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Abstract

The intrinsic temporal scales of the variability of the surface solar radiation are addressed by means of the empirical mode decom-

position. High quality measurements of the solar radiation impinging on a horizontal plane at ground level, from different BSRN

ground stations, are analysed. By first extracting all the embedded oscillations that share a common local time-scale, followed

by Hilbert spectral analysis, the characteristic scales of variability, along with the fluctuations in the intensity of the pyranometric

signal, are revealed. It is shown that data from stations with different local climates share some common features, most notably

a high-frequency plateau of variability whose amplitude is found to be modulated by the seasonal cycle. The study has possible

implications on the modelling and the forecast of the surface solar radiation, at different local time-scales.

c© 2016 The Authors. Published by Elsevier Ltd.
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1. Introduction

The surface solar irradiance (SSI) has been identified by the Global Climate Observing System program as one of

the Essential Climate Variables that is of utmost importance in characterizing Earth climate, thus better knowledge of

the SSI represents a key factor in decision making in both science and policy circles [1]. Furthermore, solar irradiance

is the main driver behind the weather and climate systems on the planet, with a dynamic range varying from seconds

to millions of years [2]. Despite this wide span of the associated time-scales, most of the studies that have raised the

scientific understanding with respect to the SSI have primarily focused on either global averages and long-term trends

[3], or have only addressed the short-term, or high-frequency part of its temporal variability [4].

In light of this need to understand the variability of the SSI field at different time horizons, an appropriate data

processing technique for extracting the intrinsic modes of variability at vastly different temporal scales is required.

Added to this, the nonlinear and nonstationary nature of the measured solar radiation data [5] further restricts the pool
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of signal processing candidates to those fit to handle such time-series, without making any beforehand assumptions

about the nature of the signal. It has been proposed that the Hibert-Huang Transform (HHT), an adaptive, data-driven

analysis method is a suitable technique for analysing such solar radiation datasets [6–8]. Here, this point of view

is also adopted, therefore the inner workings and the rationale behind the choice of this particular data processing

method will be only briefly reiterated in a dedicated subsection.

The focus of the present work thus lies on extracting and analysing the intrinsic modes of the temporal variability

of the SSI, as identified by the HHT. By scrutinizing long-term (i.e. 10+ years) daily measurements of the solar

radiation impinging on the ground, at different geographical locations, it is shown that the HHT is able to identify the

low frequency variability components, i.e the multi-year trend and seasonal variation, and multiple high-frequency

intrinsic variability modes. Although these short-timescale features appear to be distinct from the seasonal cycle, a

correlation can nevertheless be found between their amplitude envelopes and the seasonal cycle, indicative of non-

linear multiplicative cross-scale coupling [9]. Based on these characteristics, the difference in local climatic conditions

of the measuring stations can be inferred. Possible implications of the findings on the modelling and forecast of the

SSI are then discussed.

The study is organised as follows. In section 2 the data and the methods used will be described. Sub-section

2.1 discusses the data sources and the preprocessing, while 2.2 will address the analysis method. Section 3 will

present the results obtained, with the discussion thereof being deferred to section 4. Lastly, acknowledgements and a

bibliographical list conclude the study.

2. Data and methods

2.1. Data sources and pre-processing

The data analysed in this study consist of time-series of high-quality SSI ground measurements at two distinct

geographical locations: one located in Carpentras, France (CAR – 44.083◦ N, 5.059◦ E), and the other in Payerne,

Switzerland (PAY – 46.815◦ N, 6.944◦ E). For both stations the data span a ten year period, from January 1st, 2001 to

December 31st, 2010 (figure 1). The measuring stations belong to the Baseline Surface Radiation Network (BSRN), a

worldwide radiometric network providing accurate readings of the SSI at high temporal resolution [10]. The climate

at the CAR station is of a humid subtropical, Mediterranean type (Köppen-Geiger: Csa), while the one at PAY

experiences a marine west coast, mild type of climate (Köppen-Geiger: Cfb) [11]. Both stations are set in rural areas,

with the surroundings having a cultivated surface type, and local hilly topography [12]. Lastly, since the stations are

located in Europe, any reference to seasons and seasonal phenomena shall be understood as occurring in the northern

hemisphere.

For the scope of the study, daily means of the global SSI received on a horizontal plane (GHI) were employed.

