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We investigate the continuous quantum measurement of a superconducting qubit undergoing fluo-
rescence. The fluorescence of the qubit is detected via a phase-preserving heterodyne measurement,
giving the fluorescence quadrature signals as two continuous qubit readout results. By using the
stochastic path integral approach to the measurement physics, we derive most likely paths between
boundary conditions on the state, and compute approximate time correlation functions between
all stochastic variables via diagrammatic perturbation theory. We focus on paths that increase in
energy during the continuous measurement. Our results are compared to Monte Carlo numerical
simulation of the trajectories, and we find close agreement between direct simulation and theory.
We generalize this analysis to arbitrary diffusive quantum systems that are continuously monitored.

I. INTRODUCTION

Fluorescence concerns the energy relaxation of a quan-
tum system, emitting coherent light at its transition fre-
quency. By continuously measuring the emitted light, it
is possible to infer the evolution of the quantum state of
the system in time – its quantum trajectory [1, 2]. In the
simplest case of a qubit, a single photon is emitted when
the qubit transitions from its excited to its ground state.
If a single photon detector were used, the measurement
would yield a discrete event of 0 or 1 photons emitted,
collapsing the qubit state to its ground state (if a pho-
ton were detected), or partially collapsing the qubit to
a shifted coherent superposition (if a photon is not de-
tected) [3–6]. In contrast, using a phase preserving am-
plifier [7, 8] followed by heterodyne measurement of both
quadratures of the fluorescence light mode [1, 2, 6, 9]
leads to diffusive stochastic quantum trajectories of the
qubit state (see Fig. 1). Such trajectories were recently
observed in a superconducting qubit by monitoring its
fluorescence using a superconducting phase preserving
amplifier [10, 11].

The feasibility of measuring diffusive quantum trajec-
tories in superconducting qubits [12, 13] is an important
development in this field, and motivates a renewed in-
terest in exploring their properties. Here, we investigate
statistical properties of the quantum trajectories result-
ing from heterodyne measurement of fluorescence. We
first present a simple derivation of the measurement re-
sult and state backaction of a short heterodyne measure-
ment, and generalize the results to a continuous quantum
measurement of the two heterodyne signals. We proceed
to predict the most likely path dynamics of the fluoresc-
ing artificial atom between two boundary conditions on
the quantum state, focusing on the counterintuitive paths

FIG. 1. A fluorescing artificial atom is indirectly measured by
detecting microwave light it produces by spontaneous emis-
sion [10]. The fluorescence is preferentially emitted into a
single coaxial cable by engineering the electromagnetic envi-
ronment adequately using a microwave cavity. By making a
heterodyne measurement of the two electric field quadratures,
partial information about the quantum state of the artificial
atom is retrieved.

in which energy is gained during the quantum measure-
ment, as described by Bolund and Mølmer [14]. (Such
energy dynamics is also of interest for quantum stochastic
thermodynamics [15, 16].) We present two independent
derivations of this most likely path using the stochastic
path integral formalism [17, 18] or quantum control the-
ory [19, 20]. We also formulate a diagrammatic pertur-
bation theory for computing arbitrary correlation func-
tions for the fluorescence action, and explicitly compute
all bilinear and quadratic order correlations to leading
order. Numerical simulation of the system permits the
comparison of numerical covariance functions and most
likely paths with our theoretical results, showing good
agreement.

The paper is organized as follows. In section II, we
describe the physics of fluorescence, and how to under-
stand the basic physics of measurement. We then gener-
alize this to a continuous stream of quadrature measure-
ments in time, and derive the equations of motion of the
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qubit state, given a realization of the continuous mea-
surement. In Sec. III, the formalism of the stochastic
path integral is introduced, and we derive the stochas-
tic action, stochastic Hamiltonian, and most likely paths
of the fluorescence measurement. For an ideal measure-
ment, we present an analytic solution to the most likely
paths in Sec. IIIA, revealing the anatomy of the fluores-
cence process. In Sec. IV, we reformulate the stochastic
differential equations in the Itô formulation, and derive
the associated stochastic action. From this action, we
develop a set of diagrammatic rules for computing arbi-
trary averages and correlation functions (or covariance
functions) in Sec. V. We explicitly compute time correla-
tion functions between all stochastic variables, and give
approximations to all such correlators of quadratic and
bilinear order to up to leading order in the diagrammatic
expansion. We compare our results to numerical simula-
tion. We conclude in Sec. VI. Appendix A explores what
observables can be constructed with weak fluorescence
measurements, and Appendix B generalizes the analysis
presented to arbitrary diffusive quantum systems moni-
tored by an arbitrary number of outcomes.

II. WEAK QUADRATURE MEASUREMENT
OF FLUORESCENCE

The backaction on the state of a qubit that originates
from the detection of its fluorescent emission can be un-
derstood by a simple model. Let us define ∣g⟩ and ∣e⟩
as the ground and excited state of the qubit, and ∣0⟩
and ∣1⟩ as either the vacuum or single photon excita-
tion of the output field mode that carries the fluores-
cence signal from the qubit into a waveguide. We work
in the rotating frame (interaction picture) with frequency
ωq = (Ee − Eg)/h̵, the qubit frequency. Owing to the
coupling between qubit and output mode, which is char-
acterized by the relaxation rate γ1, the two systems get
entangled after a time δt, small compared to γ−11 . Start-
ing in an arbitrary state of the form (a∣e⟩+b∣g⟩)⊗ ∣0⟩, the
state changes to

∣ψf ⟩ = a
√

1 − ε∣e⟩⊗ ∣0⟩ + a
√
ε∣g⟩⊗ ∣1⟩ + b∣g⟩⊗ ∣0⟩. (1)

Here, ε = γ1δt is the probability of a relaxation event
when the qubit is excited. Phase preserving amplifica-
tion enables the measurement of both quadratures of the
output mode (the in-phase and in-quadrature responses
at the transition frequency), which acts as a meter (M)
in the measurement of the system (S) – the qubit – ow-
ing to its entanglement with the latter. In contrast with
photon counting, the measurement of the quadratures of
the mode cannot indicate in a single shot whether the
output mode contains a photon or not due to quantum
zero point fluctuations. Therefore, the measurement of
the two mode quadratures leads to two outcomes that
are the real and imaginary parts of a random complex
field amplitude α. This random outcome α both yields
some information about the state of the qubit, as well

as induces measurement back-action on the qubit. This
measurement backaction can be interpreted as physical
or informational (Bayesian update) depending on ones
point of view of the quantum state.

The probability of the measurement result depends on
the state of the qubit. To generalize the treatment to
include mixed states we introduce the density matrix of
the qubit as

ρ = (
ρee ρeg
ρge ρgg

) =
1

2
(

u x − iy
x + iy 2 − u

) , (2)

where we define Bloch sphere coordinates, x, y as usual,
but use the excitation u = 1+ z = 2ρee as a modified vari-
able that is naturally well suited to the fluorescence mea-
surement problem. Following amplification and mixing
with the heterodyne signal, the measurement quadrature
result α occurs with probability density

P (α) = TrS,M [Πα∣ψf ⟩⟨ψf ∣Πα], (3)

where Πα = ∣α⟩⟨α∣ is a projection operator on coherent
state ∣α⟩ and the trace is taken over the system and meter
[1, 21]. Note that P is here the Husimi Q function of
the state TrS[∣ψf ⟩⟨ψf ∣] [22]. Evaluating the resulting
integrals from tracing in the coherent state basis gives

P (α) = e−∣α∣
2

[1 −
εu

2
(1 − ∣α∣2) +

√
ε(xReα − yImα)] ,

(4)
which is normalized with the coherent state mea-
sure, which includes the overcompleteness factor of π,

