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• Global sensitivity analysis (GSA) is sen-
sitive to the description of LCA inputs.

• The robustness of GSA results in the
LCA of innovative products needs to be
assessed.

• A strategy to analyze the influence of
the description of the inputs variability

• Several GSA are reiterated and recom-
mendations retrieved for the key inputs
selection.

• Case study: identification of key param-
eters of enhanced geothermal systems
LCA
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In the life cycle assessment (LCA) context, global sensitivity analysis (GSA) has been identified by several authors
as a relevant practice to enhance the understanding of themodel's structure and ensure reliability and credibility
of the LCA results. GSA allows establishing a ranking among the input parameters, according to their influence on
the variability of the output. Such feature is of high interest in particular when aiming at defining parameterized
LCA models.
When performing a GSA, the description of the variability of each input parametermay affect the results. This as-
pect is criticalwhen studying newproducts or emerging technologies, where data regarding themodel inputs are
very uncertain and may cause misleading GSA outcomes, such as inappropriate input rankings. A systematic as-
sessment of this sensitivity issue is now proposed.
We develop amethodology to analyze the sensitivity of theGSA results (i.e. the stability of the ranking of the inputs)
with respect to the description of such inputs of themodel (i.e. the definition of their inherent variability).With this
research, we aim at enriching the debate on the application of GSA to LCAs affected by high uncertainties.
We illustrate its application with a case study, aiming at the elaboration of a simple model expressing the life
cycle greenhouse gas emissions of enhanced geothermal systems (EGS) as a function of few key parameters.
Our methodology allows identifying the key inputs of the LCAmodel, taking into account the uncertainty related
to their description.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction
Life cycle assessment (LCA) is widely considered as the most relevant
methodology to assess the environmental performances of products and
processes over their life cycle and is currently applied to different indus-
trial sectors (Jacquemin et al., 2012;Moomaw et al., 2011). Due to the in-
herent variability of the input parameters, the large number of
assumptions and sometimes the incomplete knowledge of modeled pro-
cess, the importance of assessing uncertainties through sensitivity analy-
sis (SA) has been stressed since the early development of the LCA
methodology (Heijungs, 1996; Huijbregts, 1998; Lloyd and Ries, 2007).
The ISO standard for LCA (ISO 14040, 2006; ISO 14044, 2006) also indi-
cates SA as a fundamental part of the analysis, without however
recommending a particular calculation technique.

In the LCA context, global sensitivity analysis (GSA) has been recently
identified by several authors as a relevant practice to address several is-
sues: (i) to study the combined influence of the different input parame-
ters (Padey et al., 2013), (ii) to assess the robustness of the results (Wei
et al., 2015), (iii) to enhance the understanding of the structure of the
model (Cucurachi et al., 2016) (iv) to ensure transparency, reliability
and credibility of LCA practices (Bisinella et al., 2016) and (v) to contrib-
ute to the decision-makingprocess (Andrianandraina et al., 2015). GSA al-
lows establishing a ranking among the input parameters and identifying
the most influential on the variability of the output of the model. The
identification of such key parameters is fundamental when aiming at
the simplification of the uncertainty quantification: in fact, based on the
GSA results, the efforts to minimize the uncertainty can be focused only
on few key input variableswhile the others can befixed to average values
without influencing the results (Bisinella et al., 2016; Wei et al., 2015).
Identifying the most influent variables also allows developing simplified
parameterized LCA models (Padey et al., 2013). In general, GSA tech-
niques support the execution of LCAs and facilitate its interpretation, pro-
moting an enhanced decision making process (Cucurachi et al., 2016).

The question of how to perform GSA in a LCA context has been ad-
dressed by few studies (Cucurachi et al., 2016; Andrianandraina et al.,
2015; Wei et al., 2015; Bisinella et al., 2016). In particular, the recent
work of Cucurachi et al. (2016) proposes a comprehensive multi-step
protocol for the integration of sensitivity and uncertainty analysis in the
impact assessment phase of LCAs. Examples of application of GSA tech-
niques to LCAs are also to be found in Lacirignola et al. (2014), Marini
and Blanc (2014), Azadi et al. (2015) and Cucurachi and Heijungs (2014).

When conducting a GSA, the description of the variability of each
input parameter is one of the most important steps, because it could sig-
nificantly affect theGSA results (Wei et al., 2015). This step is called in this
paper “description of the inputs” and consists in defining (i) the minimum
and maximum values they can assume and (ii) if some values are more
probable than others within those boundaries. Such description is done
by the LCA modeler, who allocates a probability distribution (Gaussian,
uniform, or any other) over the defined range of variability of each
input. This process is based on expert opinions, literature survey or even
better on field data. While mentioning the importance of the description
of the inputs, the above-mentioned studies however do not propose a
systematic assessment of its influence on the GSA results.

