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SUMMARY

Cloud computing has evolved to provide computing resources on-demand through a virtualized infrastructure,
letting applications, computing power, data storage, and network resources to be provisioned and managed
over private networks or over the Internet. Cloud services normally run on large data centers and demand a
huge amount of electricity. Consequently, the electricity cost represents one of the major concerns of data
centers, since it is sometimes nonlinear with the capacity of the data centers, and it is also associated with a
high amount of carbon emission (COz). However, energy-saving schemes that result in too much degradation
of the system performance or in violations of service-level agreement (SLA) parameters would eventually
cause the users to move to another cloud provider. Thus, there is a need to reach a balance between energy
savings and the costs incurred by these savings in the execution of the applications. Therefore, in this paper
we propose and evaluate a power and SLA-aware application consolidation solution for cloud federations. It
comprises a multi-agent system (MAS) for server consolidation, taking into account service-level agreement,
power consumption, and carbon footprint. Different for similar solutions available in the literature, in our
solution, when a cloud is overloaded its data center needs to negotiate with other data centers before migrating
the workload to another cloud. Simulation results show that our approach can reduce up to 46% of the power
consumption while trying to meet performance requirements. Furthermore, we show that federated clouds
can provide an adequate solution to deal with power consumption in the clouds.

KEY WORDS: Server Consolidation; Federated Clouds; Power-awareness Computing

1. INTRODUCTION

In the 1960s, time-sharing pushed up the development of computer networks [29]. Nowadays,
cloud computing is being seen as the new time-sharing [14] due to characteristics such as on-demand,
pay-per-usage, and elasticity. In addition, it has pushed down the cost the users pay for having their
own large-scale computing infrastructures, and removed the need for up-front investments to establish
these computing infrastructures. In other words, cloud computing has enabled a utility computing
model, offering computing, storage, and software as a service.

This utility model yields the notion of resource democratization and provides the capability for a
pool of resources accessible to anyone on the Internet in nearly real-time. This notion is the main
difference between cloud computing and other paradigms (e.g., grid computing systems) that have
tried to deliver computing resources over the Internet before cloud [66]. Besides that, clouds offer
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services without knowing who the users are and unaware of the technology they use to access the
services [23, 9]. Finally, cloud computing has also gained popularity since it can help data centers to
reduce monetary costs and carbon footprint.

However, cloud’s services usually run in big data centers, which contain a large number of
computing nodes. The projections considering data centers” energy-efficiency [36, 27, 37] show that
the total amount of electricity consumed by data centers in the next years will be extremely high, and
it is like to overtake the airlines industry in terms of carbon emissions.

Additionally, depending on the efficiency of the data center infrastructure, the number of watts
that it requires can be from three to thirty times higher than the number of watts needed for
computations [52]. And it has a high impact on the total operation costs [4], which can be over 60%
of the peak load. Nevertheless, energy-saving schemes that result in too much degradation of the
system performance or in violations of service-level agreement (SLA) parameters would eventually
cause the users to move to another cloud provider. Hence, reducing the energy consumption without
sacrificing service-level agreement (SLA) is an important issue for economical reasons and also for
making the data centers environment sustainable [7].

The power consumption of a system comprises two parts: (a) a static or leakage power and (b) a
dynamic part. The leakage power depends on the system size and on the type of transistor. This
power consumption is related to the leakage currents that are present in any powered system and it is
independent of clock rates and usage scenarios. The dynamic part, on the other hand, depends on the
activity of a circuit, the usage scenario, and the clock rates. This consumption is mainly composed of
short-circuit current and switched capacitance [6, 55]. Energy consumption, on the other hand, is
defined as the average power consumption over a period of time. Clearly, energy consumption and
power consumption are closely related but it is easy to see that the reduction in power consumption
does not necessarily imply the reduction in energy consumption [6].

Actually, there are two basic approaches to reduce power consumption in a data center. The first
one comprises the method of power-aware hardware design, which can be carried out at various
levels, such as device-level power reduction, circuit and logic level intelligent power management
and architecture power reduction. The second one is the method of power-aware software design,
known as dynamic voltage and frequency scaling (DVFS) [15, 54], including the operating system,
the applications, and the resources allocation in general.

Therefore, many studies have been conducted to provide power reduction, and some of them are
based on server consolidation [6]. Server consolidation combines several virtual machines into a
single physical server, trying to minimize the number of physical servers required to host a group of
virtual machines. By employing server consolidation, data centers can consolidate the workloads
into fewer nodes and switch off unused ones or put them in a low power consumption state mode.
Of course, the effectiveness of this technique depends on (a) how saturated the cloud system is and
(b) how much slowdown the cloud applications will accept. If the infrastructure is not saturated,
VMs can be moved to hosts that are close to each other and power efficiency gains can be obtained
with small application slowdowns. However, if the infrastructure is saturated (i.e., there are very few
nodes with idle capacity), the power efficiency gains provided by server consolidation will come at
the expense of severe performance loss in the applications since, in this case, several virtual machines
may share the same physical core.

In order to support a large number of users or to decentralize the management, clouds can be
combined, forming a federated cloud environment. A cloud federation can be defined as a set of
cloud providers, public and private, connected through the Internet [8, 13] to offer non trivial quality
of service (QoS) services for the users, based on standard interfaces, and without a centralized
coordination [22]. A federated cloud can move services and tasks among clouds in order to achieve
its goals. These goals are usually described as QoS metrics, such as minimum execution time,
minimum price, availability, minimum power consumption and minimum network latency, among
others.

