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Abstract 

In the stretch/blow molding process of poly(ethylene terephthalate) (PET) bottles, various parameters such as 

displacement of the stretch rod, inflation pressure, and polymer temperature distribution, have to be adjusted in order 

to improve the process. An axisymmetric numerical simulation code has been developed using a volumic approach. 

The numerical model is based on an updated-Lagrangian finite element method together with a penalty treatment of 

mass conservation. An automatic remeshing technique has been used. In addition, a decoupled technique has been 

developed in order to compute the viscoelastic constitutive equation. Successful stretch/blow molding simulations 

have been performed and compared to experiments. 

Keywords: Finite element method; Splitting technique; Stretch/blow molding; Viscoelastic fluid 

1. Introduction 

1.1. Description of the stretch~blow molding process 

An amorphous injected molded tube-shaped preform of poly(ethylene terephthalate) (PET) is 

heated in an infrared oven above the glass transition temperature (T ~ 100°C), transferred inside 

a mold and then inflated with stretch rod assistance in order to obtain the desired bottle shape 

(Fig. 1). The performance of the produced bottle (wall thickness distribution, transparency, 

mechanical properties...) is determined both by the material properties and the operating 

conditions: the initial preform shape, the initial preform temperature and the balance between 
stretching and blowing rate. 

*Corresponding author.  
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1.2. Literature on blow molding simulations 

Numerical simulations of the blow or stretch/blow molding processes have been extensively 

developed during the last decade. Most of the models assume a thin shell description of the 

parison. Warby and Whiteman [1] as well as De Lorenzi and coworkers [2,3] propose isothermal 

finite element calculations. These models, first developed for thermoforming processes, have since 

been applied to the blow molding process. The rheological behavior is given by a nonlinear-elastic 

constitutive equation derived from the rubber-like theory. Kouba and Vlachopoulos [4] have 

extended the previous model to the blow molding of a viscoelastic fluid (KBKZ constitutive 

equation). Several models use a volumic finite element approach. In 1986, Cesar de Sa [5] 

simulated the blowing process of glass parisons assuming Arrhenius temperature dependent 

Newtonian behavior. Chung [6] has carried out simulations of PET stretch/blow molding using 

the code ABAQUS ®. The model assumes elasto-visco-plastic behavior and thermal effects are 

neglected. Poslinski and Tsamopoulos [7] have introduced nonisothermal parison inflation in 

a simplified geometry. In order to take into account the phase change, the latent heat of 

solidification has been included in the heat capacity of the material. Recently, Debbaut et al. 

[8] have also performed viscoelastic blow molding simulations with a Giesekus constitutive 

equation. They introduce thermal effects but present numerical results only in the case of a 

Newtonian fluid. 

In blow molding simulations, numerical models have to take into account large biaxial 

deformations of the material, the evolving contact between tools (mold and stretch rod) and 

polymer, and temperature gradients. In the stretch/blow molding process, the contact between 

the stretch rod and the bottom of the preform induces localized deformations which need volumic 

approaches in order to obtain an accurate description. 

1.3. Objectives of  the present approach 

In a previous paper [9], we pointed out that the computed stretching force using a Newtonian 

volumic model was very far from the experimental one. In the present work, an isothermal 

Stretch rod 

I 
Stretched& I I III / 

air;;;;ure I ~ ~  J 

Fig. l. Description of the stretch/blow molding step. 
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finite element volumic calculation of the PET stretch/blow molding of a viscoelastic fluid is 

presented. The improvement in terms of force prediction will be shown. Thickness and stress 

profiles in the bottle will be discussed. 

2. Basic equations and boundary conditions 

The material is assumed to be incompressible, so, the continuity equation may be expressed 

a s  

V . ~ = 0  o n e ,  (1) 

where ~ is the velocity field and fl is the domain occupied by the parison. In addition, the weak 

form of the dynamic equilibrium can be written over the whole domain fl at any time t and for 

any velocity field g*: 
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a is the Cauchy stress tensor; p, the specific mass; ~, the acceleration; d, the acceleration 

due to gravity; 4" =½(V~*+W~*),  the rate of strain tensor associated with ~*; r/, the unit 

outward normal vector to the boundary of the domain F. 