In an ideal case, themodeler has a high confidence on the performed
description. This can be found for instance in the GSA performed by
Padey et al. (2013) on the LCA of wind turbines: in this study, the de-
scriptions of two of the input variables (the load factor and the nominal
power of the machines) are based on data collected from hundreds of
turbines currently installed in France. In general, when the system ana-
lyzed is well known, the application of GSA protocols available in liter-
ature (see for instance Cucurachi et al., 2016) is adequate to clearly
identify the main drivers of the model.
Fig. 1.Methodology for the identification of key input parameters of a LCA model accounting
Cucurachi et al. (2016). ([1] = Lacirignola et al. (2014); [2] = Andrianandraina et al. (2015);
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On the contrary inother cases, especiallywhen studyingnewproducts
or emerging technologies, the level of confidence of the inputs' descrip-
tion is significantly low due to the limited amount of available informa-
tion. For instance such issue is to be found in Lacirignola et al. (2014),
where GSA is applied to the LCA of an innovative energy technology:
the enhanced geothermal systems (EGS), of which less than ten installa-
tions exist today in Europe (Van Wees et al., 2013; Baujard et al., 2015).
In such LCA the description of the input parameters is quite uncertain be-
cause it is only based on the few data available from the industry, discus-
sion with experts and literature survey (for instance Genter et al., 2010
and Huenges, 2010). In this context the robustness of the GSA results
needs to be further investigated.

The goal of the present study is to set up a methodology to perform
such investigation, overcoming the critical issue of handling very uncer-
tain information regarding the input parameters. It also aims at enriching
the debate on the application of GSA to LCAs, by focusing on this specific
critical issue. Our research focuses on the sensitivity of the GSA itself (i.e.
the variability of the GSA results and the identification of the key inputs)
with respect to the description of such inputs (i.e. the definition of their
variability). This issue has never been addressed before despite being of
paramount importance, especially when studying innovative products.

Starting from the GSA protocol presented by Cucurachi et al. (2016),
we propose a methodology that relies on the reiteration of several GSA
calculations under different hypothesis regarding the description of the
input parameters. This allows assessing the stability of the parameters'
ranking, while considering the level of confidence of their description.
We also analyze whether the contribution of one input to the output's
variance appears to vary significantly from one calculation to another.
We then retrieve relevant recommendations for the selection of the
key parameters of the model. Our methodology is presented in
Section 2. We illustrate its application with a case study (Section 3) fo-
cused on the environmental analysis of enhanced geothermal systems
(EGS) (based on Lacirignola et al., 2014). The latter aims at the elabora-
tion of a simplified LCA model for the estimation of the greenhouse
gases (GHG) emissions of this innovative energy technology. Starting
from a reference parameterizedmodel, we take advantage of GSA to ob-
tain a reduced model only based on the key parameters. The case study
is divided in two parts. We first apply a “baseline” GSA approach based
on Sobol Indices, then we highlight the sensitivity of the GSA results
with respect to the inputs' description with an example. In the second
part, we illustrate how our methodology is addressing this sensitivity
issue and allows identifying the most influent input parameters ac-
counting for the uncertainty related to their description. Section 4 pro-
poses a critical discussion of our approach, presenting the possible
variants and axes of improvement, in particular aiming at reducing
the computational costs. Section 5 presents the concluding remarks,
underlining the importance of awise use of GSA techniques for a correct
understanding of the LCA model.

2. Methodology

Themethodologywe propose to performGSA in the LCA context han-
dling very uncertain assumptions regarding the inputs' description is pre-
sented in Fig. 1. It starts from the protocol presented by Cucurachi et al.
(2016), which is further extended by setting a strategy to analyze the in-
fluence of the inputs' description on their ranking obtained through the
GSA. Such ranking, i.e. the ordered list of the parameters from the more
to the less influent on themodel output, allows identifying the key inputs
of the LCA model. As stated in the Introduction, other authors have also
presented frameworks of application of the GSA in the LCA context
(Andrianandraina et al., 2015; Wei et al., 2015; Bisinella et al., 2016): in
Fig. 1, we use the term “baseline” GSA approach to refer to a GSA
for the influence of the inputs' description, starting from the GSA protocol proposed by
[3] = Bisinella et al. (2016)).
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procedure that does not take into account our additional analysis (pro-
posed in Step 3B) of the influence of the inputs' description.