Another important issue in large data centers is the level of carbon emissions. The high amount
of carbon emissions in data centers is associated with the amount of energy consumption. A recent
study on cloud computing and climate change shows that the total electricity consumed by data
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centers in 2020 will be 1, 963 billion kWh and the carbon emissions associated would reach 1,024
megatonnes [27]. In this scenario, strategies that are aware of energy in terms of resource are
gaining attention in academy and industry, since they can fulfill the promise of developing network
applications that can be tuned to consume less energy [43].

Hence, saving power of large-scale systems with acceptable performance losses is an economical
incentive for their operators, as well as a significant contribution to the environment. However, this
requires the design of power-aware solutions. Power-awareness can be characterized by taking into
account the amount of resources, the performance constraints of the applications, and the power
requirements along their life cycle [43].

In this context, we have distinct participants with multiple objectives, preferences, and disposition
to pay for services. In this scenario, a multi-agent system (MAS) may be used where each participant
is an autonomous agent that incorporates market and negotiation capabilities. Agents are autonomous,
proactive, and trigger actions by their own initiative [61]. They also make decisions by themselves
according to their beliefs, desires and intentions. For these reasons, agents are suitable for coordinating
the cloud market, detecting problems, opportunities and reacting to them, triggering the most
appropriate action depending on the system status. This capability can be used to negotiate resources
usage, and to negotiate power consumption and carbon emission.

Therefore, in this work, we propose the use of a multi-agent system (MAS) for federated cloud
server consolidation taking into account service-level agreement (SLA), power consumption, and
carbon footprint. In our approach, the users should pay according to the efficiency of their applications
in terms of resource utilization and power consumption. Therefore, we propose that the price paid by
the users should increase according to the whole energy consumption of the data center, specially
when the users refuse to negotiate performance requirements. Experimental results show that our
approach can reduce up to 46% of the power consumption, while meeting QoS requirements.
The experiments were realized through the CloudSim [10] simulator with two clouds and 400
simultaneous virtual machines.

The remainder of this paper is organized as follows. Section 2 presents some concepts of cloud
computing. Section 3 discusses energy-aware strategies and energy green performance indicators.
Section 4 presents some related work in the area of multi-agent server consolidation. The proposed
multi-agent system for federated cloud server consolidation is presented in Section 5. In Section 6,
experimental results are discussed. Finally, Section 7 presents final considerations and future work.

2. CLOUD COMPUTING

Many cloud computing definitions have been proposed over the last years. One reason for the
existence of different perceptions about cloud computing is that cloud computing is not a new
technology, but a new operational model that brings together a set of existing technologies in a
different way [57, 64]. Therefore, cloud computing can be seen as a type of distributed system
that dynamically provisions virtualized elastic and on-demand resources, respecting service-level
agreements defined between the service provider and the consumers [23, 9]. It differs from traditional
distributed computing systems because it can be encapsulated as an abstract entity that delivers
different levels of services to customers outside the cloud and that is driven by economies of scale,
dynamically configured with on-demand delivery model [42].

Several cloud architectures have been proposed in the literature. Generally, the architecture of
a cloud computing system can be divided into four layers: hardware, infrastructure, platform and
application layers.

The hardware layer contains the physical resources of the cloud, such as CPUs, disks and networks.
It is usually confined in data centers which contain thousands of servers and storage systems
interconnected by switches.

The infrastructure layer contains resources that have been abstracted typically by using
virtualization techniques, creating a pool of computing resources to be exposed as integrated resources
to the upper layer and end users [23]. This layer is an important component of cloud computing,
since many features such as elastic resource assignment are made available in this layer [64].
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On the one hand, the platform layer consists of application frameworks and a collection of
specialized tools on top of the infrastructure layer to provide a development and/or deployment
platform aiming to minimize the burden of deploying applications directly into virtual machines
containers [23, 64].

On the other hand, the application layer contains the applications that run in the clouds. Different
from traditional applications, cloud applications can leverage on automatic scaling to achieve better
performance and availability in an on-demand usage.

Furthermore, a cloud service model is mapped to the cloud architecture. In such case, the cloud
service model comprises three classes, defined according to the abstraction level and the service
model of the providers. The classes are: infrastructure-as-a-service (laaS), platform-as-a-service
(PaaS), and software-as-a-service (SaaS) [42]. The main difference between these cloud service
models relies on the kind of control that the users may have over the cloud infrastructure.

In the traditional approach (i.e., non-cloud scenario), the users are responsible for managing the
whole stack (e.g., hardware, software, and data center facilities), which gives them full control over
the infrastructure.

In the infrastructure-as-a-service (IaaS) model, the users request processing power, storage,
network, and other computing resources such as the operating system and pay for what they use.
In other words, the users pay for the use of resources, instead of having to setup them, and deploy
their own software on physical machines, controlling and managing them. The amount of instances
can be scaled dynamically to fill the users’ need. Examples of [aaS providers are Amazon Elastic
Compute Cloud (Amazon EC2)—(aws.amazon.com/ec?2), Rackspace cloud (rackspace.com/cloud),
GigaSpaces (gigaspaces.com), Microsoft Windows Azure (windowsazure.cont), and Google Compute
Engine (GCE)—(cloud.google.com/compuite).