In the present approach, the liquid-like viscoelastic constitutive equation of Johnson-  

Segalman type [10] with additional solvent viscosity is used: 

a = - p ' l + 2 q s 4 + T  onf l ,  (3) 

where p' is an arbitrary pressure; /, the identity tensor; T, the extra-stress tensor which is 

related to 4 by a nonlinear partial differential equation: 

DT 
T + 2 ~ = 2~/,d. (4) 

2 is the relaxation time; r/s and r/v are the viscous part and the viscoelastic part respectively 

of the total viscosity r/ (r/= qs + ~7v). r/ and 2 are constant in the case of an isothermal 

computation. For the stability of the simulations, we took r/~ > r/v/8 according to the crite- 

ria of Crochet et al. [11]. D/Dt is the Gordon-Schowalter  convective time derivative: 

DT ST 
+ ( ~ "  V)T+ T" ~ - ~ "  T - a ( d .  T +  T '  d), (5) 

Dt St 

where f~ ~-~-l(~7~--TV~) is the rotation tensor; a t [ - 1 ,  +1] is the "slip" parameter which 

determines the type of convective derivative. For a = 1 (upper-convected), we recover the 

Oldroyd B model. 

The initial geometry of the preform and the boundary conditions are presented in Fig. 2. 

The boundary F of the domain fl is decomposed as 

F = F v w F p L9 F f, (6) 

where F V is the part of the boundary F where the velocity is prescribed (bottom of the 

rod), F p the part of the boundary F where a pressure is applied and F f the part of the 

boundary F contacting the tools. 

External free surface 1-'Pxt . A zero pressure condition is assumed, serving as a reference for 

pressure values (this could just as well be the atmospheric pressure or even an evolving 

pressure resulting from the balance between air compression between the preform and the 

mold and air leakage flow through the vents of the mold, but this will not be considered 

here): 

a • r /= ~ (7) 

Internal free surface 1-'Pnt. A differential inflation pressure AP(t) is applied which can evolve 

during the successive blowing stages: 

• , i  = - a P .  ( 8 )  
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Regions in contact with the tools F f. A Newtonian friction law is assumed, which can be defined 

as 

(a-  ~)/'= - ~fr/Aa{, (9) 

where ~f is the friction coefficient (~f= 0 results in a perfectly sliding contact); /, the unit 

tangential vector; Af, the velocity difference along the tools interface. A perfectly sticking 

contact can also be considered, assuming that any contacting node remains fixed until the end 

of the process. In addition, the non-penetration condition is written 

Aft. fi < O. (10) 

Regions where the velocity of  the nodes is prescribed F v. 

f " /~ -~- f t o o l s  " /~" (11) 

3. Numerical resolution 

3.1. Explicit time-marching algorithm 

The whole process is divided into time intervals Ati so that the current time tn may be 
written 

t. = ~ At, (n ~> 1). (12) 
i = 1  

I f ix = f ix + 1 

I fix-1 ._-)fix-1 ---) ] 
f ix  = 1 T = T u = u 

= n =n-I n n-I 

fix-1 __~ fix ] 
Use  T= n to so lve  P S P  --) u n 

I Use  u to so lve  [14] --~ T n 
n 

fix-1 
UT fix-T II 

= r l  = n 

IIT nll 
> ~ a n d  fix < F i x m a x  

Fig. 3. Fixed-point algorithm. 
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At each time step tn, the mechanical equations (see Sections 3.2 and 3.3) are solved on the 

deformed configuration f~,; the current values of the velocity vector ~,,, the pressure p',, and the 

extra-stress tensor Tn are computed. In order to compute the acceleration field ~,, we use a 

Newmark type [12] integration rule: 

1 ( f t , -  ~_1  ( 1 - 0 ) .  ~,_ ) (13) 

where 0 is the arbitrary implicit parameter, which belongs to [0,1]. 

Then, the geometry is updated from ~,  to f~,+~ using the second order explicit Euler 
rule: 

At] + 1 . 
J(.+, = X. + At.+, • ~. + ~ ~., (14) 

where )(, is the coordinate vector at time t,. 

3.2. Time descretization of the constitutive equation 

The time differential constitutive equation (4) is approximated by an implicit Euler's 
scheme over the time increment At,. This fully-implicit algorithm leads to 

1",+2[ T" - T"-1 ] 
At. + T . ' ~ . - ~ . ' T . - a ( i , , ' T . + T . ' ~ . )  = 2qv~., (15) 

where T._I has been calculated on the domain f~._~ at the previous time step. Such an 
implicit algorithm is well known for its non-conditional stability. 