∫ d(Reα)d(Imα)P (α)/π = 1. This result occurs over
a small time step δt compared to the duration T of
the fluorescence experiment. Consequently, we consider
a sequence of many quadrature measurements, giving
a stochastic stream of data {αi}, where i = 1, . . . ,N ,
and N = T /δt. The mean number of photons collected
from coherent state in the heterodyne measurement is
∣α∣2, so the photon current of a stream of photons is
∑i ∣αi∣

2/(Nδt). This motivates us to define quadrature
currents, each formed from averaging the scaled quadra-
ture variables: Q, I. That is, we rescale

Reα = I
√
δt/2, Imα = −Q

√
δt/2. (5)

With this transformation, to first order in δt, the log-
distribution of quadrature currents, lnP (I,Q) takes this
form,

lnP = −
δt

2
(I2 − 2

√
γ1
2
xI +Q2

− 2

√
γ1
2
yQ + uγ1) . (6)

We see that the distribution of these variables is approx-
imately Gaussian for a small time interval, with mean

⟨I⟩ =
√
γ1/2x, and ⟨Q⟩ =

√
γ1/2 y, and variances of both

Q and I given by 1/δt (with no cross-correlation). This
ensures that by averaging these random variables over
N realizations, the resulting variance will be reduced to
1/(Nδt) = 1/T (starting from the same initial state). We
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assume that each measurement within each time interval
is statistically independent, consistent with the Markov
approximation. Finally, we stress that while it is tempt-
ing to view this measurement outcome as a joint weak
measurement of two operators σx and σy [23], (since the
real and imaginary part of α are proportional to them
on average), this should in fact be viewed as an indirect
signature of σ− = ∣g⟩⟨e∣ = (σx − iσy)/2, the system op-
erator that drives the interaction (1). We discuss this
point more in Appendix A, and show that by choosing
appropriate contextual values [24, 25], any system opera-
tor may be targeted for repeated weak measurements on
the same initial state.

We now focus on the qubit measurement disturbance
for a single time step δt. This projection of the meter
state via heterodyne measurement implements a POVM,
or generalized measurement, on the qubit [26–29]. Since
the strength ε of the measurement is small, this can be
classified as a weak measurement. The modified state of
the qubit ρ′α, conditioned on the measurement result α is
given by

ρ′α = TrM [Πα∣ψf ⟩⟨ψf ∣Πα]/P (α). (7)

This may also be calculated with the help of the measure-
ment (Krauss) operator Mα [27], indexed by the mea-
surement result α, and expressed in the ∣e⟩, ∣g⟩ basis:

Mα = (

√
1 − ε 0

√
εα∗ 1

) e−∣α∣
2/2. (8)

We can check this implements a POVM on the qubit
because ∫ (d

2α/π)M†
αMα = 1S [1, 21, 29, 30]. The (con-

ditional) state disturbance is therefore given by ρ′α =

MαρM
†
α/TrM [M†

αMαρ]. Making the required calcu-
lations and expressing the results in the modified Bloch
coordinates u,x, y, we have the following update equa-
tions,

u′α = u(1 − ε)e−∣α∣
2

/P (α), (9a)

x′α =
√

1 − ε(x +
√
εuReα)e−∣α∣

2

/P (α), (9b)

y′α =
√

1 − ε(y −
√
εuImα)e−∣α∣

2

/P (α). (9c)

These results are quite interesting, and give great insight
into the measurement physics. Note that we have not yet
made an expansion in ε. We see that if ε = 0, there is no
change of the state. We see from Eq. (9a) that without
the (re-)normalization factor P (α), the population of the
qubit is simply reduced, as is expected from fluorescence,
however, the coherences, x, y change stochastically, de-
pending on the results of the measurement. Further, it
is clear that counterintuitive state disturbance can oc-
cur by looking at the conditions when the fluorescing
qubit can increase in energy [14, 21]. This happens when
(u/2)(1 − ∣α∣2) − (1/

√
ε)(xReα − yImα) > 1, which can

occur for certain values of α,x, y, u.
The physical interpretation of this effect is that if the

measurement gives a certain result, the information re-
vealed about the qubit indicates that our prior density

matrix now underestimates the current expectation for
the population of the qubit, and reassigns it to be at a
higher energy. Thus the relaxing qubit can actually in-
crease in energy because of the backaction of the quantum
measurement.

It is interesting to note that had we made a direct mea-
surement of the fluorescence with a single photon detec-
tor, the energy increase of the system could never hap-
pen. After the fluorescence gives state (1) after time δt, a
photon counting measurement would either obtain a sys-
tem state collapse to ∣g⟩ if a single photon were detected,
or a partial collapse to

ψ′ =
1

√
∣a∣2(1 − ε) + ∣b∣2

(
a
√

1 − ε
b

) , (10)

if a photon is not detected, where we have written the
updated state in the ∣e⟩, ∣g⟩ basis. This transformation
must always decrease the population of the excited state
for any non-zero value of ε regardless of the initial sys-
tem state a∣e⟩ + b∣g⟩. The partial-collapse of the qubit
state (10) by indirect measurement also occurs in state-
selective tunneling of superconducting phase qubits [31–
33]. We see, therefore, that depending on the kind of
measurement being done on the fluorescence signal, un-
der exactly the same physical conditions of the qubit, the
backaction on the qubit state is qualitatively different
with respect to the qubit energy.

We can turn the update equations (9) into a time-local
differential equation by scaling the measurement result α
as described in Eq. (5) and making an expansion of the
update equations (9) to first order in δt, to find

u̇ = −γ1u(1 −
u

2
) −

√
γ1
2
u(xI + yQ), (11a)

ẋ = −
γ1
2
x(1 − u) +

√
γ1
2

[uI − x(xI + yQ)], (11b)

ẏ = −
γ1
2
y(1 − u) +

√
γ1
2

[uQ − y(xI + yQ)]. (11c)

These equations can be used to directly find the quan-
tum trajectories of a single run of the experiment,
u(t), x(t), y(t) based on the measurement records I(t)
and Q(t) of that measurement run. This describes our
best estimate of the quantum state given the acquired
data. A similar procedure was done in the experiments
of Refs. [10, 12, 13]. These equations of motion are sim-
ilar in spirit to those of a continuous Z measurement of
a qubit [34, 35]. We point out the possibility here also of
an increase of u by reversing the sign of the second term
in Eq. (11a) so it exceeds the first term with certain Q
or I results, raising the energy of the qubit.

For experiments, it is important to generalize these
equations to include the effect of pure dephasing, which
occurs to the coherences with rate γφ, as well as the fact
that the measurement is not perfectly efficient. We de-
fine the efficiency η as the ratio of signal collected to
the total signal, which reflects the fact that not all of
the light is emitted into the coupled waveguide, as well
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as other sources of loss in the experiment. The effect of
photon loss is accounted for by averaging the system over
loss/no loss events, represented by the operators Onl =√
η∣1⟩⟨1∣+ ∣0⟩⟨0∣ in the no-loss case, and Ol =

√
1 − η∣1⟩⟨1∣

in the loss case. Averaging state (1) over these loss events
introduces decoherence in the system state. Since the

photon loss operators obey O†
nlOnl +O†

lOl = 1, they are
a POVM on the light mode [29]. The resulting averaged
state is OnlρOnl +OlρOl, where ρ = ∣ψf ⟩⟨ψf ∣. Naturally,
the meter distribution is only sampled from the no-loss
instances, and reduces the (no-loss) norm of the distribu-
tion P (α) by an amount 1 − (u/2)ε(1 − η). The effect of
extra decoherence is accounted for by applying the phase-
flip superoperator of strength γφδt to the qubit state. Re-
visiting the derivations for the distribution of the meter
results α and the state disturbance in the small δt limit,

gives a Gaussian distribution of mean ⟨I⟩ =
√
γ1η/2x,

⟨Q⟩ =
√
ηγ1/2y, and variances Var[I] = Var[Q] = 1/δt.

