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Abstract— Nowadays, solar power (PV) capacity is undergoing 

a fast growth. The development of network management 

systems facilitating its penetration in the distribution network 

may rely on individual forecasts for each PV plant connected 

to the grid. This paper describes a probabilistic model for 

short-term forecasting of PV production which has been 

developed and tested under operational conditions in the 

frame of the Nice Grid demonstrator project in France. 

Detailed results on the performance of the forecasting tool are 

presented both in terms of deterministic and probabilistic 

forecasts for a portfolio of 35 PV installations. The results 

show that in general, even at the household producer level, the 

forecasts yield good performance. 

Keywords- Photovoltaic, probabilistic forecasting, models, 
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I. INTRODUCTION 

Power generated by photovoltaic (PV) plants is highly 
dependent on variable weather conditions. To operate a 
power system with high PV penetration in a secure and 
economical way, it is crucial to estimate the future PV 
production. In the literature several forecasting techniques 
have been developed for PV forecasting. These methods can 
be classified into 3 families: the statistical, the physical and 
the hybrid one. These methods use as input combinations of 
data such as historical measurements, Numerical Weather 
Prediction (NWP) forecasts, satellites or on-site cameras 
images. 

Nice Grid is the first smart solar-energy district 
demonstration project to be conducted in France. It is one of 
the demo cases of the Grid4EU European project. Its 
objective is to develop a smart electricity grid that 
harmoniously integrates a high proportion of solar panels, 
energy storage batteries and intelligent power meters 
installed in the homes of volunteer participants. Forecasting 
PV generation accurately is one of the main challenges 
addressed in the Nice Grid project. 

In this paper, we propose initially a short presentation of 
the state of the art on photovoltaic power forecasting 
techniques. Then, we describe the method proposed to 
generate short-term probabilistic PV production forecasts. 
This method is implemented into an operational forecasting 
system which is installed and evaluated under real 

conditions in the frame of the Nice Grid demonstrator. The 
paper presents the evaluation results for both deterministic 
(i.e. NBIAS, NMAE and NRMSE) and probabilistic criteria 
(reliability and sharpness diagrams). The evaluation results 
are given in comparison to two simple modules based on 
persistence module and on climatology. In this paper we 
also compare two sources of NWP models. One has a spatial 
resolution of 0.25° and a temporal resolution of 3 hours 
(GFS - NOAA) and the other one has a spatial resolution of 
0.1° and a temporal resolution of 3 hours (ARPEGE – 
METEOFRANCE). 

II. FORECASTING MODELS 

A. A state of the art on short-term PV forecasts 

Recent research work has undertaken the development of 
dedicated short-term (from a few hours to a few days ahead) 
PV forecasting models based on NWP, basically solar 
irradiation forecasts [1], [2], [3], [4], [5] and [6]. 

Detailed modelling of the electrical power output of a 
PV plant as a function of solar irradiance

1
 has been 

investigated over the years. It generally relies on a 
parametric modelling of PV modules' efficiency with the 
incidental irradiance level and ambient temperature [7] and 
[8]. In a short-term forecasting context however, such a 
refined modelling may be unnecessary when considering the 
overall accuracy of other input variables like the NWP 
forecasts. Thus, a linear relationship between irradiance and 
power may be assumed [1]. When forecasting PV 
production from only past production data and solar 
irradiation forecasts, a statistical linear model may turn in 
fact, as performant as more complex nonlinear ones [9]. 
Nonlinear statistical models must nevertheless be useful if 
deciding to incorporate additional information such as 
temperature, air humidity or wind speed forecasts as input 
[2], [5] and [6]. More generally, they may be useful when 
considering any additional source of nonlinearity. 

 

                                                           
1
 One has to distinguish solar irradiation which represents the solar 

radiation energy by surface unit, from solar irradiance which is the solar 

power by surface unit (i.e. the solar radiation energy by unit of surface and 
unit of time). The latter is generally expressed in W.m-2. 



NWP solar irradiation forecasts are generally provided 
on horizontal plane. On the other hand, PV plants generally 
have tilted, potentially multiple, panels' orientation(s)
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involving complex shading conditions. The relationship 
between irradiance levels, respectively on horizontal plane 
and on the panels' surface, may be complex and highly 
nonlinear [10], [11] and [12]. Thus, in some cases, a raw 
linear assumption between power and forecast irradiance 
may not be satisfying (even) for short-term forecasting 
purposes. Advanced non-linear statistical algorithms may 
perform NWPs' recalibration to PV plant's orientation 
automatically. An alternative can be to re-estimate solar 
irradiance forecasts from horizontal to PV plant's 
orientation, using dedicated models, before carrying the 
conversion into power forecasts [3] and [4]. In [13], the 
conversion from horizontal to PV plant's orientation is first 
applied to clear-sky irradiance estimates. Then, tilted clear-
sky irradiance estimates are combined with NWP forecasts 
characterizing future sky-clarity conditions as input of a 
Neural-Network. 