3.3. Splitting technique 

Using Eqs. (3) and (5) and the boundary conditions (7)-(11), Eq. (2) can be written at 
each time t, : 

fo ,,,:,.,:,v+fr 
n n n n p 

+ I ~fq(AJ)" {'~* d S +  6 P ( ~ - - g )  " u* d r = 0 .  (16) 
dr  r Jn 

In order to solve Eqs. (15) and (16) together with the incompressibility condition (I), two 

families of computation methods are available: the coupled methods which solve the com- 
plete discretized equations and the decoupled methods, which split the global set of equa- 

tions into two sub-systems, which are successively solved. For a complete review of these 
techniques, see Keunings [13], Basombrio [14] and Baaijens [15]. 

In this paper, a splitting technique is presented. At each time step, an iterative procedure 
based on a fixed-point method is used. The first sub-problem, called the Perturbed Stokes 
Problem (PSP), deals with an incompressible Newtonian fluid flow, perturbed by a known 
extra-stress tensor computed at the previous fixed-point iteration (fix-l). The second sub- 
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• Pressure 

e Velocity 

Fig. 4. P2-P0 element. 

problem consists in determining the components of the extra-stress tensor for a known 

velocity vector by solving the time-discretized constitutive equation (15). The procedure is 

repeated until convergence. This algorithm is enforced by a dichotomic procedure on the 

time step in the case of non-convergence of the algorithm after a few iterations (Fixmax 

10). For each time step t~, the complete procedure is summarized in Fig. 3. 

3.4. Numerical resolution of the viscoelastic equation 

As the different integrals in Eq. (15) are evaluated by the Gauss-Legendre point integra- 

tion rule, the components of the current extra-stress tensor T, are only needed at the 

Gaussian points of each element. Consequently, the tensorial equation (15) is solved at a 

local level; it reduces to a (4 x 4) linear algebraic system. 

3.5. Finite element approximation for PSP 

The reference domain f~n is approximated by a set of 6-node isoparametric triangles (P2 

element). Each point )(n of the elementary domain fl~ is located by means of the vector of nodal 

position )(~ and the matrix N of shape functions 

)(n = N)(]. (17) 

The current value of the velocity field t~, is expressed in terms of the nodal velocity vectors ~ 

with the same shape functions: 

K, = NK~. (18) 

The incompressibility constraint (1) is prescribed in a penalized form as 
! 

P, V ' a , -  (19) 
pp" 

in which, pp the penalty coefficient, is a large number (typical value is 107). It is to be noted that 

the penalty method is equivalent to the resolution using a discontinuous pressure, constant per 

element (see Fig. 4). 
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For the virtual velocity ~*, we use the same approximation as for the velocity field (Galerkin 
method). Thus, the momentum equation (16) becomes 

C.  l? = F,  (20) 

where the vector /7 is the assembly of the nodal velocity components: 
Are 

17= y' fig. (21) 
e = l  

P is the vector of the applied forces: 

Ne Nb 
P = Y', (P~ + f~r + Fg) + ~ (fb + rb).  (22) 

e = l  b = l  

The inertia forces F~, are given by 

PF~en-1  . l I ,  W N . N d v  e. 
Fe" = -d L a t .  + (1 - 0 ) .  ~,e , J 0 -  (23) 

The viscoelastic forces ff~- which come from the 4-component extra-stress vector /~, at current 
time tn are set by 

f~r = - ["  /~. " D N  dv e. (24) 
dn g 

The gravity forces are expressed by 

f ~ = P g  I "  NdvL (25) 
,)n g 

The forces associated with the application of inflation pressure are 

Fp b = - {" APt/.  N dS b. (26) 
Or b 

~n A' unknown at t he )  
ew nodes 

New mesh  

(E~t(Old mesh ) )  

Fig. 5. Position of the nodes after remeshing. 
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Fig. 6. Simultaneous inflation and extension of a tube. 

T h e  f r i c t ion  fo rces  are  

Fb = -- fV ~¢l~Afit" N d S  b. 
b 

C is the  m a t r i x  de f ined  by  

Ne 
C = Z (C~, "1- C;,p -{- C~s ). 

e=l 

T h e  e l e m e n t a r y  mass  m a t r i x  C~, is 

e _  P .I• ~ N - N d v %  
Cp OAth _ 

C~,p c o r r e s p o n d s  to  the  i n c o m p r e s s i b i l i t y  r e q u i r e m e n t :  

C/ep = pp [ TV" N" (V. N) dv e. 
an g 

Table 1 
Physical data and process parameters 

(27) 

(28) 

(29) 

(30) 

So (m) R o (m) Lo (m) v o (m s 1) AP (Pa) p (kg m 3) ,i (s) r/V (Pa" s) 

0.13 0.09275 0.125 0.4 10 6 1380 0.1 2.10 × 105 
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Fig. 7. Thickness of the tube vs. time. 