2.1. Step 1: Identification of the LCA model

In the initial step the modeler defines the calculation model, namely
the computational structure used to estimate the life cycle impacts for
the studied impact category according to a set of model parameters. Ac-
cording to the goal and scope of the model, the inputs are identified
(such as the type and the amount of materials involved over the life
cycle of the product and the energy required) and the input-output rela-
tion is formalized (for instance, the model allowing to calculate the life
cycle emissions of greenhouse gases).

2.2. Step 2: Description of the inputs of the model

The modeler identifies for each of the N input parameters (a) the
boundaries of its range of variability and (b) one probability distribution
applied to such variability range (we call it “baseline” distribution to dis-
tinguish it from the “alternative” ones identified in Step 3B, see Section
2.4.2). For a givenparameter, the baseline probability distribution (Gauss-
ian, uniform, lognormal, or other) reflects the best current knowledge re-
garding the variability of the input, according to the goal and scope of the
model. This is based on available data (from literature or other sources)
and expert knowledge. Once the distributions are established, a random
sample of each of the inputs is generated.

Based on the information provided in this step, it is also possible to an-
alyze the propagation of the inputs' uncertainty by generating a Monte
Carlo sample of the output (or also using other propagation methods,
such as those dedicated to high dimensional input spaces and faster
convergence).

2.3. Step 3A: Baseline global sensitivity analysis

In this step, the global sensitivity analysis is performed. Since this is
based on the baseline probability distributions established in the previous
phase, we call it the “baseline” GSA, which allows distinguishing it from
the other GSAs performed further in Step 3B (see Section 2.4.3).

If the number ofmodel inputs is high, themodelermay here performs
an initial screening in order to identify the non-influential parameters and
fix them to average values, as proposed by Andrianandraina et al. (2015).
This can be done by applying different screeningmethods available in the
literature, such as the qualitative approach illustrated by Morris (1991).

The methodology that we propose relies on the hypothesis that the
input parameters are independent. In this case it is possible to describe,
through a probability distribution, the variability of each parameter inde-
pendently. Several GSAmethods can be found in the literature, see for in-
stance Groen et al. (2016), Wolf et al. (2016) and Padey et al. (2013). For
comprehensive reviews of the available options we suggest referring to
Saltelli et al. (2008) or Iooss (2011). In our framework we suggest to
use the methodology proposed by Sobol' (2001), which is based on the
decomposition of the variance and estimates sensitivity indicators called
Sobol indices. They are appropriate for our analysis since they provide a
quantitative measure, thus they allow computing easily the ranking
among the variables, and they have a convenient interpretation in
terms of explained variance of output. For instance, for a given model
z= f (x1,x2,… ,xN), the first order Sobol index, denoted Si

First,
indicates the contribution of the variance of the input xi to the overall var-
iance of the output z (Eq.1).

SFirsti ¼ V E zjxi½ �½ �
V z½ � ð1Þ

Thus if for example the input xi has a SiFirst=0.2 he contributes to 20%
of the overall variance of the output z.

Since the GSA is based on random samples of data (generated in Step
2), we recommend performing bootstrapping to assess the confidence of
Please cite this article as: Lacirignola,M., et al., LCA of emerging technologie
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theGSA results. Themodelermust also assess if the size of such samples is
large enough to reduce the effects of numerical instability. For instance, if
overlapping is observed among the uncertainty ranges of the Sobol indi-
ces, the modeler must reduce it to theminimum by enlarging the sample
size.

Thefinal output of Step 3A provides the ranking among the input pa-
rameters of the model and a quantitative measure of their relative im-
portance. This allows identifying the ones that are responsible for
most of the variability of the output, i.e. those displaying the largest
Sobol Indices. If the indices of two or more parameters are very close,
different bootstraps of the baseline GSAmay produce different rankings.
The modeler must take note of this residual ranking instability, because
the latter will also appear in the results of Step 3B.

If the modeler is sufficiently confident on all the probability distribu-
tions established to describe the inputs, after Step 3A he can proceed di-
rectly to an overall evaluation of the results (Step 4) and to the
selection of the key parameters (Step 5). On the contrary, if the descrip-
tion of one or more inputs is particularly uncertain (e.g. when studying
new products or emerging technologies), we propose to proceed from
Step 3A to the additional Step 3B before the conclusive Steps 4 and 5.

2.4. Step 3B: Analysis of the influence of the inputs' description

This step aims at studying if and how the identification of the set of
key parameters is influenced by the description of the inputs. To achieve
this, the GSAwill be reiterated several times under different input condi-
tions: this will lead to the production of a number of possibly different
rankings of the inputs.