These considerations generalize the quantum trajectory
equations to:

u̇ = −γ1u (1 − η u
2
) −

√
ηγ1
2
u(xI + yQ), (12a)

ẋ = −γ1
2
x(1 − ηu) − γφx +

√
ηγ1
2

[uI − x(xI + yQ)], (12b)

ẏ = −γ1
2
y(1 − ηu) − γφy +

√
ηγ1
2

[uQ − y(xI + yQ)]. (12c)

III. STOCHASTIC ACTION AND MOST
LIKELY PATH

The equations of motion (12) for the quantum state
are in their most physical form - the usual rules of cal-
culus apply, and there is a clear physical interpretation
of the results. We can make them explicitly stochas-
tic differential equations by choosing the values I,Q at
random from the distribution (6). These stochastic dif-
ferential equations must be interpreted in a Stratonovich
form. Rather than pursue this route, we introduce a func-
tional approach to the dynamics by considering the time-
evolution operator of densities of these stochastic trajec-
tories with a stochastic path integral, following the strat-
egy outlined in Refs. [17, 18]. We implement the equa-
tions of motion (12) at every time interval with associated
Lagrange multipliers pu, px, py which take on their own
dynamics. These p variables may also be interpreted as
canonically conjugate to the stochastic variables u,x, y.
Any functional of trajectories u(t), x(t), y(t), or the
measurement results I(t),Q(t), can be averaged over
the ensemble with functional integrals over all variables
u,x, y, pu, px, py,Q, I of the stochastic path integral de-

7
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-7

readout: I(t)

readout: I(t)
readout: I(t)

FIG. 2. The most likely paths predicted from the stochas-
tic action principle (solid red curves) are shown in compar-
ison with the most probable paths derived from simulated
105 trajectories, all have their initial states at the x̂-state:
(ui, xi, yi) = (1,1,0). We consider subensembles of trajecto-
ries with fixed final states, where three sets of final states are:
uf(tf = 0.16) = 1.4, uf(tf = 0.5) = 1.1, and uf(tf = 1.3) = 0.3
(time is given in units of γ−11 ), with a tolerance of size 0.05.
The most probable paths are extracted from the trajectory
data by using the minimal average trace distance (see text).
The (colored) shaded regions shows one standard deviation
band as a function of time from the simulated most probable
paths. Here we only show the paths in the u-variable as well

as the I-quadrature readout, plotted in units of
√
γ1/2, as in-

sets. The most likely evolution in the y and Q-quadrature are
given by y = Q = 0 for the chosen boundary conditions, and
the evolution in x can be inferred from u because the qubit
states stay pure in this particular case: η = 1, γφ = 0.

fined by a stochastic action given by

S = ∫ dt′{−puu̇ − pxẋ − py ẏ +H}, (13a)

H = −pu[γ1u(1 − ηu/2) + ζu(xI + yQ)]

− px[(γ1/2)x(1 − ηu) + γφx + ζ(−uI + x(xI + yQ))]

− py[(γ1/2)y(1 − ηu) + γφy + ζ(−uQ + y(xI + yQ))]

− I2/2 + ζxI −Q2
/2 + ζyQ − ηγ1u/2. (13b)

Here we have simplified notation by introducing ζ =√
ηγ1/2. The first three lines of (13b) capture the equa-

tions of motion (12), while the last line of (13b) is the
log-probability of I,Q in the presence of finite efficiency
η. We may also introduce boundary conditions (or other
constraints) on the dynamics by introducing other terms
to the action of the form, B = ∫ dt

′ri,0pi(t
′)δ(t′), where

ri = (u,x, y) (with i = u,x, y) for the initial condition,
and a similar such term for the final condition. The ac-
tion has a canonical form, with a stochastic Hamiltonian
H. In Appendix B, we generalize this analysis to ac-
count for an arbitrary diffusive quantum system that is
continuously monitored.

We now consider the most likely path between two
boundary conditions on the state, one at the beginning of
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the measurement, and another at the end of the measure-
ment. This most likely path will be the one that captures
the largest fraction of trajectories in some small neigh-
borhood of all the trajectories that obey the imposed
boundary conditions. The theory of the most likely path
for quantum trajectories was experimentally verified for
a continuous Z measurement with Rabi drive applied in
the experiment of Ref. [13]. The most likely path is tech-
nically found by maximizing the global probability of all
paths between the boundary conditions, which may be
cast as a stochastic action principle [17]. Taking func-
tional derivatives to extremize the action, δS = 0, yields
the equations of motion and constraints for the most
likely path.

The pu, px, py functional derivatives recover the origi-
nal equations (12), but with the interpretation of all the
variables as the most likely ones, rather than as stochas-
tic variables. The u,x, y functional derivatives gives the
equations of motion for the variables pu, px, py,

ṗu = γ1pu(1 − ηu) − γ1η(pxx + pyy)/2

+ ζ[pu(xI + yQ) − pxI − pyQ] + ηγ1/2, (14a)

ṗx = γ1px(1 − ηu)/2 + γφpx

+ ζ(puuI + 2pxxI + pxyQ + pyyI − I), (14b)

ṗy = γ1py(1 − ηu)/2 + γφpy

+ ζ(puuQ + pxxQ + pyxI + 2pyyQ −Q), (14c)

In the case of phase preserving measurement, we have
two quadrature variables I,Q, and consequently have
two constraints, linking the most-likely path variables
through the most-likely values of the quadrature vari-
ables via functional I,Q derivatives, δS/δI, δS/δQ = 0,

I/ζ = x + px(u − x
2
) − puux − pyxy, (15a)

Q/ζ = y + py(u − y
2
) − puuy − pxxy. (15b)

The six equations of motion for the most likely path in-
volving u,x, y, pu, px, py in equations (12) and (14), com-
bined with the two constraints for I,Q may be solved
applying boundary conditions for the initial and final val-
ues of u0, x0, y0 and uf , xf , yf , separated by a given time
t. This is possible because the six first order differential
equations admit six constants of integration.

In Figure 2, we plot the predicted most likely paths
in comparison with numerically simulated qubit trajec-
tories, where the most likely paths in the latter case are
obtained by selecting subensemble of trajectories with
chosen final states and then searching for paths with min-
imum average trace distances between any two trajecto-
ries (for more detail, see Ref. [13]) to calculate the most
probable paths. We find good agreement both for the
qubit state variables and for the most likely measurement
readouts. The most likely path equations are generalized
to an arbitrary diffusive, continuously monitored system
in Appendix B.

E=+5γ1

E=+γ1

E=0

E=-γ1

E=-2γ1

0 π
2

π 3π
2

2π
-15

-10

-5

0

5

10

15

θ

p
θ

θ-pθ phase space

FIG. 3. Anatomy of fluorescence: This phase space diagram
represents all possible most-likely paths between two bound-
ary conditions in the ideal measurement case. The horizontal
axis represents the polar angle θ of pure states on the x − z
great circle of the Bloch sphere, where the angle is measured
from the z axis. Thus θ = 0,2π represents the excited state
∣e⟩, while θ = π represents the ground state ∣g⟩. The vertical
axis is the associated canonically conjugate variable, pθ. The
most likely paths are fixed by the stochastic energy E, and
plotted for a choice of several energies. The dashed blue paths
are the most likely given fixed endpoints, which correspond
to the zero energy lines.

A. The anatomy of fluorescence: Analytic solution
for the ideal measurement

In some cases, the most likely path equations may be
solved exactly. In any case, there is a constant of motion
E = H, fixed as the stochastic energy of the dynamics
once the boundary conditions and the time between them
is fixed. There may be other constants of motion.