B. The proposed forecasting model 

In this article, we describe a short-term probabilistic PV 
forecasting model incorporating PV plant's orientation data. 
As in [13], it relies on clear-sky irradiance estimates derived 
for the PV plant's orientation. 

The considered forecasting approach is as follows: one 
considers a statistical model to forecast the PV production 
from surface solar irradiance’s weather forecasts. 
Parameter’s values are estimated depending on the time of 
day so as to capture interactions between the sun’s course, 
the PV panels’ orientation, potential shadowing effects, etc. 
It also allows capturing other effects from diurnal variations 
of meteorological parameters, such as the influence of 
temperature on modules’ efficiency. Moreover the model’s 
parameters are estimated adaptively using the most recent 
data available, so as to capture seasonal/climatic variations 
not explicitly modelled or even represented in the training 
data set (e.g. variations due to NWP model’s updates, to 
ageing or dirt on PV panels, etc.). 

The chosen statistical model is a non-parametric model 
which has been considered in estimating the whole power 
distribution at once. It is based on a kernel density estimator 
(KDE) and can be written as: 
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where    is the power plant’s nominal capacity and the 

weights     (   ) are given by: 

    (   )   
    
      (

     ̂    

    ( )
), 

and          ∑     (   )
 
   ⁄ . 

where  ̂    is the forecast surface solar irradiance on 
horizontal plan at time   for horizon   and   is a fixed 
factor. 

                                                           
2 We consider here plants with no sun-tracking system of any kind, thus 

with fixed panels' orientation. 

The model proposed above is a conditional kernel 
density estimator of the power distribution estimated 

conditionally to the forecast irradiance level I. The 

bandwidth selection procedure is a k-nearest neighbours’ 

procedure (see [14]), with the same value k assumed for 

both the variable p and the covariate I and selected through 
trials and errors
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. 

III. CASE STUDY 

The algorithm has been implemented as an operational 
module to produce PV production forecasts every day for 
the case study provided by the Nice Grid project. The 
project aims at developing a smart solar neighbourhood in 
the urban area of Carros near the city of Nice in the south of 
France. The network in the considered urban area has been 
chosen because of its exposure to two common problems: 
the expected growth of solar power production at the 
distribution level and the risk of disconnection from the 
transmission grid. The project, which started in January 
2012 and ends in October 2016, includes a high proportion 
of solar-power panels connected to distributed energy 
storage systems. 

The idea behind Nice Grid is to combine controllable 
distributed electricity and thermal storage devices with 
forecasts of solar power production and load in a local 
energy management system. The project is centred on a 
network energy management (NEM) system which enables 
financial transactions among the different actors of the 
power system. A schematic representation of the 
architecture being developed and deployed is presented in 
Figure 1. This paper is dedicated in the evaluation results of 
the PV production forecasts highlighted in red in the 
diagram. 

The Nice Grid demonstrator involves different types of 
actors either in the residential or in the tertiary sector. More 
than 1500 consumers and 50 production sites equipped with 
PV panels are involved in this project. The total PV installed 
capacity represents more than 600 kW. Forecasts are 
calculated for both small producers (from the residential 
sector) equipped with Linky smart meters and large 
producers (from the tertiary sector) equipped with an Orange 
meter. The production data used as input to the forecasts are 
provided by the smart meters. The forecasts are delivered 
every day once a day for the next 48 hours with a temporal 
resolution of 30 minutes. It is required to deliver PV 
production forecasts to the “Network Constraints Prediction 
Tool” (NCPT) for all PV producers before 11.00 a.m. local 
time. The NCPT evaluates the network conditions for each 
future time step and estimates the flexibilities that have to be 
mobilized by the different actors like the storage aggregators 
or the domestic clients aggregators. 
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 Adaptive selection of an optimal value through cross-validation has been 

first considered but left apart because of the computational burden. 



 

Figure 1.  Nice Grid Architecture 

IV. EVALUATION RESULTS 

The objectives of this evaluation are multiple. First, it is 
necessary to assess whether the performance obtained by the 
predictive models developed are comparable to the 
performance of similar models in the literature. For this we 
adopt a set of evaluation criteria that are considered standard 
for the assessment of PV production. The assessment relates 
to both deterministic and probabilistic forecasts. 