The original time-series of the GHI, having a one-minute integration time, have been quality checked according to

[13]. Daily means of GHI were then calculated only if more than 80% of the data during daylight were valid. Isolated

missing values in the daily means series were then completed by applying linear interpolation to the daily clearness

index.

2.2. Adaptive data analysis

Among the different techniques commonly used in geophysical signal processing, as for exampled those reviewed

in [14], a suitable candidate for the study at hand was found to be the Hilbert-Huang Transform (HHT), a completely

data-driven and adaptive signal analysis technique [15]. The HHT consists of two steps.

First, by means of the Empirical Mode Decomposition (EMD), oscillations that present a common local time-scale

embedded within the signal are extracted. These oscillations, also called Intrinsic Mode Functions (IMFs), can be

thought of as being amplitude modulation - frequency modulation (AM-FM) components of the data that have a zero

average and a well behaved Hilbert transform. Owing to the adaptive nature of the EMD, the IMFs represent the

data-driven, a posteriori chosen basis of the decomposition [16]. By contrast, other mathematical transforms employ

basis functions that are fixed in advance, such as the trigonometric functions in the case of the Fourier transform or

the wavelet functions of the eponymous transform. This adaptive approach of the decomposition not only endows the
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Fig. 1. The SSI time-series investigate din this study at CAR (left) and PAY (right). Time markers denote the start of the corresponding year.

method with the capability of dealing with data issued from the non-linear interaction of physical processes, often

also found under the influence of non-stationary external forcings, but it also ensures that the extracted components

carry physical meaning, and that the influence of method-inherent mathematical artefacts on the rendered picture of

temporal variability is kept to a minimum [17].

Once the empirical mode decomposition is completed, the second step of the HHT is to perform Hilbert spectral

analysis. Each IMF and its Hilbert transform are used to construct the complex-valued analytic signal, from which an

amplitude modulation - frequency modulation (AM-FM) model of the data is obtained. Thus, under this model any

IMF, say x (t), can be written as x (t) = �
{
a (t) · e i

∫
ω(τ) dτ

}
, with a (t) instantaneous amplitude and ω (t) instantaneous

frequency. From this representation the Hilbert energy spectrum of the data can be computed, basically an energy

density distribution overlaid on the time-frequency space [18].

In this study, a recent iteration of the algorithm is employed, the improved complete ensemble EMD [19], as it

allows for an exact decomposition of the data and is more robust with respect to noise. Furthermore, a fast EMD

routine, described in [20], has been used to decrease the computation time.

3. Results

The IMFs obtained for the CAR time-series are presented in figure 2 (top panels, IMF1. . . 8, numbers indicate

extraction order from the highest frequencies to the lowest). The IMFs for PAY share similar characteristics, the

only notable difference is that the CAR time-series is decomposed into 8 IMFs, while the PAY data has 9 components.

Owing to the EMD being a time-domain only decomposition, the IMFs have the same temporal support as the original

data and, by construction, zero average and symmetrical upper and lower envelopes. As the decomposition progresses,

the local time-scale of the IMFs increases, which is to say that that the period of the intrinsic oscillations is getting

larger and larger within each newly extracted component. A graphical support of this is provided in the lower panel

of figure 2, where the power spectral density (PSD) and an estimate of the mean period, expressed in days, of each

component are plotted.

The PSD reveals that for the first five components the spectral shapes are similar in form, and the median period

seems to roughly double with increasing IMF number, following an approximately dyadic sequence: 3.1 → 7.4 →
15.7→ 32.0→ 54.9. Next, IMF6 can be readily identified by its median period of 364.9 days with the seasonal cycle.

It also accounts for the most prominent visual feature in the original time-series (top panel, CAR, of figure 1), its peaks

and troughs denoting summer and winter, respectively. Another feature of this sixth IMF is its sharp peak of relatively

high power, as opposed to the bell curve shape and the frequency spread of the previous five components. By contrast,

no distinct visual features stand out in the PSD of IMF7 and IMF8, with median Fourier periods of 655.5 and 1370.5

days, respectively; nevertheless their time-domain representations reveal that they have very low amplitudes. Lastly,

also noteworthy is that the first five modes seems to exhibit amplitude excursions in accordance with IMF6, i.e. their

amplitudes are greater during summer than during winter.