We now consider a special case, by noticing that a
particular solution y = 0 for all time will satisfy the most
likely path equations for y and py, provided that the most
likely value py = 0 for all time, which then implies that
the most likely value of Q = 0 as well. We stress that this
is not equivalent to integrating over Q. That procedure
discards information, and produces different equations of
motion for the state that leads to decoherence even if
there is no extra dephasing. Making the simplification of
the most likely values y = py = Q = 0 allows us to recast
the remaining equations of motion as one dimensional
under certain assumptions. We consider an ideal mea-
surement set-up, where γφ = 0, and η = 1. In this case,
the quantum measurement dynamics remains pure the
whole time. This gives an additional constant of motion,
because x2 + z2 = x2 + (1 − u)2 = 1, and we may therefore
replace x = sin θ, and u = 1+cos θ. The polar angle θ from
the z axis completely characterizes the dynamics of the
quantum state in this ideal situation. Making this trans-
formation to either of the stochastic differential equations
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(11a) and (11b) gives a single equation to solve,

θ̇ =
γ1
2

sin θ +

√
γ1
2

(1 + cos θ)I. (16)

For this one degree of freedom, the simplified stochastic
action and stochastic Hamiltonian is

Sθ = ∫ dt′{−pθ θ̇ +Hθ}, (17a)

Hθ =
γ1
2
pθ sin θ −

γ1
2

(1 + cos θ)

+

√
γ1
2
pθ(1 + cos θ)I − I2/2 +

√
γ1
2
I sin θ. (17b)

Here, we have introduced the canonically conjugate vari-
able pθ as a Lagrange multiplier variable to implement
the state update constraint.

In this special case of one dimension, we can solve the
equations of motion for the most likely path in closed
form. Let us first find the most likely quadrature current
from δS/δI = 0, giving

I =

√
γ1
2

(sin θ + pθ(1 + cos θ)). (18)

Since we can always reconstruct the time-dependence of
I from that of θ(t), pθ(t) from this result, we insert the
most likely I back into the action (17a) to find the mod-
ified Hamiltonian of

H
′
θ = γ1(ap

2
θ + bpθ + c), (19)

a = −c = cos(θ/2)4, b = sin θ (1 +
cos θ

2
) .

We can now find the most-likely paths in a simple way,
because of the constant stochastic energy, H′

θ = E. The
stochastic energy E is fixed by setting the initial condi-
tion, the final condition, and the time elapsed between
them. We can solve for the lines of motion pθ,E(θ) in
the phase space for any energy to give two solutions of
the quadratic equation (see Fig. 3). Of particular inter-
est are the zero energy lines, corresponding to the most
probable dynamics between fixed endpoints,

p±θ,E=0(θ) =
± cos( θ

2
)
√

10 + 6 cos θ − (2 + cos θ) sin θ

(1 + cos θ)2
.

(20)
The solution p+θ,E=0 corresponds to the paths that de-
crease in energy, relaxing the qubit to the ground state
∣g⟩ at θ = π, whereas p−θ,E=0 describe paths that increase

in energy, exciting the qubit state to the state ∣e⟩ at θ = 0.
At θ = 0, the solution limits to p±θ,E=0 = ±1, whereas when

θ → π, p+θ,E=0 limits to 0 but the minus solution diverges

as p−θ,E=0 ∼ 8/(θ − π)3.
The advantage of having the lines of constant stochas-

tic energy is that the action may be directly computed,

Sθ = ∫ dt′(−pθ θ̇ +Hθ) = −∫ pθ,Edθ +ET, (21)

E=+5γ1

E=+γ1

E=0

E=-γ1

E=-2γ1

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

time

Excited state population (ρee)

(a)

E=0

E=0

E=-γ1

E=-2γ1

E=γ1

E=5γ1

E=+5γ1

E=+γ1

E=0

E=-γ1

E=-2γ1

0 2 4 6 8

-10

-5

0

5

time

Most likely I-quadrature readout

(b)

E=-γ1

E=-2γ1

E=5γ1E=γ1

FIG. 4. The most likely path solutions for different values of
stochastic energies chosen in Figure 3. Panel (a) shows the
excited state population ρee as functions of time, from t0 = 0
to a final time tf = 8 (time is shown in units of γ−11 ). There are
three decaying solutions shown in dashed blue (the left one),
dotted grey, and dotted black curves, losing energy from the
excited state θ0 = 0 to the ground state θf = π. The other zero-
energy solution (blue dashed curve in the middle) is obtained
with the initial and final states θ0 = 0.9π, θf = −0.9π, showing
a temporary excitation followed by a decay back to the ground
state. The magenta curve has its initial state at θ0 = 0.92π and
its final state at θf = 0.08π, showing that it asymptotically
reaches the excited state. The red curve is obtained from θ0 =
0.9π to θf = π. Panel (b) shows the corresponding most likely
I-quadrature readouts as functions of time, plotted in units of√
γ1/2, for the same set of stochastic energies and boundary

states. The orange and blue shaded regions correspond to the
regions of −1 ≤ x ≤ 0 and 0 ≤ x ≤ 1, respectively. Values of
I outside of that range are a continuous analog of the weak
value effect [36].

where the first integral is from t = t0 to tf and the second
integral is from θ = θ0 to θf . In the case of the zero energy
lines, the first term fixes the action entirely. The action
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integral has an analytic form of

Sθ,E=0 = −∫ p±θ,E=0dθ =
∓
√

10 + 6 cos θ sin(θ/2) + 2

2(1 + cos θ)

− 2 ln cos(θ/2) ∓ 2 tanh−1
√

2 sin(θ/2)
√

5 + 3 cos θ
. (22)

When evaluated between the initial and final condi-
tion, θ0 and θf , the action Sθ,E=0 approximates the log-
probability of this path. The elapsed time T of the most
likely path may be explicitly given as a function of the
stochastic energy. This is given in the case of the zero
energy solutions by

TE=0 = ∫ dθ/∣θ̇E=0∣ = ∫ dθ∣∂pθHθ ∣
−1

= ∫ dθ

√
2

γ1 cos(θ/2)
√

5 + 3 cos θ

=
2

γ1
tanh−1 (

√
2 sin(θ/2)

√
5 − 3 cos θ

) , (23)

which is evaluated between θ0 and θf for E = 0. This later
equation can be inverted to find the time dependence
of the zero-energy line θE=0(T ), which is then used in
computing the most likely evolution θE=0(t) for t = t0 to
any final time t0 + T .

The most likely paths computed with the procedure
presented above are plotted in Fig. 3 for several different
choices of stochastic energy. The two zero energy solu-
tions are in blue dashed lines, describing the most likely
ways to either lose or gain energy in the measurement
process. In panel (a) of Fig. 3, we plot the most likely
path of ρee versus time, and in panel (b) we show the
most likely quadrature readout I versus time in Eq. (18),
both for the same choices of stochastic energies.

Also of interest is the solution of (the most likely an-
gle) θ = 0 for all time, corresponding to stabilizing the
excited state ∣e⟩. In this case, Eq. (16) is satisfied if
I = 0 for the most likely I quadrature value. The solu-
tion has an action given entirely by the stochastic energy,
Sθ = Et = −γ1t, so the probability of this solution decays
exponentially in time with rate γ1. This behavior is as
one might have expected from Eq. (1).