A. Evaluation Criteria 

1) Deterministic forecasts 
To evaluate deterministic forecasts, we chose to follow 

the standardized methodology proposed in different research 
projects like the SafeWind FP7 project or other international 
exercises on benchmarking for PV and wind power forecasts 
[15], [16], [17] and [18]. The criteria considered here are: 

 Normalized mean Bias (NBIAS), for each forecast 
horizon h, expressed in percentage: 
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 Normalized Mean Absolute Error (NMAE), for each 
forecast horizon h, expressed in percentage: 
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 Normalized Root Mean Squared Error (NRMSE), 
for each forecast horizon h, expressed in percentage: 
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Where: 

 ̂      is the PV power forecast made at time t for 

horizon h 

     is the observed PV power at time t + h 

  is the number of considered values 

     is the peak power of the PV panel or plant 

2) Probabilistic forecasts 
To evaluate probabilistic forecasts, we chose to follow 

the methodology presented in [19] and [20]. The criteria 
considered here are: 

 

 Reliability: 

Reliability is a term dedicated to the assessment of 
probability forecasts that matches a criterion that measures 
the performance of quantile forecasts. It measures the 
similarity between predictions and observations. This 
criterion is obtained by calculating, for the evaluation 
period, the percentage of the measured values (observations) 
that exceed a certain quantile relative to the total number of 
observations. In other words, reliability here relates to the 
“bias” of quantile forecasts. If denoting  ̂     

 a quantile 

forecast at time   for horizon    the mathematical 
formulation of this criterion presented in [19] is as follows: 
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This ratio should be as close as possible to the nominal 
value of the quantile. Deviations above approximately 3% 
on the nominal value of quantile indicate that this quantile 
forecast is unreliable. Reliability is evaluated for each 
forecast period separately. This criterion is fundamental 
when probabilistic forecasts are considered in a process of 
decision making that considers the uncertainty. Reliability is 
a property that can be improved by the calibration process of 
probabilistic prediction models. 

 Sharpness: 

The sharpness of probabilistic forecasts is a property 
that represents their ability to provide finely particular 
situations. It represents the degree of "concentration" of the 
expected distribution. A good forecast should have a very 
low value of this parameter. A model without "sharpness" is 
a standard "climate" model where uncertainty is expressed 
in a constant and independent way in regards to particular 
meteorological situations. For predicting PV this property is 
important because the level of uncertainty is different for 
sunny or cloudy days. The mathematical formulation for this 
criterion given in [19] is as follows: 
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Unlike the reliability, the sharpness is an inherent 
property of a forecasting system that cannot be improved by 
a calibration method [20]. 

B. PV production forecasts evaluation 

This paper presents the evaluation results of the 
advanced KDE module, using as input the weather forecasts 
GFS (KDE-1) and ARPEGE (KDE-2). The evaluation 
results of the advanced KDE model are compared to two 
single reference methods which do not involve any 
mathematical model to generate predictions: the persistence 
and the climatology (mentioned as global_average in the 
diagrams below). A first condition for an advanced model is 
to have a better performance than persistence. Persistence 
characterizes the weather in the short term. Despite its 
simplicity the performance of this method is not always low. 
Persistence is obtained here using a forecast equal to the 
measured value of the previous day at the same time. 
Climatology considers that the forecast for any given time of 
the day is equal to the average of all the observed values at 
the same time of day over a long period (i.e. one year). This 
explains in particular that the value of the mean bias of the 
evaluation period is zero for climatology. 



Probabilistic forecasts were generated for each time of 
day covering the entire distribution of PV production. These 
quantile forecasts are given in 10%-steps of the nominal 
probability. Predictive models are optimized with respect to 
the prediction that corresponds to the mean of the 
distribution. Hereby, the assessment using deterministic 
criteria is made using the average rather than the 50% 
quantile forecast (median).  

The evaluation was conducted on 35 producers after 
eliminating time series productions for producers for which 
there were insufficient data. The evaluation covers the 
period from 01/11/2014 to 01/09/2015. During this period 
we received 96.7% of the measurement data and 99.9% of 
the PV forecasts are available. For practical use, in the 
figures below, we chose to show the evaluation results from 
a large PV producer which is representative of all of them as 
it represents almost 10% of the installed capacity of all PV 
plants. 

1) Normalized BIAS 
The bias is the average of prediction errors. A good forecast 
should have a bias close to zero. The chart from Figure 2. 
shows the evolution of the bias over the forecast horizons, 
for the two configurations of KDE model KDE-1 and KDE-
2 with GFS and ARPEGE respectively, in comparison to the 
persistence and climatology models, for the PV producer 
taken into account during this assessment. The figure shows 
that both configurations of KDE model tend to have a bias 
slightly higher than the persistence. However this bias 
remains at low values, around 1%. In this figure, we can see 
that the ARPEGE forecasts help to improve the bias for the 
times of day that are critical for the grid operator. 