Platform-as-a-service (PaaS) are development platforms that allow the creation of applications
with supported programming languages and tools hosted in the cloud and accessed through a browser.
This model can slash development time, offering readily available tools and services. PaaS providers
offer a higher-level software infrastructure, where the users can build and deploy particular classes
of applications and services using the tools and programming languages supported by the PaaS
provider. The users have no control over the underlying infrastructure, such as CPU, network,
storage or operating system, as it is abstracted away below the platform [42]. Examples of PaaS
services are Google App Engine (cloud. google.com/appengine), OpenShift (openshift.com), and
Heroku (heroku.com).

Finally, in the software-as-a-service (SaaS) model, applications run on the cloud infrastructure and
are accessible from various client devices. The users of these services do not control the underlying
infrastructure and application platform, i.e., only limited user-configurations are available. The
main architectural difference between the traditional software model and SaaS model is the number
of tenants the applications support. From the user viewpoint, the SaaS model allows him/her to
save money in servers and software licenses. Examples of SaaS are SalesForce (salesforce.com),
NetSuite (netsuite.com) and Microsoft Office Web Apps (office.com).

Although cloud computing has emerged mainly from the appearance of public computing utilities,
other deployments model have been adopted [42]. The cloud computing deployment models are
public, private and hybrid. Public clouds are operated by organizations with common interests
available in a pay-as-you-go model [2]. Private clouds are operated by internal data center and are
not available to the general public. A hybrid cloud is a private cloud supplemented with computing
capacity from public clouds. The approach of temporarily renting capacity to handle spikes in load is
known as cloud-bursting [31].

2.1. Virtualization

The majority of cloud systems employ virtualization techniques for resource management and
workload isolation.

Virtualization abstract the computing resources (e.g., CPU, storage, and network) from the
applications to improve sharing of computer systems [26]. The use of virtualization exists since 1960s,
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when it was first implemented by IBM to provide concurrent, interactive access to the mainframe
360/67.

A virtual machine (VM) is an environment provided by a virtualization software called virtual
machine monitor (VMM), or hypervisor. In this case, the virtualization layer is placed between
the bare hardware and the guest operating systems and gives the OSes a virtualized view of the
hardware. The platform used by the hypervisor is named host machine, and the module that uses the
virtual machine is named guest machine. An important function of the hypervisor is to provide the
connection between virtual machines and the host machine. It also abstracts the resources of the host
machine, which will be used by the operating system through the virtual machine, and it provides the
isolation among virtual machines placed in the same host machine, guaranteeing the independence
of each other. Furthermore, the hypervisor handles changes in the processor where the application is
running on without affecting the user’s OS or application [46, 51].

Consequently, one immediate benefit of virtualization is the option to run multiple operating
systems and software stacks on a single physical platform.

The adoption of virtualization relies on some of characteristics such as workload isolation,
consolidation and migration [3].

Workload isolation is the confinement of all program instructions into a virtual machine. In this
case, better reliability can be achieved because software failures in one virtual machine (VM) do not
affect other VMs [56]. Also, better performance control is attained since the execution of one VM
should not affect the performance of other VMs. Virtualization makes it possible to consolidate
heterogeneous workloads onto a single physical platform, reducing the total cost of ownership and
leading to better utilization. This practice is also employed to overcome potential software and
hardware incompatibilities in case of upgrades, allowing systems to run legacy and new operating
systems concurrently [56]. Workload migration, also known as application mobility [26], can be
employed in many cases, such as hardware maintenance, load balancing and disaster recovery. This
is done by decoupling the guest operating system from the hardware and encapsulating its state into
a VM, allowing it to be suspended, serialized and migrated to a different platform. A VM’s state
includes a disk partition image, configuration files, and a RAM image [32]. This capability delivers
improved quality of service at a relatively low operational cost [56].

2.2. Workload and Server Consolidation

Consolidation is a technique that reallocates virtual machines to achieve some objectives. For
instance, it can be used to reduce the amount of physical machines to run the virtual machines or to
improve performance of a virtual machine, migrating it for a more powerful physical machine [59, 41].

Virtualization and live migration make possible to consolidate heterogeneous workloads onto a
single physical platform, reducing the total cost of ownership and leading to better utilization. This
practice is also employed to overcome potential software and hardware incompatibilities in case of
upgrades, allowing systems to run legacy and new operating systems concurrently [56]. Recently,
consolidation has been used to reduce the number of underutilized servers.

Figure 1 illustrates the consolidation strategy. First, a power-inefficient allocation is shown
in Figure 1(a). In this case, there are three active quad-core hosts, two of them with 25% of
their capacity utilized and one with 50% of its capacity utilized. With consolidation, as shown
in Figure 1(b), all virtual machines are allocated in one host and the other hosts can be turned off,
reducing the power consumption of the whole system.

Server consolidation uses workload consolidation in order to reduce the number of active servers.
It is the process of gathering several virtual machines into a single physical server. It is often used by
data centers to increase resource utilization and to reduce electricity costs [59].