IV. ITÔ FORMULATION AND STOCHASTIC
ACTION

With the stochastic action, in Eqs. (13), we can also
consider different kinds of correlation functions, such as
⟨u(t1)u(t2)⟩, ⟨I(t1)Q(t2)⟩, etc., particularly when we
fix the first boundary only (only fix the initial state).
For this purpose, it is convenient to transition from the
Stratonovich form to an Itô form of the stochastic dif-
ferential equations (SDEs). This is equivalent to evalu-
ating the state update from the beginning of the time
step rather than the middle of the time step. The tran-
sition may be made by writing the quadrature currents

as their averages, plus stochastic variables, I(t) = ζx+ ξI
and Q(t) = ζy + ξQ, where ξI and ξQ are independent,
zero mean, white Gaussian variables, of variance 1/δt. In
addition to this, the conversion of Stratonovich differen-
tial equations to Itô differential equations demands an
additional drift term in general [37]. Let ri represent the
components of vector (u,x, y) for i = u,x, y and ξj rep-
resent the components of the vector (ξI , ξQ) for j = 1,2.
Then, a Stratonovich differential equation of the form

ṙi = fi +∑
j

Lijξj (24)

is equivalent to Itô SDEs of the same type [37], but
with an additional drift term, di = (1/2)∑j,k(∂rkLij)Lkj .
This transformation gives the Itô equations of motion,

u̇ = −γ1u −

√
ηγ1
2
u(xξI + yξQ), (25a)

ẋ = −(
γ1
2
+ γφ)x +

√
ηγ1
2

[uξI − x(xξI + yξQ)] ,(25b)

ẏ = −(
γ1
2
+ γφ) y +

√
ηγ1
2

[uξQ − y(xξI + yξQ)] .(25c)

which is equivalent to the one written in Ref. [1, 10] in
component form. The Itô form of the SDEs is nice since
we may directly find the averages of each variable by
dropping the stochastic term, and solving the equations
for the averages (we can also find these equations in the
Stratonovich form by taking η → 0),

⟨u(t)⟩ = u0e
−γ1t, ⟨x(t)⟩ = x0e

−γ2t, ⟨y(t)⟩ = y0e
−γ2t,

(26)
as expected. Here, γ2 = γ1/2 + γφ is the total dephasing
rate, combining the effects of relaxation and pure de-
phasing. To go beyond the averages, it is convenient to
introduce the stochastic path integral for this formulation
of the physics. Following the prescription of Ref. [18] we

have a new stochastic action S̃ of the form,

S̃ = ∫ dt′[−puu̇ − pxẋ − py ẏ + H̃], (27a)

H̃ = −pu[γ1u + ζu(xξI + yξQ)]

− px[γ2x + ζ(−uξI + x(xξI + yξQ))]

− py[γ2y + ζ(−uξQ + y(xξI + yξQ))]

− ξ2I /2 − ξ
2
Q/2. (27b)

where H̃ is the new stochastic Hamiltonian, capturing
the equations of motion of the state (25) and the log-
probability of noise terms ξI and ξQ.

V. DIAGRAMMATICS

We can now develop the diagrammatic way to compute
covariance functions. The stochastic action is split into
two parts, the first containing terms that are quadratic in
the various variables, and the rest containing the higher
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Type Labels of vertices Full forms Diagrams

Initial x0, y0, u0 ri,0∫ dt′ pi(t′)δ(t′)

3 legged pxuξI , pyuξQ ζ∫ dt′pi(t′)u(t′) ξk(t′)

4 legged
puuxξI , puuyξQ, pxx

2ξI ,
pxxyξQ, pyyxξI , pyy

2ξQ
−ζ∫ dt′ pi(t′)ri(t′)rj(t′)ξk(t′)

TABLE I. Different possible vertices and associated diagrams: initial vertices, three-legged, and four legged vertices. The index
i(or j) represents the system variables: ri = u,x, y for i = u,x, y, while the index k represents the noise variables: k = I,Q. In
the second column, we list all possible types of vertices, corresponding to all terms in the interaction action SI in Eq. (29).

order terms. The quadratic order terms are the free ac-
tion, given by

S̃F = ∫ dt′{ − pu(u̇ + γ1u) − px(ẋ + γ2x) − py(ẏ + γ2y)

−ξ2I /2 − ξ
2
Q/2}, (28)

The rest of the terms are proportional to ζ, and give the
interacting action,

S̃I = B − ζ∫ dt′(puu + pxx + pyy)(xξI + yξQ)

+ ζ∫ dt′u(pxξI + pyξQ), (29)

including the initial boundary terms

B =∫ dt′{u0puδ(t
′
) + x0pxδ(t

′
) + y0pyδ(t

′
)}. (30)

We will then write these actions in terms of propaga-
tors and define interacting vertices, in order to use dia-
grammatic rules to construct solutions for the statistical
averages.

A. Propagators

From the form of the free action in Eqs. (28)-
(29), the dynamics is already diagonal in our cho-
sen variables, so we can write the free action in
terms of propagators S̃F = − ∫ dtdt

′pi(t)G
−1
i (t, t′)ri(t

′) −
1
2 ∫ dtdt

′ξj(t)G
−1
j,k(t, t

′)ξk(t
′), where the inverse Green

functions for the state variables satisfy

G−1
i (t, t′) = δ(t − t′) (

d

dt
+ γi) , (31)

for i = u,x, y, γu = γ1, and γx,y = γ2. The Green functions
are consequently given by

Gi(t, t
′
) = ⟨ri(t)pi(t

′
)⟩F = Θ(t − t′)e−γi(t−t

′), (32)

where the angle bracket ⟨. . .⟩F denotes the two-time co-
variance function taken with respect to the free action,
and the Θ(t) function is a left continuous Heaviside step
function (Θ(0) = 0 and limt→0+ Θ(t) = 1, see Ref. [18]).

By definition, the white noise sources are statistically in-
dependent and delta-correlated in time, so we have the
Green function for the noise term,

Gj,k(t1, t2) = ⟨ξj(t1)ξk(t2)⟩f = δjkδ(t1 − t2). (33)

where here, the indices are j, k = I,Q denoting the two
noise terms of the two quadratures.

B. Vertices

We see from the interacting action that vertices come
in two basic types, based on the number of legs they have,
either 3 or 4 in our case, plus the initial condition (we
do not consider a final condition here, but could). These
verticies are given in the Table I. The diagrammatic rules
are given in Ref. [18], and are here adapted to these new
verticies and propagators.

C. Averages and correlation functions

We illustrate the diagrammatic rules first with the av-
erage of the coordinates,

⟨ri(t)⟩ = ⟨ri(t)e
S
⟩F =

ri,t ri,0

= ⟨ri(t)ri,0 ∫ dt′pi(t
′
)δ(t′)⟩F

= ri,0 ∫ dt′Θ(t − t′)e−γi(t−t
′)δ(t′)

= ri,0e
−γit, (34)

for the three choices of system coordinates i = u,x, y.
This recovers our earlier results (26), the exponential de-
cays, for the averages.

We move on to compute the correlation functions of the
form ⟨ri(t1)rj(t2)⟩ (between system variables), as well
as ⟨ri(t1)ξk(t2)⟩ (between state variables and noise vari-
ables). We note that correlation functions including the
detector output variables, quadrature I and Q, can be
found by writing I = ζx + ξI and Q = ζy + ξQ, and de-
composing the correlation function into ones of the form
between the system variables and the noises.
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Since the series does not truncate in general, we will
calculate the first few tree-level diagrams to approximate
the correlation functions. As was shown in Ref. [18] this
approximation represents a small-noise approximation,
and works well when the trajectories bunch around the
average (the same is the case when the saddle-point ap-
proximation to the path integral well approximates its
value). In this case, the parameter ζ which is in front of
all the interacting diagrams involves the square-root of
the efficiency η, which provides an additional expansion
parameter (in the experiments of Ref. [10] η ≈ 0.24) since
each vertex brings a factor of ζ.