 

Figure 2.  NBIAS over forecast horizons for both configurations of KDE 

in comparison to the persistence and the climatology 

2) Normalized Mean Absolute Error 
The NMAE is probably one of the most intuitive 

assessment criteria, representing the average deviation in 
absolute values between the forecasted values and the 
observed ones, normalized to the peak power of the 
producer. The chart from Figure 3. shows the evolution of 
NMAE over the forecast horizons, for both configurations of 
KDE model, persistence and climatology, for the PV 
producer taken into account during this assessment. The 
figure shows that the KDE-2 model still has a better 
performance. 

 

Figure 3.  NMAE over forecast horizons for both configurations of KDE 

in comparison to the persistence and the climatology 

3) Normalized Root Mean Squared Error 
This criterion is the standard deviation of prediction 

errors, normalized to the peak power of the producer. 
Compared to NMAE, the NRMSE gives more weight to the 
errors with significant values. The chart from Figure 4. 
shows the evolution of NRMSE over the forecast horizons, 
for both configurations of KDE model, persistence and 
climatology, for the PV producer taken into account during 
this assessment. The diagram shows that the KDE-2 model 
still has a better performance. It also shows that the KDE-1 
model gives a significant improvement in comparison to the 
persistence for all horizons during daylight hours. This 
indicates that even with a low spatial resolution’s NWP 
model, weather forecasts help to improve significant errors. 

 

Figure 4.  NRMSE over forecast horizons for both configurations of KDE 

in comparison to the persistence and the climatology 

4) Reliability 
Figure 5. shows the “reliability diagram” from which 

optimal reliability is the one corresponding to the diagonal. 
The diagram shows the reliability of PV forecasts for 
forecast horizons 9.00, 13.00 and 17.00 local time, for the 
considered PV producer. We note that overall all the models 
are "reliable" with better performance for the KDE-2 model. 
The deviations from the optimal value are limited. We can 
see that for this PV producer, the curves from horizons 9.00 
and 17.00 overlap quite well with the reference diagonal 
line. This means that for horizons 9.00 and 17.00, we 
observed as many values as expected in each confidence 
interval. 



 

Figure 5.  Reliability diagram for both KDE configurations for all 10%-

steps quantiles for forecast horizons 9.00, 13.00 and 17.00 local time, in 

comparison to the persistence and the climatology 

5) Sharpness 
Sharpness measures the difference between two 

quantiles. In this case, considered quantiles are quantile 20% 
and quantile 80%. The chart from Figure 6. shows the 
evolution of sharpness for each forecast horizon of the day 
for the KDE model for the considered PV producer. We note 
that weather forecasts ARPEGE allow an improvement in 
this criterion. 

 

Figure 6.  Sharpness criterion diagram over forecast horizons for both 
KDE configurations for prediction intervals defined by quantiles 20% and 

80%, in comparison to the persistence and the climatology 

6) Summarising evaluation results 
The forecasts were evaluated using standard criteria for 

evaluating forecasts of renewable production. The values of 
these criteria were calculated for all producers and the 
results of this evaluation are summarized in TABLE I. for 
both configurations KDE-1 and KDE-2 of the advanced PV 
forecasting model, KDE. The evaluation results from this 
table only concern horizons between 9.00 and 17.00 local 
time, as it corresponds to daylight hours. 

The work on probabilistic forecasting models led to the 
development of state of the art equivalent services even for 
household producers with very low power. In general, even 
at the household producer level, forecasts yield good 
performance, with a mean error of approximately 8% 
between 9.00 and 17.00 local time. This value is deemed 
satisfactory for practical applications. 

 

 

 

 

 

TABLE I.  OVERVIEW OF THE EVALUATION RESULTS 

Criteria 
(9h-17h) 

Min Average Max 

KDE-1 KDE-2 KDE-1 KDE-2 KDE-1 KDE-2 

NBIAS 0.06% -0.2% 1.4% 1.2% 10.95% 10.4% 

NMAE 3.64% 3.10% 8.85% 7.90% 16.62% 15.50% 

NMRSE 5.19% 4.60% 12.23% 11.19% 19.73% 18.80% 

Min: minimal values of evaluation criteria over all PV producers 

Average: average value of evaluation criteria over all PV producers 

Max: maximal values of evaluation criteria over all PV producers 

V. CONCLUSION 

The improvement obtained by the use of higher 
resolution weather forecasts is significant (i.e. the use of 
configuration KDE-2 in comparison to configuration KDE-
1). This element is useful in a potential cost-benefit analysis 
of forecasts. 

Eventually, in the improvement opportunities of the 
performance observed here we can mention the potential 
contribution of intraday forecasts using updated weather 
forecasts. Intraday forecasts would also allow the use of 
improved NWP model, such as METEOFRANCE’s model 
AROME, with a spatial resolution of 0.025° and a temporal 
resolution of one hour. We can therefore reasonably expect 
improvements on the evaluation of PV production forecasts. 
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