The consolidation process can be performed in a single step using the peak load demands, known
as static consolidation, or in a dynamic manner, re-evaluating periodically the workload demand in
each virtual machine (i.e., dynamic consolidation).

In static consolidation, once allocated, a virtual machine stays in the same physical server during
its whole lifetime. In this case, live migration is not used. The utilization of the peak load demand
ensures that the virtual machine does not overload. However, in a dynamic environment with different
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Figure 1. Example of workload consolidation using virtual machines

load patterns, the virtual machine state can be idle most of the time, resulting in an inefficient power
allocation.

Dynamic consolidation usually yields better results since the allocation of virtual machines occurs
according to the current workload demands. Dynamic consolidation may require migrating virtual
machines between physical servers in order to [21]: (i) pull out physical servers from an overload
state when the total number of virtual machines mapped to a physical server becomes higher than its
capacity; (ii) or turn off a physical server when it is idle or when the virtual machines mapped to it
can be moved to another physical server.

Consolidation influences utilization of resources in a non-trivial manner. Clearly, energy usage
does not linearly add when workloads are combined. For example, in an Intel i7 machine (4 real
cores and 4 cores emulated) an application using 100% of one core, with the other cores in the idle
state, consumes 128W whereas the same application using 100% of eight cores consumes 170W [6].
Moreover, resource utilization and performance can also change in a non-trivial manner. Performance
degradation occurs with consolidation because of internal conflicts among consolidated applications,
such as cache conflicts, conflicts at functional units of the CPU, disk scheduling conflicts, and disk
write buffer conflicts [60].

In a cloud computing environment, server consolidation presents some additional difficulties such
as: (i) the cloud computing environment must provide reliable QoS, normally defined in terms
of service-level agreement (SLA), which describe characteristics such as minimal throughput and
maximal response time delivered by the deployed systems; (ii) there can be dynamic changes of the
incoming requests for the services; (iii) the resource usage patterns are usually unpredictable; and
(iv) the users have distinct preferences.

3. POWER-AWARE COMPUTING

Cloud computing solutions may have a potential impact on greenhouse gas (GHC), which include
CO9 emissions. Currently, with the energy costs increasing, the focus shifts from optimizing
large-scale resource management for pure performance to optimize it for energy efficiency while
maintaining the services level [9].

However, this represents a challenging problem, since there are many variables that contribute to
the power consumption of a resource. First, large-scale computing infrastructures comprise different
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layers, and characterizing the power consumed by each of them is usually a difficult task [48]. For
instance, the power consumed by a resource may change according to its position in the data center,
as well as the data center’s temperature [49, 12]. Second, it is often difficult to determine the locations
where a workload should be distributed while considering performance requirements. Third, in large
scale, data centers’ carbon footprint can vary significantly according to their load [24]. Finally, the
environment impact of an application may change depending on the users’ location, as electricity
cost and carbon footprint are location specific [24, 40]. Moreover, it may be difficult to determine the
overall power footprint of a workload since some companies still do not publish any information
about their power source [17].

Green computing involves a set of methodologies, mechanisms and techniques that helps
computing systems (hardware and/or software) to reduce power consumption or carbon footprint.

3.1. Green Performance Indicator

Various green data center metrics have been introduced to measure data center efficiency under the
vision of achieving economical, environment and technological sustainability [35].

One example includes the green performance indicator (GPI). GPI defines a set of policies for data
collection and analysis related to energy consumption. In [35], Kipp and colleagues classity the GPIs
in four clusters: IT Resource Usage, Application Lifecycle, Energy Impact, and Organizational.
In this work, we consider only two of them: the IT Resources Usage and the Energy Impact. The
idea of GPIs is interesting because it can be adapted criteria to define SL.As, where requirements
about energy efficiency versus the expected quality of the services are specified, and thus, need to be
satisfied.

On the one hand, the IT resource usage GPIs characterize the IT resource used by the application.
In this case, the energy consumption of an application is related to the resources that it uses. Examples
of metrics include CPU usage, RAM memory usage, and I/O activity.

On the other hand, the energy impact GPIs metrics specify the impact of IT service centers and
applications in the environment, considering power supply, consumed material, emissions, and other
energy factors. Examples these metrics include:

1. application performance indicators: these indicators measure the energy consumption per
computing unit depending on the application type. The selection of this indicator depends on
the type of application. If it is a simulation application, FLOPS/kWh can be the chosen unit. If
it is a web server application, we can use the number of transactions/kWh as a metric.

2. data center infrastructure efficiency (DCiE) & power usage effectiveness (PUE): determine the
energy efficiency of a data center. It refers to how much energy the IT equipments consume
from the total energy consumption.

3. compute power efficiency (CPE): this indicator measures how efficiently the data center power
is used for computation. In this metric, the power consumed by the idle servers counts as
overhead. It is computed as shown in Equation (1).

CPE = DCiE | Resource utilization ()

4. data center energy productivity (DCeP): this GPI indicates the number of bytes processed per
kWh. It is computed as the ratio between the size of the output produced by a data center in
bytes and the total energy used in the data center in kWh.

4. RELATED WORK

Many studies have tried to improve the power efficiency of a system by minimizing the static
power consumption while trying to increase the performance proportionally to the dynamic power
consumption [63, 38]. As a result, the hardware energy efficiency has significantly improved.
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However, whereas hardware is physically responsible for mostly of the power consumption, hardware
operations are guided by software, which is indirectly responsible for the energy consumption [1, 47].