The viscous elementary matrix C e takes the following form: 
r/s 

Ce, Ts = 2t/s fo TDN" D N  dv% (31) 
g 

where D N  expresses in vectorial form the strain rate tensor in terms of nodal velocities. 

The bounded set of linear algebraic equations (20) is solved by a direct Crout decomposition. 

3.6. Time step control associated with tool contact monitoring 

The geometry of the tools (stretch rod and mold) is defined by a piecewise linear approxima- 

tion. At time step t,, the velocity field ~,, allows one to determine the future trajectory of each 

node. One can then compute the intersection of each trajectory with the tools. The smallest of 

these intersection times is then retained as the value to be used for the next time step At,+1. 

3.7. Automatic remeshing 

With an updated Lagrangian formulation, the nodes of the mesh following the kinematic 

evolution of the material points. This method may result in excessively distorted elements, when 

large deformations occur. An automatic remeshing procedure is used [16]. For each time 

interval, the procedure consists in the following steps: 

(a) Check the distortion of the elements and the accuracy of the mesh boundary (penetration 

of  the boundary nodes into the tools, curvature of boundary edges , . . . )  in order to decide if 

remeshing must be started according to prescribed tolerances; 
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(b) addition of nodes on the current boundary (overdiscretization) and elimination of 

some of these nodes in order to generate an appropriate set of boundary nodes which must 

be compatible with the old mesh boundary and satisfy non-penetration conditions and the 

curvature condition; 

(c) triangulation using Delaunay's algorithm [17] with addition of internal nodes in order 

to get triangle elements with the best possible shape; 

(d) improvement of the shape of the elements by changing the diagonal of two adjacent 

neighboring triangles, and regularization of the mesh by moving the internal nodes toward 

the barycenter of adjacent nodes; 
(e) numerical interpolation of the variables (especially stress variables) from the old mesh 

f~t to the new o n e  ~'~t t . 

As regards this last step of the procedure, the global least squares method is employed in 

order to minimize the quadratic error function between the unknown variable A' at new 

nodes of the domain fgt and the known variable A at old nodes of the domain f2t (see Fig. 

5). 

Thus, we have 

M i n ( ~  fn (A ' -A)2dv 'e)  (32) 
V A '  \ e  = 1 e e = e l e m e n t  

4 .  A p p l i c a t i o n s  

4.1. Validation test 

The simultaneous inflation and stretching of a tube limited by two planes has been consid- 

ered (Fig. 6). There is a perfectly sliding contact between the tube and the two planes which 

means that the part will always remain a tube. A constant elongation velocity v0 is pre- 
scribed on the lower plane and the upper one has no displacement in the vertical direction. 

A differential inflation pressure AP is applied to the inner surface of the tube. A quasi-ana- 

lytical model may be considered. Its results will be compared to the numerical model. 

The rate of strain tensor as well as stress tensor are diagonal at each time step. 

One can take advantage of the axisymmetric tube growth and use the Lagrangian coordi- 

nate transformation (r, z) ~ (X, Z): 

X = zc(r 2 - R2)L = rc(r '2 - R'2)L ', 

Z Z t 

Z - L  L' (33) 

where (r, z, R, L) and (r', z', R', L') are respectively the radial coordinate, the axial coordi- 

nate, the inner radius and the length of the tube at time t and t'. Consequently, we have 

~/ L' L 
- z '  - -  ( 3 4 )  Vt>>_t'>O r=  (r '2 R'z)-~-+R 2, z =  

L' 

Vt < 0 r = r0 R = Ro L = Lo. (35) 
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Fig. 8. Stretching force o f  the tube  vs. time. 

The orthoradial coordinates remain constant. The components of the extra-stress tensor can be 

more easily determined via the integral form of the Johnson-Segalman constitutive model which 

reduces in the case of an elongational flow to 

g ~ r e t o h t n i i  t o r e .  ( N ) 

7 5 0 . 0  

6 0 5 . 0  

4 6 0 . 0  

3 1 5 . 0  

1 ' 7 ' 0 . 0  

2 5 . 0  

0 . 0 0  

° ~ - 1 1  = 0 2 1 ~ u  

l lax~H-]k= 0.I l 

. . . .  0~oMe-~ = O n~n~.j  
II 

o 

t> 

' ~ -  .... 
. . . . . . . .  