We begin with the correlation function of u(t) at times
t1 and t2,

⟨u(t1)u(t2)⟩

=
ut2 u0

ut1 u0

+
ut2 x

uI

x
u

ut1 x0
u0
u0
x0 +

ut2 y
uQ

y

u

ut1 y0
u0
u0
y0 .
(35)

Here, there is first the unconnected diagram, which repre-
sents the separate averages of u1 and u2. The remaining
diagrams represent then the covariance of u with itself at
different times. Each of these uses two vertices with four
legs, connected through either a Q or an I noise prop-
agator. Note that we cannot use the 3-legged vertices
because it connects at later time to only x or y. Also,
more diagrams of the above type cannot be generated
with mixed initial conditions (with x0 and y0 on one di-
agram) because that would demand changing the noise
flavor, which cannot be done.

Writing out the diagrams in terms of the Green func-
tions gives the following for the u−u autocovariance func-
tion,

Cuu ≡ ⟨u(t1)u(t2)⟩ − ⟨u(t1)⟩⟨u(t2)⟩

= ζ2u20x
2
0 ∫ dt′Gu(t1, t

′
)Gu(t2, t

′
)Gy(t

′, t0)
2Gu(t

′, t0)
2

+ ζ2u20y
2
0 ∫ dt′Gu(t1, t

′
)Gu(t2, t

′
)Gy(t

′, t0)
2Gu(t

′, t0)
2.

(36)

Evaluating the integrals gives the u − u autocovariance
function to be,

Cuu =
ζ2u20(x

2
0 + y

2
0)

2γ2
e−γ1(t1+t2)(1 − e−2γ2min(t1,t2)), (37)

where min(t1, t2) indicates the minimum of t1 and t2.

We next consider the autocovariance function for the

x-variables at two different times, given by

Cxx = ⟨x(t1)x(t2)⟩ − ⟨x(t1)⟩⟨x(t2)⟩

=
xt2 u

I

uxt1 u0

u0
+

xt2 x
xI

uxt1 u0

x0
x0 +

xt2 u

I

x
x

xt1

u0

x0
x0

+
xt2 x

xI

x
x

xt1 x0
x0
x0
x0 +

xt2 y
xQ

y

x

xt1 y0
x0
x0
y0 , (38)

where we have used both three and four legged diagrams.
By substituting the Green functions and evaluating time
integrals, we get

Cxx = ζ
2e−γ2(t1+t2)

⎡
⎢
⎢
⎢
⎣

u20 (1 − e−2(γ1−γ2)min(t1,t2))

2(γ1 − γ2)

−
2u0x

2
0 (1 − e−γ1min(t1,t2))

γ1

+
x20(x

2
0 + y

2
0) (1 − e−2γ2min(t1,t2))

2γ2

⎤
⎥
⎥
⎥
⎦
. (39)

For the y−y autocovariance function Cyy, it has the same
form as Cxx but replacing x0 with y0 and y0 with x0.

The cross-covariance function between different vari-
ables (including system variables and noise variables)
can also be computed in the similar fashion. The cross-
covariance function for x and y is given by,

Cxy =
yt2 y

x

x

I x

xt1 x0
x0
x0
y0 +

yt2 y

y

y

Q x

xt1 y0
x0
y0
y0

+
yt2 y

x

u

I

xt1 u0

x0
y0 +

yt2 u

x

Q y

xt1

u0

x0
y0

=ζ2e−γ2(t1+t2)
⎡
⎢
⎢
⎢
⎣

x0y0(x
2
0 + y

2
0) (1 − e−2γ2min(t1,t2))

2γ2

−
2u0x0y0 (1 − e−γ1min(t1,t2))

γ1

⎤
⎥
⎥
⎥
⎦
, (40)

where Cxy ≡ ⟨x(t1)y(t2)⟩ − ⟨x(t1)⟩⟨y(t2)⟩. We also show
the result of the cross-covariance between u and x which
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is,

Cux =
xt2 x

x

u

I x

ut1 u0
x0
x0
x0 +

xt2 y
x

y

Q u

ut1 y0
u0
x0
y0

+
xt2 u

u

I x

ut1

u0

u0
x0

=ζ2e−γ1t1−γ2t2
⎡
⎢
⎢
⎢
⎣

u0x0(x
2
0 + y

2
0) (1 − e−2γ2min(t1,t2))

2γ2

−
u20x0 (1 − e−γ1min(t1,t2))

γ1

⎤
⎥
⎥
⎥
⎦
. (41)

As before, the cross-covariance function for the u and y
variables is in this same form, but changing x0 → y0 and
y0 → x0.

Next, it is of interest to compute ⟨ri(t1)ξk(t2)⟩, the
correlation of the quantum trajectory variables with the
noise variables. We note that the correlators of this form
vanish if t1 ≤ t2 (the noise now can only affect the system
in the future), so we consider only t1 > t2 in the equations
below. For the correlator between u and ξI , there is one
diagram at leading order,

⟨u(t1)ξI(t2)⟩ =
ξI,t2

I

x
u

ut1 x0
u0

= −ζx0u0e
−γ1t1−γ2t2 for t1 > t2. (42)

Similarly, the correlator ⟨u(t1)ξQ(t2)⟩ is of the same
form, but with the replacement x0 → y0, and using the
corresponding vertices. We then consider the correlation
function between x and the noise in the I-quadrature
(ξI),

⟨x(t1)ξI(t2)⟩ =
ξI,t2

I

uxt1 u0

+
ξI,t2

I

x
x

xt1 x0
x0

= ζu0e
−γ2t1−(γ1−γ2)t2 − ζx20e

−γ2(t1+t2), (43)

for t1 > t2, and between x and ξQ,

⟨x(t1)ξQ(t2)⟩ =
ξQ,t2
Q

x
y

xt1 x0
y0

= −ζx0y0e
−γ2(t1+t2) for t1 > t2 (44)

Similarly, ⟨y(t1)ξQ(t2)⟩ is given by Eq. (43) but with
x0 → y0, and ⟨y(t1)ξI(t2)⟩ is exactly given by Eq. (44).
Previously, we gave a general argument that higher order
diagrams are suppressed by powers of ζ. We illustrate

this here by considering a higher order correction to the
correlator ⟨u(t1)ξI(t2)⟩, where

higher order =
ξI,t2

I

u
x

ut1
I

u

x
x

u0
x0
x0
x0

= −ζ3x30u0 ∫ dt′dt′′Gu(t1, t
′
)Gu(t

′, t′′)Gx(t
′, t′′)

×Gu(t
′′,0)Gx(t

′′,0)3δ(t2 − t
′
).

= −ζ3u0x
3
0e
−γ1t1−γ2t2 1 − e−2t2γ2

2γ2
. (45)

We see that this diagram is suppressed by at least ηx20/2
compared to the leading order diagram, with additional
suppression for 2γ2t2 < 1.

D. Comparison with numerical simulation

The correlation functions presented in the previous
subsection are computed from the tree-level diagrams,
representing the first few orders of expansions in the
small-noise approximation. As discussed in [18], these
approximate solutions can accurately describe the cor-
relation functions of a system with low efficiency (small
value of η), and in the short-time regime. We verify this
by simulating 104 qubit trajectories for η = 0.2 via a
Monte Carlo method and compute their variances and
covariances. The efficiency was chosen to be comparable
to the experiments of Ref. [10]. As shown in Figure 5,
the agreement between the approximate solutions and
the numerical simulation is excellent. The variances in
the system variables grows for some time to a maximum
value and then drop to zero eventually (at the same time
the qubit relaxes to its ground state), whereas the co-
variances between different variables decay as t1 deviates
from t2. Moreover, the correlation functions between the
system variables and the noise variables vanish whenever
t1 ≤ t2, as predicted in the equations (42)-(44). We note
that similar quality of agreement can still be seen with
η > 0.2 and is acceptable up to η ∼ 0.5. The approxi-
mate solutions at this expansion order fail to capture the
system behavior as η approaches 1.