Some of the studies reported in literature try to minimize the power consumption from the
data center perspective, considering that the main reason for energy inefficiency is resource
underutilization. One of the first approaches to try to solve this problem consists of shutting down idle
nodes [45, 33, 55] and waking up them when the workload increases or the average QoS violation
ratio exceeds a threshold.

At the hardware level, improvements are made turning off components, putting them to sleep or
changing their frequency using dynamic voltage and frequency scaling (DVFS) techniques [25, 38,
53, 28, 55]. DVES techniques assume that applications dominated by memory accesses or involving
heavy I/O activities can be executed at lower CPU frequency with only a marginal impact on their
execution time. In that case, the goal of a DVFS scheduler is to identify each execution phase of an
application, quantify its workload characteristics, and then switch the CPU frequency to the most
appropriate power/performance mode.

For example, in [34], a power-aware DVFS based cluster scheduling algorithm is presented taking
into account performance constraints. The proposed algorithm selects the appropriate supply voltages
that minimize energy consumption of the resources. Simulation results show that the scheduling
algorithm can reduce the power consumption with an increase in the execution time.

In [30], the authors describe a virtual machine placement framework called Entropy. Entropy aims
to minimize the number of physical hosts to allocate the virtual machines, without violating any
constraints (e.g., memory size and number of CPUs). Its placement process comprises two phases.
The first phase identifies the nodes that have sufficient resources (i.e., RAM and CPU) to host a VM,
and the second one allocates the virtual machines trying to minimize both the number of physical
hosts and the number of VM migrations. These two phases use constraint programming to find
out a feasible global solution. Experimental realized in the Grid’5000 testbed show that constraint
programming outperforms the first-fit decreasing (FDD) algorithm with regard to the number of
VM migrations and power savings. In [19], the authors use Entropy to allocate virtual machines in
a federated cloud environment, taking into account power consumption and C'O, emissions. The
experimental results considering two synthetic workloads and two federated clouds show a power
saving of almost 22% when considering only power and a saving of almost 19% when the allocations
considering both power and C'O5 emissions.

In [58], the author present pMapper, a power and VM placement framework. Its architecture
comprises three different managers: performance, migration, and power. This optimization process
starts with a sensor collecting the current performance and power characteristics of both virtual and
physical machines. Then, it sends these data for the performance and power managers. After, the
performance manager analyses the data and based on SLA violations, it suggests to resize the virtual
machines. Similarly, the power manager based on the current power consumption suggests power
throttling actions (e.g. DVFS or CPU throttling). Based on these suggestions, an arbitrator component
selects a configuration, and defines the physical machines to host the virtual machines, as well as the
size of each VM. Finally, the managers resize and migrate the virtual machines. Due to heterogeneous
platforms, each manager consults a knowledge base to determine the cost of a VM migration in the
performance of its applications, as well as in the power consumption. Moreover, pMapper implements
three algorithms called: min Power Parity (mPP), min Power Placement with history (mPPH), and
PMaP. The mPP algorithm takes as input the VMs’ sizes, their current allocations, and a power model
of the physical machines. Then, it attempts to reallocate the virtual machines in order to minimize
the total power consumption. The mPPH, on the other hand, extends the mPP to minimize VM
migrations. Finally, the PMaP tries to find out an allocation that minimizes both power consumption
and VM migrations. Experimental results show that the mPP and mPPH algorithms can reduce 25%
of the power consumption when the utilization ratio is at most 75% of the cluster’s capacity.

In [16], a market-based multi-agent resource allocation model is presented that aims to provide an
effective resource allocation policy through genetic algorithm in a cloud environment. Buyer and
service provider agents determine the bid and ask prices using interactions to find an acceptable
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price considering the demands, the availability of cloud resources and constraints of the cloud user /
service provider.

In [20], a Semantically Enhanced Resource Allocation (SERA) framework is used to process
distributed resource allocations, using agents in a cloud environment. Agents negotiation involves
the combination of customer and provider policies, trying to obtain scheduling results which satisfy
both parts.

In [18], the authors address the coordination of multiple autonomic managers for power and
performance trade-offs in a real data center environment, with a real HTTP traffic and time-varying
demand. By turning off servers under low load condition, the proposed approach achieved power
savings of more than 25% without incurring in SLA penalties.

In [39], two energy-conscious task consolidation heuristics (ECTC and MaxUtil) are used to
maximize resource utilization for power saving. The cost of the ECTC heuristics is computed
considering the energy consumption to run a group of parallel tasks. The MaxUtil heuristic tries to
increase the consolidation density. Simulation results show that the proposed heuristics are able to
save energy by 18%(ECTC) and 13%(MaxUtil).

In [10], CloudSim is used to simulate VM provisioning techniques. Experimental results compare
the performance of two energy-conscious resource management techniques (DVFES and an extension
of DVFS policy). In the DVES policy, VMs were resized according with to host’s CPU utilization.
In the extension of DVFS, VMs were migrated every 5 seconds using a greedy algorithm that sorts
VMes in decreasing order of CPU utilization. In both of them, each VM was migrated to hosts that
have resources kept below an utilization threshold. Experimental results show that the total power
consumption of a data center reduced up to 50%, but with a increase in the number of SLA violations.

