding thin details. The leaner gradient on the ontours results ina near-perfet transpareny e�et.

(a) Original image (zoomed) (b) Amoeba median �lter(zoomed)Fig. 13. The amoeba-based median �lter reovers very well the ontours, as well asthe transpareny.It is extremely hard to quantify in a meaningful way the results of suh a�ltering, espeially sine the usual signal-to-noise ratio does not express wellthe fat that we may tolerate small variations in many plaes but not a fewstrong variations in ritial areas. A more meaningful measure for this problemwas developed by Boehm in [9℄. This measure is tied to a 3D volume renderer14



(ray-aster) by omparing the visibility of eah voxel in the �ltered imagewith that of the orresponding voxel in the ideal image. When a voxel inthe �ltered image ontributes in the same amount to the visualization as theorresponding voxel in the ideal image, then its assoiated quality measure isequal to one. The greater the di�erene between both ontributions, the loserto zero the measure will be. Results are then averaged in the whole image aswell as separately on eah omponent.Figure 14 shows a omparison between an amoeba-based median �lter and alassi alternate sequential �lter (ASF). The results show learly that whilethe ASF is as good as the amoeba on the larger strutures (spheres B2, B3and B5), it fails ompletely to preserve the thin strutures suh as the rings.Furthermore, there is a lear shift of the values, espeially on the outermostrings, whih may ause diagnosti errors.Simple optimizationsAn important fat to take into aount is that the radius parameter is like anamount of energy given to the amoeba. It an be used either to limb slopes(with a penalty given by the λ parameter) or it an be used to expand in�at areas. This amount of energy needs to be quite high so that the amoebaan jump over noisy pixels (though not too high so that it does not ross toomuh over strong gradient lines). However suh a high energy means that in�at areas the amoeba will grow to a very large size, whih means that notonly will the shape be ostly to ompute but the resulting sample of pixelvalues will be quite large and so the �lter operator will be aordingly long. Avery simple yet dramatially e�etive optimization is thus to impose an upperbound on the size of the amoeba, the value of whih depends on the type ofnoise and the harateristi size of the image elements. This an redue theost of omputation by an order of magnitude without any detetable loss ofe�etiveness.Another form of optimization is to ompute the shape of the amoeba on aslightly �ltered version of the original image, suh as a Gaussian �ltering. Thiswill redue small noise without moving too muh the ontours and enable theuse of smaller amoebas.6 Conlusion and future workWe have presented here a new type of struturing element that an be used inmany morphologial algorithms. By taking advantage of outside information,15



(a) Noisy image (b) Amoeba-based me-dian () ASF size 3
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(d) Measure of the resultsFig. 14. Comparison of the results of an amoeba-based median �lter and an alter-nated sequential �lter of size up to 3. The measure is performed on eah omponentof the image (spheres B1-B5, parallelepipeds P1 and P2, rings, and total average).�lters built upon those struturing elements an be made more robust on noisyimages and in general behave in a �more sensible� way than those based on�xed-shape struturing elements. In addition, morphologial amoebas are veryadaptable and an be used on olor images as well as monospetral ones and,like most morphologial tools, they an be used on images of any dimension(2D, 3D, . . . ). Depending on the appliation, alternate sequential �lters are16



very e�etive when looking for very �at zones, whereas median and mean �ltersoutput smoother images that may be more pleasing to the eye but ould beharder to segment.It is possible to use amoebas to reate reonstrution �lters and �oodings thattake advantage of the ability to parametrize the shape of the amoebas basedon the image ontent. However, the behaviors of the amoebas are muh moredi�ult to take into aount when they are used in suh omplex algorithms.In partiular, if onnexity is important (suh as in a reonstrution �lter),then amoeba with a maximum radius of one pixel should be used.The results show that simple extensions of the salar algorithms to the RGBspae already yield exellent results, espeially when iterating. The use of more�pereptual� distanes (HLS or LAB) would probably prevent some unwantedblending of features, although this is as yet onjetural and will be the basisof further work.The �ltering of 3D images by morphologial amoebas, though still in its in-fany, seems very promising. Expressing the oupling between image data andgeometry through a kernel makes it possible to implement a muh larger rangeof �lters to an image than was possible before. Another area where improve-ment is to be expeted is the omputation of the shape of the amoeba. Notonly should it be possible to use elaborate gradient estimation suh as pro-posed in [6℄, but also providing more omplex behaviors for the amoebas, suhas an inompressible minimum element, to guarantee at least some di�usion,or on the ontrary a minimum size requirement to prevent di�usion throughsmall holes.Finally, it is important to notie that this amoeba framework is general enoughto aommodate other types of distanes. The distane presented here ouplesgeometry and grey levels (or olor distanes), but other similar shemes an beexpressed in terms of amoebas. For instanes, the approahes presented in [7℄and [8℄, whih o�er very interesting results, an be implemented by amoebaswith the appropriate distane, whih thus inherit all the possibilities availableto the ones desribed in this paper. These various approahes show the viabilityand the vitality of the amoeba framework, as well as its appliability to many�elds of researh.Referenes[1℄ Perona, P. and Malik, J., �Sale-spae and edge detetion using anisotropidi�usion�, IEEE Transations on Pattern Analysis and Mahine Intelligene, vol.12, no. 7, July 1990 17
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