I ] ] I 

0 . ~  0 . 5 6  0 . 8 4 -  1 . 1 2  1.,4 

TL,~e ( , , )  

Fig. 9. Stre tching force o f  the tube vs. time. 
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1 
T = | m ( t  - t ' )c-a( t  ') dr' (Va ¢ 0), (36) 

a ,,J_ oc 

where C-a(t')l~= l is the Finger strain tensor, r e ( s )  is the so-called memory function defined as 

Vs  > 0 rn ( s )  - q . . . . . .  "~ _ - - ~ e  . 

The components of C-i ( t  ') are deduced from Eq. (34) (see Chung and Stevenson [18]). 

Dimensionless variables are introduced: 

t = ; r  _ ,  L ~ R ~ _  x g _  o (So~ 2 

-',v t=7~' £--Co' =Ro' --~C0R~' ~LoRg \goo/ 1. 

ff is the dimensionless volume of  the circular tube. The dimensionless components  of  ir are 
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/ 

Fig.  11. G e o m e t r y  o f  the  bo t t l e  m o l d  a n d  ini t ial  p r e f o r m  m e s h .  
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Table 2 

Rheological parameters for the blow molding process 

a t/~ (Pa- s) 2 (s) r/v (Pa" s) 

1.0 43 x 103 0.7 35 x 104 

eT { 
iP~r -- a [/2()7--+--~/72)1 ~ ()7 + 1)~ 

Lo = e- 7()7 + £ 2)o { 
a/~" ()7+ 1)-" 

/72~ - 7 (  ['reTdt'~ 
iP..= e 1+  

~- a do L'2U]" 

+ fieF[/2'()7 +/2'/~'Z)]a d~}, 

j0 j d? , 

(37) 

(38) 

(39) 

Using the boundary condition given in Section 2, the integrated stress balance equation in the 

r-direction is 

O'rr - -  0"00  
AP + dr = PTr dr. (40) 

R r R 

Using the previous dimensionless variables, this gives 

(r/.~ ~ I ln (  0 ) J  1 ~'gTrr~ ~()(! i g ~ 2 d ) 7 , ,  (41) 
De + \r/v) ©t ~ + 1 + 5 J0 )7' +/7,/~ 2 d)7' = Re J0 2LF 

where Re is the Reynolds number and De the Deborah number which are defined as: 

De = ,~ __AP, Re - pR2 (42) 
1Iv 2Vv 

The nonlinear form of Eq. (41) precludes any simple analytical solution for /~ except for 

some limiting cases, for example, when inertia effects are strongly dominant [19] (Re >> 1) or 

for a Newtonian tube with inertia terms neglected (Re << 1). Classical values for the rheology 

of PET and for the blow molding parameters [20] (see Table 1) lead to the following 

characteristic values for Reynolds and Deborah numbers: 

Re = 6 x 10 -4 ,  De = 0.5. 

This indicates that the contribution of inertia effects will be much smaller than viscous and 

elastic effects. 

At each time step, the dimensionless radius /~ is determined from Eq. (41), using a 

quasi-Newton iterative procedure. The iterative scheme was stopped when successive values of 

/? differed by less than 10-3%. Simpson's first rule was used to evaluate the integrals. Then, 

the components of the stress tensor and the stretching force are deduced. 

The first calculation has been achieved using a constitutive equation of Oldroyd B type 
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(a = 1 in Eq. (5)]. Three different relaxation times have been considered: 2 = 0.05 s (no. 1), 2 = 0.1 

s (no. 2), and 2 = 0.2 s (no. 3). 

Figs. 7 and 8 show the comparison between the finite element calculation (FE) and the 

semi-analytic solution (SA) for the thickness and the stretching force vs. time (i.e. the force 

exerted on the moving plane which is related to the stress in the z-direction). The agreement is 

fair. The curve for the stretching force starts from zero, then reaches a maximum and decreases 

continuously. We note that when the relaxation time increases, the thickness of the tube decreases 

more rapidly and the initial slope of the stretching force decreases. 

Fig. 9 compares the stretching force as a function of time for two viscoelastic constitutive 

equations (upper-convected Maxwell, Oldroyd B) and a Newtonian fluid with a viscosity 

~IN = r/s + r/v. The difference between the curves clearly indicates that a purely viscous model does 

not represent the increasing part of  the curve which is directly related to the elastic response of  

the material. 