In [67], Zhou and colleagues propose and evaluate a service scheduling approach, called
Random Dynamic Scheduling Problem (RDSP), to reduce energy consumption in cloud computing
environments. This approach uses Monte Carlo sample historical data to approximate to the
predictable user demand and a probabilistic model to express QoS requirements in a homogeneous
environment, where the servers” power consumption is constant. Using numeric validation and Monte
Carlo sampling to estimate the users’ demand, the results show that the proposed scheduling strategy
could decrease the power consumption of the server when the user demand is predictable.

In [11], the authors present a virtual machine consolidation policy for cloud computing. The
proposed policy aims to minimize power consumption taking into account QoS requirements. And,
it extends the Minimum Power policy [5] in order to minimize VM migrations and to maximize
resource usage. In this case, different from the previous policy, a VM is migrated only when its
node is overloaded and with SLA violations. Experimental results show a reduction in the power
consumption (up to 34%) and in the execution time (63%). Moreover, the new policy increases SLA
guarantees. The experiments were realized through the CloudSim simulator considering one data
center with 800 physical nodes.

Table I summarizes the eleven approaches discussed in the previous paragraphs. As can be seen
in this Table, three approaches [16, 20, 18] use multi-agent systems to reduce power consumption
and costs. One of them is targeted to a cloud environment and two execute in cluster computing
environments. Five works [39, 10, 19, 67, 11] reduce power consumption in cloud computing
considering SLLAs. Only one proposal [19] deals with cloud federation to implement workload
consolidation, without implementing negotiation mechanisms between in the data centers. None
of these eleven proposals tackle federated cloud environments for power-aware allocations that are
SLA-conscious and the workload migration requires negotiation between the data centers.

5. DESIGN OF A MULTI-AGENT SERVER CONSOLIDATION MECHANISM

The main goal of our approach, called federated application provisioning (FAP), is to reduce power
consumption of data centers, trying to meet QoS requirements, with limited energy defined by a third
party agent (carbon emission regulator agency). We consider that data centers are concerned by an
energy threshold, and they are in a federated cloud computing environment, scheduling online the
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Paper Target Federated Multi-agent — Migration Negotiation

[34] Cluster No No No No
[30] Cluster No No Same DC No
[19] Cloud Yes No Among DCs No
[58] Cluster No No Same DC No
[16] Cloud No Yes No No
[20] Cluster No Yes No No
[18] Cluster No Yes No No
[39] Cloud No No No No
[10] Cloud No No Same DC No
[67] Cloud No No No No
[11] Cloud No No Same DC No
This work ~ Cloud Yes Yes Among DCs Yes

Table I. Comparative summary of cloud server consolidation strategies

execution of the users’ applications. In this case, a multi-agent strategy is used to negotiate resources’
allocations and the final price to execute the users’ tasks.

We assume a federated cloud model composed of public and private clouds, and that the cost to
transfer an application or to migrate VMs across the clouds is known by the cloud providers.

In our cloud environment there are four distinct agents: cloud service provider (CLSP), cloud
user (CLU), electric power provider (EPP), and carbon emission regulator agency (CERA) as shown
in Figure 2. In our design, the carbon emission regulator agency determines the amount of carbon
emissions that both CLSP and EPP can emit in a period of time.

Q SLA
.‘ Manager
Cloud

user

Cloud
coordinator

Electricity manager

Carbon
footprint

Electricity
provider

regulates CERA

Figure 2. Agents of the cloud market

We also assume that each cloud is composed of one data center with one coordinator accountable
for monitoring the metrics and for negotiating with the other agents (CLSP, CLU, EPP, and CERA).
There are also sensors to monitor power consumption, resource usage, and SLA violation as depicted
in Figure 3.

Finally, we consider that the cloud system has a communication layer such that any participant
can exchange messages. Messages and QoS metrics are described in a format that is known by the
agents, and a cloud provider cannot reject users’ tasks.

The proposed scenario includes a set of data centers (clouds) composed by a set of virtual
machines, which are mapped to a set of interconnected physical servers deployed across the clouds.
Let R = {ry,ry,--- , 75} be the set of resources in data center i with a capacity ¥, where k € R.
The power consumption (F;) can be defined as [39]:

Pi = (pmaz — Pmin) * Ui + Pmin )
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Figure 3. Detailed view of a data center

where py,q. is the power consumption for the data center i at the peak load, py,;,, is the minimum
power consumption in active mode, and U; is the resource utilization of data center 7 as defined
in Equation (3) [39]:

n
Uy = Zui,j (3)
j=1

where w; ; is the resource usage of resource j in the data center i.

The relation between a cloud provider and a cloud user is determined by a set of QoS requirements
described in the SLA. Furthermore, data centers are subjected to an energy consumption threshold
agreed among the CLSP, the EPP, and the CERA. When the energy consumption threshold is violated,
this implies additional costs. To calculate the carbon footprint of the CLSP and the EPP, the CERA
uses the following metrics: application performance indicators (FLOPS/kWh), data center DCIE,
PUE, and CPE.

Let T represent a set of independent tasks to be executed, which is subject to a set of QoS
constraints such as minimum RAM memory, minimum CPU utilization, and minimum execution
time. In this case, the following steps are executed:

1. when a task #; is submitted, the cloud provider calculates the price of #;’s execution (o;) based
on the power consumption (Equation (2)).