2.4.1. 3B – (I) Criteria to identify the set of key parameters
In this step, the modeler must define the criteria to detect the inputs'

description that are eventually influent on the identification of the set of
key parameters. To do that, themodelermust first clarify what is the con-
dition for being identified within the set of key parameters, by establish-
ing a targeted threshold for their “aggregated contribution”, for example
60% (or more). In this case that the key parameters (showing the highest
Si
First)must be together responsible of at least 60% of the overall variability
of the output: namely the sum of their SiFirst must be higher than 0.6. In-
deed, the number of selected key parameters depends on this threshold:
for instance two key parameters may be sufficient in the baseline scenar-
io, nevertheless a deeper analysis may show that - under different hy-
pothesis - three or even four parameters may be necessary to achieve
the targeted 60%. Therefore, the modeler will be interested in observing
whether the set of key parameters remains the same or not after different
GSA calculations. If such ambiguity is found, then thedescription of the in-
puts has a significant influence.

An alternative approach for the selection of the key parameters con-
sists in focusing on their single contribution rather than their aggregated
one (i.e. observing if each Si

First is above a certain threshold). However,
such approach alone may not be sufficient to identify a set able to cover
a given share of the output variance: in the case study, we'll use it only
for a complementary analysis (for more details see also to the Supporting
information S8).

2.4.2. 3B – (II) Definition of alternative descriptions of the inputs
This phase conceptually corresponds to the Step 2 previously de-

scribed (Section 2.2). For each of the N input parameters, the modeler
identifies a number of possible alternative descriptions (i.e. other possible
probability distributions applied to its interval of variability, different
from the baseline one established in Step 2). The number of ki alternative
descriptions (including the baseline one) is set by the modeler and may
be different for each i-th parameter.

For instance, if the baseline distribution of one parameter is Gaussian
with μ = 10 and σ= 1, an alternative distribution may have a different
shape (e.g. triangular), or a different mean (e.g. μ = 12), or a different
standard deviation (e.g. σ = 2), or a combination of all these changes.
s: addressing high uncertainty on inputs' variabilitywhen performing
016/j.scitotenv.2016.10.066
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In any case, at this step it is necessary to consider realistic constraints: this
can mean for example avoiding negative values for a parameter that is
meant to be only positive. The general condition is that each of the alter-
native distributionmust be plausible according to the current knowledge
and to the goal and scope of the model. A random sample is then gener-
ated from the established descriptions. The difference between the alter-
native and the baseline distributions of one variable can be quantified by
measuring the differentmeans and standard deviations: thiswill enhance
the understanding of how the space of distributions is explored (see the
Supporting information S7).

2.4.3. 3B – (III) Reiteration of the GSA
This step conceptually corresponds to Step 3A (performing the GSA,

Section 2.3) but the GSA is here reiterated several times, each time con-
sidering a different set of descriptions of the input parameters. The same
sensitivity indices chosen in Step 3A are used here. Concretely, a one fac-
tor at a time (OAT) approach is used for reiteration of the GSAs, as de-
tailed hereafter. The analysis starts with the observation of the first of
theN input parameters. Here, k1 GSAs are performed, each time consid-
ering one of the several k1-th distributions for the first parameter, while
the baseline distribution is set for all the other parameters.
Bootstrapping can also be used at every stage of calculation (in the
Eq.2, B is the amount of bootstraps per GSA). The sameprocess is repeat-
ed for the other i-th parameters. At the end of each bootstrap, the global
sensitivity indices and the obtained ranking (i.e. the sorted order of the
inputs according to their influence on the output's variability) is stored.
Without repeating the casewhere all distributions are the baseline ones,
the total number of GSAs performed in this study (i.e. the total number
of rankings recorded) is given in Eq.2:

Total number of rankings ¼ ∑
N

i
ki−1þ 1

" #
� B ð2Þ

Reiterating the GSA with such an OAT approach regarding the input
conditions does not account for all the possible combinations of descrip-
tions of the input parameters. However, it still allows formulating rele-
vant observations for the scope of the study, while keeping the process
relatively simple. Amore global approach, whichwould consider all the
possible combinations of descriptions of the inputs (requiring a much
higher computational cost), is discussed in Section 4 (Discussion).

2.4.4. 3B – (IV) Analysis of the influence of the inputs' description
Based on the calculations performed in the previous phase, the mod-

eler here analyzes the sensitivity of theGSAoutputs (the global sensitivity
indices and the collection of rankings of the input parameters) with re-
spect to the description of the inputs. This is done according to the criteria
established at the beginning of Step 3B (Section 2.4.1).