We note the appearance of certain magic initial con-
ditions, that cause a suppression of some noise correla-
tors. As shown in Fig. (5a, 5c), for the initial condition
u0 = 1, x0 = 1, y0 = 0, the subsequent diffusion of the x
variable is greatly suppressed to leading order in the ex-
pansion, so the x − x covariance diagram vanishes. We
can see this explicitly by writing this covariance function
(39) in the special case where γφ = 0, y0 = 0 as

Cxx =
ζ2

γ1
(u0 − x

2
0)

2e−γ1(t1+t2)/2 (1 − e−γ1min(t1,t2)) . (46)

It is clear that this correlator vanishes if u0 = 1, x0 = 1.
By changing the initial state to u0 = 1/

√
2+1, x0 = 1/

√
2,
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Trajectories: u,x,y Covariances Covariances

time time t1

Variances

time t1

u(t)
x(t)
y(t)

FIG. 5. The theoretically calculated variance and covariance functions (solid lines) are compared to their corresponding
simulated data (dotted lines), for the system variables u,x, y and the noise variables ξI , ξQ, given a fixed initial condition.
Panel (a) shows sample trajectories generated with u0 = 1, x0 = 1, y0 = 0, γφ = 0, and η = 0.2, with 200 time steps of size
0.01 (time is plotted in units of γ−11 ). To make a fair comparison, we simulate trajectories using the exact state update
equations (9) and generate the measurement outcomes at each time step with (4) and (5). Panels (b,c,d) show the variances
and autocovariances of qubit variables u,x, y, as well as their and cross-covariances with the noise variables ξI , ξQ for the same
set of data shown in panel (a). Other covariance functions are not shown that vanish for all time. Panels (e,f) show the

autocovariances and cross-covariances for a different initial state u0 = 1/
√

2 + 1, x0 = 1/
√

2, y0 = 0, where in this case we see
that all autocovariances of qubit variables are non-zero (there is a non-trivial Cov[u(t1)x(t2)] not shown here). Note that we
use the notation Cov[a(t1)b(t2)] ≡ ⟨a(t1)b(t2)⟩ − ⟨a(t1)⟩⟨b(t2)⟩ to explicitly show the time arguments.

y0 = 0, the x − x covariance function becomes nontrivial,
as seen in Fig. (5e). Similar magic points are u0 = 1, x0 =
0, y0 = 1 for the y −y covariance, and u0 = 2, x0 = 0, y0 = 0
for the u − u covariance. Of course, in the ground state,
u0 = 0, x0 = 0, y0 = 0, all correlators vanish. Higher order
correlators may be calculated in a similar way.

VI. CONCLUSIONS

We have considered the problem of a relaxing su-
perconducting qubit, whose fluorescence is continuously
monitored via a phase-preserving heterodyne measure-
ment giving continuous quadrature measurement data.
We have derived the probability distribution of short-
time measurement results, as well as the measurement
back-action on the state. This describes the relaxation
of the qubit, but can also show counter-intuitive results
where the conditioned measurement result causes the
qubit to increase its energy. We then found stochastic
differential equations describing the qubit dynamics. The
solution of the most likely path between chosen bound-
ary conditions, as well as the calculation of approximate
correlation functions was carried out by reformulating
the problem as a stochastic path integral, and applying

the methods of that formalism. The same solution was
found using quantum control theory. We find good agree-
ment between the results of those calculations and Monte
Carlo numerical simulations of the trajectories and nu-
merical averaging of the correlation functions. In par-
ticular, since in the experiments of Ref. [10], the effi-
ciency of the measurement was about 0.24, this improves
the agreement, since the perturbation scheme is a small
noise approximation, which is more accurate for smaller
efficiency.
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Appendix A: Contextual Values

In this appendix, we connect the POVM formalism
with the question of what system operator the fluores-
cence is measuring. The contextual value formalism in-
dicates what operators can be measured, based on the
measurement that is being done. Since the kind of mea-
surement defines the context of the experiment, this mo-
tivates the name contextual values. In our system, the
measurement operator (8) defines the POVM elements
Eα on the system, labeled by the continuous complex
variable α, written in the ∣e⟩, ∣g⟩ basis,

Eα =M
†
αMα = (

1 − ε(1 − ∣α∣2)
√
εα

√
εα∗ 1

) e−∣α∣
2

. (A1)

The contextual value approach [24, 25] allows us to target
given system observables A by defining contextual values
CA(α), such that operator A may be constructed from
the POVM elements,

A = ∫
d2α

π
CA(α)Eα. (A2)

The contextual values may be viewed as generalized
eigenvalues of operator A, appropriate to the context of
the measurement.

We stress that if the appropriate CA(α) are chosen,
then from repeated measurements from the same (gen-
erally unknown) state, we can reconstruct the (projec-
tive) averages of that operator A from those weak mea-
surements for any state, provided the construction exists.
That is,

⟨A⟩ = Tr[ρA] = ∫
d2α

π
CA(α)Tr[ρEα] (A3)

= ∫
d2α

π
CA(α)P (α) = ⟨CA⟩P , (A4)

where the last average ⟨. . .⟩P is an average over the dis-
tribution of data in hand, P (α). While the inverse of this
problem is not unique, and generally an infinite number
of solutions exist, two typical solutions are the pseudo-
inverse solution [24, 25] which works well when both
E(α) and A are diagonalizable in the same basis (which
is not the case here), and a simple polynomial solution,
which does work here. It is easy to reconstruct the iden-
tity operator by setting CA(α) = 1. We note that the two
choices

Cσx(α) =
2
√
ε
Reα, Cσy(α) =

−2
√
ε
Imα, (A5)

are able to exactly construct the operators σx and σy.
Thus, by repeated weak measurements of this form, we
can extract the initial x and y components of any density

matrix. This is related to Eq. (6), the distribution of the
quadratures. We can also find a contextual value con-
struction for σz, although it takes many more samples
of the distribution to accurately construct, because it in-
volves an order ε shift of the distribution, rather than
the order

√
ε of the first two Pauli matrices. One can

check by explicit calculation that the contextual value
assignment

Cσz =
2

ε
(∣α∣2 − 1) − 1 (A6)

is able to construct the operator σz. This assignment may
be interpreted as a shifted and rescaled average photon
number from the measurement data. Consequently, the
fluorescence measurement results permit the construction
of any qubit observable, and therefore can topographi-
cally construct an arbitrary initial state.

It is important to stress that the fluorescence measure-
ment described in the main text is a continuous measure-
ment, and not described by the procedure given above. In
particular, the state backaction is such that for repeated
weak measurements, the state disturbance accumulates,
and the system eventually relaxes to state ∣g⟩, and not
to σx or σy eigenstates as one might expect. This ulti-
mately comes from the system operator in the interaction
Hamiltonian being σ− = ∣g⟩⟨e∣.

Appendix B: Stochastic action and most likely path
for an arbitrary diffusive system

This appendix generalizes the treatment given in the
main text to an arbitrary quantum system being mea-
sured by an arbitrary number of continuous output sig-
nals. We assume diffusive measurement dynamics, as
well as the Markov approximation. The stochastic action
of the main text is generalized accordingly. By specific
choices of the measurement operators we introduce, the
fluorescence measurement dynamics of the main text is
recovered.

Consider first the following stochastic master equation
driven by a single Wiener process W (here H is an Her-
mitian operator, L is a measurement operator, and the
detection efficiency is η ∈ [0,1]):

ρt+dt−ρt = dρ = (−ı[H,ρ] + (LρL†
− 1

2
(L†Lρ + ρL†L)))dt

+
√
η(Lρ + ρL†

−Tr (Lρ + ρL†)ρ)dW, (B1)

with the measured output signal rt =
√
ηTr ((L +L†)ρ)+

dW
dt

. It admits the following discrete-time formula-
tion [19, 20] where dt > 0 is much smaller than the char-
acteristic times associated to H and L:

ρt+dt =
M̃rtρtM̃

†
rt + (1 − η)L̃ρtL̃

†dt

Tr (M̃rtρtM̃
†
rt + (1 − η)L̃ρtL̃†dt)

, (B2)
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with

Mr = I − (iH +L†L/2)dt +
√
η rL dt

R = I + (−iH + L†L
2

) (iH + L†L
2

)dt2

M̃r =Mr (
√
R)

−1

L̃ = L (
√
R)

−1
.