After having extracted all the IMFs, all that is left of the original time-series is a residual, or EMD trend, that

cannot be considered an oscillation at the time span of the original data (10 years). Stated otherwise, the trend can

be thought of as an offset onto which all the zero mean embedded oscillatory components are riding, or as a low-pass

filtered approximation of the original data [21]. This can be clearly seen in figure 3, where the trend for CAR, plotted

in blue, has a non-zero mean and is devoid of the oscillations of the IMFs depicted in in figure 2. To graphically
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Fig. 2. The IMFs for the CAR timeseries (upper panels: IMF1. . . 8) showing local timescale increase with mode number. The power spectral

density and median period Fourier estimates (bottom: PSD) use the same colours as the top panels to denote individual IMFs.

convey this, the yearly mean of the SSI, found in [22], is plotted in red alongside the EMD trend, in figure 3, whence

it can be seen that the two curves follow each other closely, with the EMD trend taking on slightly higher values.

An alternative illustration of the spectral contents of the data, in terms of its Hilbert AM-FM decomposition, is

presented in figure 4. Using a box plot, the frequency distribution within each IMF is conveyed, giving an indication

of the local time-scale captured by the component. The first five IMFs have closely matching median periods, that

once again seem to follow a dyadic sequence for both CAR and PAY (in parantheses): 3.2 (3.0)→ 7.0→ 14.1 (14.6)

→ 26.8 (27.4) → 55.7 (53.4). Not only are the medians of these modes in close agreement for the two time-series,

but both in terms of the interquartile range (IQR), and in terms of total range, the first five modes of PAY exhibit the

same frequency variability as those for CAR. The sixth IMF for both series can clearly be associated, in terms of their

median periods (364.3 for CAR and 356.2 for PAY), with the seasonal cycle given by the revolution of the Earth around

the Sun. For the PAY data, the IQR and especially the range of this sixth mode are significantly greater than for CAR,

overlapping part of the support of the previous IMF. This is an illustration of the mode mixing phenomenon that may

arise in the EMD, i.e. the coexistence of different modes in the same IMF, principally caused by signal intermittence

and noise [17]. However, this box plot representation is incomplete, as it only accounts for the frequency spread of

the modes while completely ignoring amplitude, or power. It will later be shown that the spectral part of IMF6 which

overlaps IMF5 has diminished power, thus this phenomenon does not hinder the validity of the analysis.

As a comparison, for the CAR high-frequency IMFs 1. . . 5 most of the power in the Fourier PSD from figure 2 is

assigned to a frequency band that closely corresponds to the Hilbert range, which do not extend beyond 100 days in

figure 4. The same is also true for IMF6, whose Hilbert frequency distribution is concentrated in a very narrow range,

that would correspond to the sharp peak in the PSD of the same component. Hence, while the Fourier representations

of the IMFs span the whole frequency scale, the Hilbert frequency distributions have more compact support.

Coming back to the discussion of the IMFs in figure 4, it is found that after all the components with yearly and

sub-yearly time-scales have been extracted the rest of the data, trend notwithstanding, is assigned into minimally

overlapping (within the same dataset) modes in a band that spans the spectrum beginning at the one year mark. The
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Fig. 3. Comparison, for CAR, between the EMD trend and the yearly mean according to [22].

CAR data has a slightly longer spectral range, from one to six years, with a break at about three years that divides it

into two modes with median periods of 469.5 days for IMF7 and 1305.1 days for IMF8. The PAY time-series features

components with narrower spectral support, namely two IMFs that cover the one to two and a half years band having

median frequencies of 413.6 and 707.5 days, and one compactly supported IMF around 4.5 years (� 1668 days). For

both SSI time-series IMF7 has the same lower end support, but with higher median – 469.5 days vs. 413.6 days – IQR

and upper end support for the CAR data. Moreover, when taken together, IMF7 and IMF8 for PAY seem to emulate

IMF7 for CAR, with the distinction that the upper limit is somewhat less than three years, as is the case for the latter.

