CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging - Mines Paris
Article Dans Une Revue Nature Methods Année : 2010

CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging

Résumé

Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here, we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. The incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions, and confusion between different functional states with similar morphology. We demonstrate generic applicability in a set of different assays and perturbation conditions, including a candidate-based RNAi screen for mitotic exit regulators in human cells. CellCognition is published as open source software, enabling live imaging-based screening with assays that directly score cellular dynamics.
Fichier principal
Vignette du fichier
held_NMETH_2010-1.pdf (2.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01431427 , version 1 (10-01-2017)

Identifiants

Citer

Michael W Held, Michael W Schmitz, Bernd H Fischer, Thomas Walter, Beate H Neumann, et al.. CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nature Methods, 2010, 7, pp.747 - 754. ⟨10.1038/nmeth.1486⟩. ⟨hal-01431427⟩
324 Consultations
1372 Téléchargements

Altmetric

Partager

More