Here the probability to detect rt knowing ρt is given by
the following density, depending linearly on ρt:

P (rt ∈ [r, r + dr] / ρt) =

Tr (M̃rρtM̃
†
r + (1 − η)L̃ρtL̃

†dt)
√

dt
2π

e−r
2dt/2 dr. (B3)

The normalization corresponding to the right multiplica-
tion of Mr and L by the inverse of

√
R implies that

∫

+∞

−∞

Tr(MrρtM
†
r+(1−η)LρtL

†dt)
√
dt

√
2π

e−r
2dt/2 dr ≡ 1.

Notice that up-to second order terms versus dt, M̃r and
L̃ coincide with Mr and L.

This discrete-time formulation (B2) converges in law
(i.e. in distribution), for dt tending to 0+, to the continu-
ous time formulation (B1). This essentially results from
the fact that their Markov generators, denoted below by
A and B respectively, coincide up to O(

√
dt) terms:

• For any C2 function ρ ↦ f(ρ), the expectation
value of (f(ρt+dt) − f(ρt))/dt knowing ρt and cal-
culated with (B1) is, according to Itô rules,

Af(ρ) =
∂f

∂ρ
⋅ ( − ı[H,ρ] + (LρL†

− 1
2
(L†Lρ + ρL†L)))

+
η
2

∂2f

∂ρ2
⋅ (Lρ + ρL†

−Tr ((L +L†
)ρ)ρ ,

Lρ + ρL†
−Tr ((L +L†

)ρ)ρ).

• the expectation value of (f(ρt+dt)−f(ρt))/dt know-
ing ρt and based on (B2) is given by:

Bf(ρt) = E(
f(ρt+dt) − f(ρt)

dt
/ ρt)

=

+∞

∫
−∞

(
e−r

2dt/2Tr(M̃rρtM̃
†
r+(1−η)L̃ρtL̃dt)√

2π dt
)

(f (
M̃rρtM̃

†
r+(1−η)L̃ρtL̃dt

Tr(M̃rρtM̃
†
r+(1−η)L̃ρtL̃dt)

) − f(ρt)) dr.

Some tedious computations yield Bf(ρt) = Af(ρt) +

O(
√
dt).

Since for any r, we have

M̃rρM̃
†
r + (1 − η)L̃ρL̃†dt = ρ + r

√
η(Lρ + ρL†

)dt

+(−i[H,ρ] + (1 − η)LρL†
− 1

2
(L†Lρ + ρL†L)) dt+O(dt2)

we get, up-to second order terms versus dt,

ρt+dt − ρt
dt

≈ L(ρ, r) ≡ −ı[H,ρ]+LρL†
− 1

2
(L†Lρ+ρL†L)

+ η(Tr (LρL†)ρ −LρL†)

+ r
√
η(Lρ + ρL†

−Tr (Lρ + ρL†)ρ) (B4)

and

log (Tr (M̃rρtM̃
†
r + (1 − η)L̃ρtL̃

†dt) e−r
2dt/2

) ≈ F(ρ, r)

≡ (−r2/2 + r
√
ηTr (Lρ + ρL†) − ηTr (LρL†)) dt. (B5)

We have the following correspondences between the no-
tations of section II-A in [17] and those used here:

• q becomes here ρ, an Hermitian operator of unit
trace;

• p the adjoint state becomes here ξ, an Hermitian
operator;

• p ⋅ q̇ becomes here Tr (ξρ̇).

The stochastic Hamiltonian defined by (3) in [17, section
II A] reads then

H(ξ, ρ, r) = Tr (ξL(ρ, r)) +F(ρ, r)

−Tr (ξ(ρ − ρI)) δ(t) −Tr (ξ(ρ − ρF ) δ(t − T ). (B6)

where, following the explanation of [17, appendix A], the
super-operator L and F are given by (B4) and (B5). Con-
sequently, the first order stationary conditions (5a-5b-5c)
of [17, section II B] characterizing the most likely path
become

d

dt
ρ = L(ρ, r)

d

dt
ξ = −i[H,ξ] − (L†ξL − 1

2
(L†Lξ + ξL†L))

− η(Tr (LρL†) ξ + (Tr (ξρ) − 1)L†Lν −L
†ξL)

− r
√
η(ξL +L†ξ −Tr (Lρ + ρL†) ξ − (Tr (ξρ) − 1)(L +L†

))

r =
√
η(Tr (ξ(Lρ + ρL†

)) −Tr (Lρ + ρL†) (Tr (ξρ) − 1)).

For arbitrary diffusive systems governed by

dρ = (−ı[H,ρ] +∑
ν

LνρL
†
ν −

1
2
(L†

νLνρ + ρL
†
νLν)) dt

+
√
ην(Lνρ + ρL

†
ν −Tr (Lνρ + ρL

†
ν)ρ)dWν (B7)

with m measured output signals,

rν,t =
√
ηνTr ((Lν +L

†
ν)ρ) +

dWν

dt
for ν = 1, . . . ,m,
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we have similarly the following discrete time formula-
tion [19, 20]:

ρt+dt =
M̃rtρtM̃

†
rt +∑

m
ν=1(1 − ην)L̃νρtL̃

†
νdt

Tr (M̃rtρtM̃
†
rt +∑

m
ν=1(1 − ην)L̃νρtL̃

†
νdt)

with rt = (r1,t, . . . , rm,t)

Mr = I − (iH +
m

∑
ν=1

L†L/2)dt +
m

∑
ν=1

√
ην rνLν dt

R = I + (−iH +
m

∑
ν=1

L†
νLν
2

)(iH +
m

∑
ν=1

L†
νLν
2

)dt2

M̃r =Mr (
√
R)

−1

L̃ν = Lν (
√
R)

−1
.

Here the probability to detect rt knowing ρt is given by

the following density, depending linearly on ρt:

P(rt ∈
m

∏
ν=1

[rν , rν + drν] / ρt) =

Tr(M̃rρtM̃
†
r +

m

∑
ν=1

(1 − ην)L̃νρtL̃
†
νdt)

m

∏
ν=1

√
dt
2π

e−r
2
νdt/2 drν .

Then, the stochastic Hamiltonian is given by (B6) with
the following super-operators

L(ρ,r) = −ı[H,ρ] +∑
ν

(LνρL
†
ν −

1
2
(L†

νLνρ + ρL
†
νLν))

+∑
ν

(ην(Tr (LνρL
†
ν)ρ −LνρL

†
ν))

+∑
ν

(rν
√
ην(Lνρ + ρL

†
ν −Tr (Lνρ + ρL

†
ν)ρ)) .

F(ρ,r) =∑
ν

( − r2ν/2

+ rν
√
ηνTr (Lνρ + ρL

†
ν) − ηνTr (LνρL

†
ν) ).

For the fluorescence qubit, the stochastic master equa-
tion (25) corresponds to (B7) with the following set of
operators

H = 0, L1 =
√

γ1
2
σ−, L2 = iL1 and L3 =

√
γφ
2
σz,

the following detection efficiencies, η1 = η2 = η and η3 = 0,
and only two measurements r1 = I, r2 = Q, r3 being ab-
sent since η3 = 0. We have checked that d

dt
ρ = L(ρ,r)

provides then, with the modified Bloch sphere coordi-
nates (u,x, y), system (12).
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