With the discussion of the embedded time-scales of the IMFs from figure 4 now complete, it must be reiterated

that the picture that has been painted, although insightful, is incomplete, chiefly because information pertaining to

amplitude or temporal localisation has not yet been exploited. A more thorough representation is presented in figure

5, which portraits the two SSI time-series as an energy density distribution over-imposed on a time-frequency space

(left panel for CAR, right panel for PAY). Each pixel in these two so-called Hilbert spectra has three attributes through

which it denotes the local power (color, log-scale), at a specific instant in time (abscissa), at a specific time-scale

(ordinate, log-scale). For improved readability, the spectra have been binned and smoothed, hence because of the

aliasing that may have been introduced by these procedures a mostly qualitative interpretation should be preferred.

The side-plots on the right show the Hilbert marginal spectrum, a time-integrated (line-by-line sum) variant of each

spectrum which is comparable, but not identical to, the Fourier spectrum of the same time-series.

Referring to the CAR Hilbert spectrum, depicted in the left panel of figure 5, some features can be identified as

follows. A high-frequency plateau between 2 days and � 100 days is notable, corresponding to first five IMFs of

the time-series. As previously seen in figure 4, the frequency support of these modes overlap, hence the appearance

on the Hilbert spectrum of a contiguous plateau, instead of multiple discrete bands. The power of this feature is

low, as can be inferred from the very slight ”dent” in the marginal Hilbert spectrum corresponding to this region.

Moreover, a periodic shift in color can be observed in the 4 days to 32 days band, indicative of an amplitude modu-

lation phenomenon in accordance with the seasonal cycle – lighter yellow tones during winter turn blue-green during

summer. Next, between 100 and 300 days a gap in the spectrum is apparent, as it can also be deduced by the lack

of support in this region for any of the IMFs in figure 4. The dark blue trace, corresponding to IMF number six, is

oscillating around the one year period, in the range of 300 to 450 days, which is also the support of this mode in the

frequency box plot. This is also the component with the greatest power, as indicated by the large peak on the marginal

spectrum. Interestingly enough, the corresponding time-scale fluctuations are centred in 365 days, and modulation

towards greater frequencies takes place predominantly during 2002 through 2006. Between 2007 and 2009, however,

the frequency modulations are less pronounced – corresponding to a period when solar activity is at a minimum. The

last two low-frequency, orange-green traces on the spectrum correspond to IMF7 and IMF8 of the CAR data. For the

seventh component mode mixing is apparent through the occasional sharing of the yearly time-scale band with IMF6,

between the end of 2003 and the first half of 2006, and shortly again before 2009. These two last components have

such low power that they fail to leave a mark on the marginal spectrum.

In the Hilbert spectrum for the PAY data, shown in the right panel of figure 5, the contiguous high-frequency

plateau between 2 days and � 100 days is also present, unsurprisingly, since first five IMFs of the time-series closely

resemble those for the CAR data. The power in this band, however, is slightly greater than for CAR, especially

considering the predominance of blue hues in the 2 – 4 days region that corresponds to the first and second IMFs.

This is also apparent when looking at the marginal spectrum, where a distinct peak at this time-scale can be clearly

made out. The amplitude modulation phenomenon in phase with the seasonal variations, previously identified in
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the CAR data, is even more pronounced in the PAY spectrum; once again light yellow tones that occur during low

insolation in winter turn blue during the high irradiance regime of summer. Here too, between 100 and 300 days a

gap in the spectrum is also apparent, with the notable exception of the mode mixing phenomena associated with IMF6

that occur during 2003, 2007 and 2009. As previously shown in figure 4, the lower range of the frequency distribution

of the sixth mode overlaps the high frequency plateau, which is portrayed by the three jutting spikes from the yearly

band into the sub-100 days plateau on the PAY spectrum. Since these protruding filaments have such low power that

they leave no imprint on the marginal spectrum, their most probable origin can be attributed to some sort of numerical

artefacts. The yearly variability of the data can be, unsurprisingly, identified with the sharp peak at roughly 365

days on the marginal spectrum. In terms of the Hilbert time-frequency-energy representation, however, the seasonal

cycle cannot be attributed to one sole component. This is due to mode mixing as seen in figure 4 where the range of

IMF7 completely overlaps that of IMF6. It could be argued that IMF6 should represent the ”true” seasonal cycle, as

indicated by the median of its frequency distribution, however for 2003 and 2007 the Hilbert spectrum reveals that

whenever IMF6 extends its tendrils into the high-frequency plateau and drastically reduces its power, IMF7 seems to

”pick up the slack” by reaching in to the vacated one year band. During 2008, and briefly during spring 2004, it is

found that the two components trade places altogether, with IMF6 assuming lower values that IMF7 on the frequency

scale. The last two low-frequency components, IMF8 and IMF9, can be seen here too to have relatively low power –

both only just manage to make a very slight indentation on the marginal spectrum. For IMF9, the frequency spread in

the Hilbert representation is in good agreement with its narrow support from figure 4.