2. the cloud provider tries to place ¢; in an available resource, using consolidation techniques to
reduce the number of active physical servers.

3. if the cloud provider does not have enough available resources or the energy threshold will
be violated, the cloud provider first contacts another cloud provider and negotiates with it
the execution of this task. In this case, the price of this execution (C;) is defined as shown
in Equation (4).

Ci=or+e+ N (4)

where o, is the financial cost of executing task ¢ based on its power consumption, e; is the cost
of the power impact of a task ¢ in the environment, and ), is the cost to transfer a task ¢ to
another cloud provider.

4. if the cloud provider does not succeed, it tries to consolidate its VMs considering the service-
level agreements.

5. If not possible, it tries to negotiate the energy threshold with the CERA and with the EPP
agents.

6. If all negotiations fail, the cloud provider finds the SLA whose violation implies in lower cost,
terminates the associated task, and executes the task ¢;. In this case, the price to execute the
tasks is defined as shown in Equation (5).
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W=Ci+v+4d (5)

where - is the cost to violate the QoS requirements of other tasks and ¢ is the cost associated
with the power consumption violation.

To control tasks’ allocation, each cloud provider has a 3-dimensional matrix representing the
tasks (¢; € T'), the virtual machines (vm;), and physical servers (r, € R), where (i, j, z) = 1 iff
task t; is allocated at virtual machine vm; in resource 7; 0 indicates that the task can be allocated in
vmy; and finally, -1 represents that the allocation is impossible.

In order to illustrate our strategy, consider a federated cloud environment with 2 clouds (DC1
and DC2) and one user that contracted one cloud to execute him/her applications. Consider that the
contracted cloud (DC1) is overloaded and that the QoS requirements described in the SLAs are based
on response time. In this scenario, when the user submits a set of tasks to execute, the cloud provider of
DC1 first tries to execute it locally considering power consumption and its available resources. Since
DC1 is overloaded, its cloud provider contacts another data center (DC2) and negotiates the execution
of the tasks. If DC2 accepts, the cost of the tasks execution is calculated using Equation (4). If DC2
refuses, then DC1 tries to consolidate its virtual machines and, if not possible, it tries to negotiate
the energy threshold with the carbon emission regulator agency (CERA) and with the electric power
provider (EPP) considering the following metrics: application performance indicators (FLOPS/kWh),
DCiE, PUE, and CPE. If all negotiations fail, then DCI1 finds the SLA whose violations implies in
lower cost and terminates the execution of its associated task. Then, the cost to execute the tasks is
calculated using Equation (5).

6. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed server consolidation mechanism for federated clouds. We
use the cloud simulator CloudSim [10], which is a well-established cloud simulator that has been used
in many previous works [50, 65, 62], among others, for simulating resource management strategies.
CloudSim enables modeling and simulation of cloud computing systems. It provides support fot
cloud system components such as data centers, virtual machines, and resource provisioning policies.

6.1. Modifications in CloudSim

In order to enable federation and energy regulation capabilities, we added 4 classes to CloudSim,
which are described below. CloudSim already implemented the support to measure the power
consumption of the nodes.

The CloudEnergyRegulation class represents the behavior of the carbon emission regulator
agency (CERA) agent. The CERA communicates with the data center cloud coordinator to inform
the power consumption threshold.

The DatacenterEnergySensor class implements the Sensor interface that monitors the power
consumption of the data center and informs the coordinator. When the power consumption is close to
the limit, this sensor creates an event (i.e., CloudSim event) and notifies the coordinator. In this case,
the coordinator first tries to contact another data center to transfer the virtual machines and if the
data center does not accept, then the coordinator tries to consolidate them (Section 5).

The FederatedPowerVmAllocationPolicy class extends the VmAllocationPolicy class to
implement our strategy to allocate the virtual machines across the data centers.

Finally, the CustomerDatacenterBroker class models the QoS requirements customer behavior,
negotiates with the cloud coordinator, and requests the resources.

6.2. Simulation Environment

In order to evaluate the effectiveness of our federated application provisioning (FAP) technique,
we used a simulation setup that is similar to the one described in [10]. Our simulation environment
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included two clouds, each one with one data center (DC1 and DC2) that had 100 hosts each. These
hosts were modeled to have one CPU with four cores with 1000 MIPS, 2GB of RAM and 1TB of
storage. The workload model comprises the provisioning and allocating for 400 virtual machines.
In this case, each virtual machine requested one CPU core, 256MB of RAM and 1GB of storage.
The CPU utilization distribution was generated according to the Poisson distribution, where each
virtual machine required 150 MIPS and 1 to 10 minutes to complete execution, assuming a CPU
utilization of 20, 40, 60, 80 and 100% and a global energy consumption threshold of 3 kWh of energy
per data center. Initially, the provisioner allocates as many as possible virtual machines in a single
host, without violating any constraint of the host. The SLA was defined in terms of response time (10
minutes).

The energy consumption threshold of 3kWh of energy per data center was chosen based in the
results of the power management technique, presented in [10].