Fig. 10 compares the stretching force as a function of time for different values of  the slip 

parameter  a (a = - 1, - 0 .5 ,  0.005, +0.5,  + 1) and for 2 = 0.1 s. We notice that the shape of  the 

curves remains identical. The blowing time decreases as the slip parameter  increases from - 1 to 

+1.  

4.2. Set up of real stretch/blow molding examples 

Once the numerical model has been validated by comparing with a semi-analytic solution, we 

now investigate some more realistic cases. First, we present a blow molding process (no stretch 

rod). The geometry of  the preform and the bottle has been furnished by Professor R.J. Crawford 

from the Queen's University of  Belfast [20]. A constant internal pressure AP of  2.5 x 105 Pa is 
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Fig. 13. Thickness distribution of the bottle. 
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Fig. 14. Generalized stress distribution at the end of the process. 

prescribed. The rheological parameters of the PET are given in Table 2. They have been 

determined by fitting to the traction force on an amorphous PET sample, injected under 

the same conditions as the tube shaped preform. 

Fig. 11 shows the geometry of  the bottle mold and the initial mesh of the preform. Fig. 

12 presents intermediate bottle shapes from the beginning of the process to the end. Fig. 

13 presents the thickness distribution vs. longitudinal coordinate at the end of the process. 

A zoom of  the neck and the bottom of the bottle (Fig. 14) shows the stress distribution 

at the end of the process. In cleary indicates that at the end of the process, the bottom of  

the bottle is submitted to high stresses. 
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Fig. 15. Geometry of the bottle mold and initial preform mesh. 

We study now a stretch/blow molding operation.  Fig. 15 shows the geometry of  the bottle 

mold  and the initial mesh of  the preform. The dimensions of  the bottle mold  and the preform 

are given in Table 3. The rheological parameters  are the same as those given in Table 2. The 
process parameters  are given in Table 4. The prescribed pressure is a t ime-dependent  function 

(i.e. s tretch/blow using preblow and blow). 

Vo is the velocity of  the stretch rod which is applied as long as the preform contacts the bot- 

t om of  the mold,  Pps is the max imum pre-blowing pressure (low pressure) imposed during 

t ~ [0, tps], and P~ the max imum blowing pressure (high pressure) imposed during t ~ [tps, tps + ts]. 

Table 3 
Dimensions of the bottle mold and the preform 

Material Length Inner radius External radius 
(mm) (mm) (mm) 

Preform 125 9.275 13.025 
Bottle mold 310 44.3 44.3 
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Table 4 

Rheological parameters for the stretch/blow molding process 

Vo (m s - l )  Pp~ (Pa) tps (s) P~ (Pa) t~ (s) 

0.4 8 x 105 0.2 20 x 105 0.8 

Fig. 16 presents intermediate bottle shapes from the beginning of the process to the end. 

Comparisons with experimental measurements have been done. The measured and computed 

stretching forces on the stretch rod vs. time are plotted in Fig. 17 for two velocities of the stretch 

rod; 0.2 and 0.4 m s-~. 

We note that there is a qualitative agreement between computation and measurement: the 

stretching force starts from zero (or from a very low value), reaches a maximum and then 

decreases. A Newtonian analysis would lead to a continuously decreasing stretching force. 

The comparison between the computed thickness and the experimental data is shown in Fig. 

18. We note that even if the calculated and experimental results of stretching 

differ (Fig. 17), the agreement between the computed thickness and the experimental data is fair. 

5. Conclusion 

Successful numerical simulations of the stretch/blow as well as blow molding processes have 
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Fig. 17. Stretching force vs. time; effects of the plug velocity. 
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Fig. 18. Thickness distribution at the end of the process. 

been performed using viscoelastic constitutive equations. 
The volumic mechanical computations using the finite element method have allowed us to 

predict the thickness distribution, the contact kinetic and the stress distribution. 
In the future, a coupled thermomechanical formulation should be developed in order to 

account for the temperature gradients that affect the preform during the process. A preliminary 
development has been carried out in that sense, taking into account the transient heat transfer 
in the preform [21]. However, this raises the problem of the identification of the constitutive 

equation parameters for PET at high strain rates and evolving temperature, and more generally, 
the problem of coupling between microstructural evolution and the thermomechanical history, 

which still remains an open issue. 
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