The main findings of this section can now be summed up as follows. Both time-series are shown to share several

common features: a high-frequency plateau between 2 days and 100 days, a relatively low power region in the marginal

spectrum between 100 days and 300 days, a high powered seasonal or yearly cycle peaking at 365 days, and two low-

frequency components in the 1.5 years to 6 years band.

4. Discussion and conclusion

It has been observed in figure 4 that the median periods of the first five IMFs follow a dyadic repartition, that can be

approximated by the series 3.1, 7, 14, 27, and 54 days. It is found that this type of frequency doubling in the IMFs of

geo- and astrophysical signals is recurrent throughout the scientific literature. Specifically, when investigating three

independent datasets of satellite observations of the total (extraterrestrial) solar irradiance, [23] consistently find a
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similar dyadic scale progression of modes at 13.5, 27, and 54 days, statistically significant within the 95% level, that

correspond to the 27-day solar rotation period and its (sub-)harmonics. Similarly, [24] also report intrinsic periodicities

having an average of 25+7
−2

and 44+10
−5

days in the signals of five solar proxies: 10.7 cm radio flux intensity, helioseismic

frequency shift, and sunspot area for the whole Sun, and separately for the northern and southern solar hemispheres

(error bars in sub-/superscript estimated at the half-level width of the corresponding probability histogram). However

intriguing, the imprint of a solar rotation signature on ground measurements of the SSI is rather improbable, as it would

imply the existence of hitherto unknown physical mechanisms in Earth’s atmosphere [25]. Moreover, amplitude

modulation of high-frequency components by lower frequency ones is also found in sunspots number time series

[24,26], and in surface air temperatures [27], and is indicative of non-linear cross-scale interactions [9].

Similar remarks can be made for the IMFs on time-scales greater than one year. The corresponding IMFs for the

CAR time-series have median periods of 469.5 and 1305.1 days, while those for PAY have medians of 413.6, 707.5

and 1668.6 days. The time-scales of these oscillations seem to agree once again with those related to the so-called

solar quasi-biennial oscillations (QBO), which are variations in the Sun’s activity with periodicities between 0.6 and 4

years [28]. In [24] the aforementioned solar proxies IMFs have average periods of 395+46
−46

, 626+69
−113

, and 1423+196
−146

days

respectively. The same solar QBOs in the 1 year to 4.5 years range are also identified as a fundamental time-scale of

variability in solar magnetic synoptic maps [29]. In [30] a 1.68 year (613 days) spectral peak is also reported, found in

retrospectively determined cloud cover from measurements of the surface solar radiation, indicating a galactic cosmic

ray, rather than solar irradiance, cloud effect. Nevertheless, the cautionary statement from the previous paragraph is

reiterated, as no physical mechanism in Earth atmosphere has been proposed.

Orbital mechanics and parameters of the Earth-Sun system may account for the spectral peaks detected around

the one year mark in both CAR and PAY datasets. However, it has been shown that for the PAY time-series, two

components are needed to explain the seasonal variability of the data. For this particular time-series, no clear physical

significance can be attributed to either mode. Rather, it is the frequency representation of an aggregate of the two that

is able to account for variability at this time-scale.

To sum up, the HHT analysis of decennial time-series of daily means of SSI measurement, at two distinct BSRN

stations has revealed the following: the presence of a high-frequency (2-100 days) plateau composed of five IMFs

that are amplitude-modulated by the yearly cycle; a distinct band having very low power with time scales of 100-

300 days; a distinct spectral peak at the one year mark accounting for the seasonal variability; multiple low power

”QBOs”; and a non-linear trend that, for one station at the least, is clearly associated to the yearly means of the data.

These characteristic features of the temporal variability allow to differentiate between the local climates of the ground

measurement stations and have possible implications on the modelling and forecasting of the surface solar radiation

field.
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