6.3. Scenario 1: workload submission ro a single data center under power consumption threshold

In this scenario, tasks are always submitted to data center 1 (DC1). If needed, VMs are migrated
from DC1 to DC2. The simulation was repeated 10 times and the mean values for energy consumption
without our mechanism using only DC1 (trivial), and with our federated application provisioning
(FAP) approach are presented in Figure 4(a).
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Figure 4. Power consumption with 2 data centers under limited power consumption
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Figure 4(a) shows that the proposed provision technique can reduce the total power consumption
of the data centers, without SLA violation. In this case, an average reduction of 46% in the power
consumption was achieved since the data center 1 (DC1) consumed more than 9 kWh with the trivial
approach (without VM migration) and no more than 4.8 kWh was consumed in total by both data
centers with our approach (2.9 kWh for DC1 and 1.9 kWh for DC2). In order to achieve this, data
center 1 (DC1) tried first to maximize the usage of its resources and to consume the limit of its
energy power threshold, without violating the SL.As. Hence, the data center 2 (DC2) was only used
in imminence of SLA violation or when the energy consumption was close to violate the limit. In all
cases, the energy consumption for DC1 remained close to the limit.

Figure 4(b) presents the number of VMs migrated when our mechanism is used. It can be seen
that the number of migrations decreases as the threshold of CPU usage increases. This result was
expected since with more CPU capacity, the allocation policy tends to use it and to allocate more
virtual machines in the same host.

In Figure 4(c), we measured the wallclock time needed to execute 400 tasks, with and without
our mechanism (FAP). It can be seen that the proposed provision technique increases the whole
execution time. This occurs because of the overhead caused by VMs migrations between the data
centers, and the negotiations between the CLLU and the CLSP. Nevertheless, this increase is less than
22%, where the wallclock execution times without and with the FAP mechanism are 21.5 minutes
and 27.4 minutes, respectively, when using the whole CPU capacity. We consider that this increase
in the execution time is compensated by the reduction in the power consumption (Figure 4(a)).

6.4. Scenario 2: distinct workload submission to different overloaded data centers

In this scenario, we consider two users, with distinct SLAs and each user submits 400 tasks to
different data centers (DC1 and DC2). Our goal is to observe the rate of SLA violation when the
workload of both data centers is high. The energy consumption of the data centers is presented
in Figure 5(a).

In Figure 5(a), we can see that, even in a scenario with overloaded data centers, our mechanism
can maintain the power consumption below the threshold (3 kWh) for each data center. Using the
whole CPU capacity, the power consumption decreased from 9.2kWh to 5.5kWh (DC1 + DC2),
reaching a reduction of 40% in the power consumption.

Figures 5(b) and 5(c) show the number of VM migrations between the data centers and the
wallclock time to execute 800 tasks when both data centers are overloaded. Comparing with the
scenario with one overloaded data center (DC1), the number of VM migrations decreased, keeping
almost the same penalty in the execution time (23%) due to the negotiations overhead between the
agents and by server consolidations.

The number of SLA violations with two overloaded data centers was lower than with just one
data center (DC1) as we can see in Figure 5(d). With the CPU utilization threshold of 80%, the SLA
violation decreased from 43.9% (DC1) to 31.4% (DC1 + DC2), reaching 28% of reduction in
the SLAs violations. This shows the appropriateness of VM migration between different data centers
in an overloaded scenario.

In order to analyze the impact of energy threshold in the SLA violation, we increase it for 4 kWh
per data center. As we can see in Figure 6(a) the energy consumption of both data centers was close to
limit but with a reduction in the SLA violation. With the CPU utilization threshold of 80%, the SLA
violation decreases from 44% (DC1) to 18% (DC1 + DC2) reaching 59% of reduction in SLAs
violations. Increasing the energy threshold from 3 kWh to 4 kWh decreases the SLA violation from
31.4% (DC1 + DC2) to 18% (DC1 + DC2).

7. FINAL CONSIDERATION AND FUTURE WORK
In this paper, we proposed and evaluated a server consolidation strategy to reduce power

consumption on cloud federations. Our server consolidation strategy aims to reduce power
consumption on cloud federations while trying to meet QoS requirements. We assumed that clouds’
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data centers have a limited power consumption defined by a third party agent. In this case, we
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addressed applications’ workloads, considering the costs to turn servers on/off and to migrate
the virtual machines in the same data center and between different data centers. Simulation results
showed that our strategy could reduce up to 46% of the power consumption, with a slowdown of 22%
in the execution time. Similar to other works [50, 65, 62], the experiments were realized through
the CloudSim [10] simulator with two clouds and 400 simultaneous virtual machines. Altogether,
the results demonstrated that cloud federation can provide an interesting solution to deal with
power consumption, by using the computing infrastructure of other clouds when a cloud runs out
of resources or when other clouds have power-efficient resources. Even though we achieved very
good results with our strategy, we noticed that other variables should also be considered such as
the workload type, the data center characteristics (i.e., location, power source), and the network
bandwidth as these variables may impact the whole power consumption of a data center. In addition,
since the CPU no longer dominates the nodes” power consumption [44], the power consumption of
other components (e.g., memory, disks) must be taken into account. Moreover, resource heterogeneity
should also be considered, as data centers usually comprise heterogeneous resources that can
have different power consumption and curves. This requires energy and performance-aware load
distribution strategies. We leave these extensions for future work.
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