In this phase, the modeler first identifies how many key parameters
need to be selected to achieve the targeted threshold for their aggregated
contribution (defined in Step 3B – (I)). Then he identifies which descrip-
tion of the inputs has a significant influence on this selection process. In
other words, the modeler here finds out if describing one input with e.g.
a Gaussian instead of a uniformdistribution leads him to identify different
sets of key parameters. Such analysis is performed one factor at the time
(observing the ki ⋅B rankings related to each single parameter) and also
by examining the aggregated results of all the GSAs (observing the
whole set of obtained rankings). The modeler will identify which are the
key parameters later, in Step 5: it isworth to remind that if one parameter
is selected as “key”, it doesn't necessarily mean that the description of its
variability is influent on the selection process.

2.4.5. 3B – (V) Consideration of the level of confidence of the inputs'
description

If the description of a parameter is found to be influent on the iden-
tification of the key parameters and its level of confidence is low (i.e. it is
Please cite this article as: Lacirignola,M., et al., LCA of emerging technologie
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based on numerous assumptions), such description should be refined.
In other words, themodeler should try to collect further data to validate
or improve the baseline probability distribution used. However, espe-
cially when studying new products or emerging technologies, it may
happen that a more detailed analysis is not possible because of lack of
existing additional data: in this case, an alert must appear when
exploiting the GSA results. This may affect the identification of the key
parameters: with a conservative approach, a larger number of key pa-
rameters may eventually be selected (i.e. including those affected by
the alerts).

Conversely, the modeler may find out that the description of a pa-
rameter is particularly influent on the GSA output, while also being con-
fident about the baseline probability distribution chosen in Step 2
(obtained for example from a sufficiently large statistical sample of
data). In this case the input's description doesn't need to be refined.

As discussed in Section 4 (Discussion), this Step 3B - (V) can also be
performed earlier, inquiring about the level of confidence before the be-
ginningof Step 3B in order to simplify the calculationprocess. It is also im-
portant to remind that the aim of this analysis is not to identify which is
the best description for a parameter among several alternatives. The
goal is to enhance the understanding of the model, and to formulate ap-
propriate alerts and recommendations for the use of the GSA results.

2.5. Step 4: Overall evaluation

At the end of every step of the proposed methodology, the modeler
should verify if the obtained results are in accordance with intuition,
check for misleading interpretations and eventually reiterate partially or
totally the calculation process if needed. For instance, the modeler must
be alerted by results of the output of the LCA model (generated in Step
2) that are too far from those available in literature, or by the observation
of drastic changes in the ranking position (e.g. from the first to the last) of
one parameter during Step 3B. Such process of consistency check should
be continuous, but for simplicitywe represent in ourmethodology (Fig. 1)
just one step of overall evaluation of the results, labeled as Step 4: this
constitute the minimum requirement in terms of consistency check.

2.6. Step 5: Identification of key input parameters of the LCA model

Based on the outcome of the previous steps, themodeler formulates
conclusions and recommendations for the selection of the key inputs of
the model. Namely, he identifies which are the key parameters able to
cover a sufficient share of the variability of the output (for instance
60%, as in the example provided in Section 2.4.1). If the description of
one or more inputs provoked an alert in Step 3B – (V), the modeler
must take it into account in the process of selection of the key parame-
ters, as discussed in Section 2.4.5.

2.7. Application of the GSA results

As stated in the Introduction (Section 1), one possible application of
the GSA in the LCA context is the elaboration of simplified calculation
models, where the life cycle impacts are expressed as a function of
few key parameters identified through the GSA. Other possible uses of
the GSA results can be found in Andrianandraina et al. (2015), where
eco-designed scenarios are established using the lower values of the
most influential drivers, and in Bisinella et al. (2016), where the authors
propose to recalculate the uncertainty propagation considering only the
key parameters.

3. Case study

The object of the case study is a renewable energy based emerging
technology: the enhanced geothermal systems. The methodology de-
scribed in Section 2 is applied to identify the key input parameters of
an EGS LCA model. The latter is based on the one recently published
s: addressing high uncertainty on inputs' variabilitywhen performing
016/j.scitotenv.2016.10.066

http://dx.doi.org/10.1016/j.scitotenv.2016.10.066


6 M. Lacirignola et al. / Science of the Total Environment xxx (2016) xxx–xxx
by Lacirignola et al. (2014) and is presented here in an updated form
that accounts for themost recent characterization factors corresponding
to the IPCC, 2013 method (IPCC, 2013).
Table 1
Description of the nine parameters of the EGS Reference parameterized model.

μ: 4,000 σ: 1,155 Δμ: 0% Δσ: –43%

μ: 2.10 σ: 1.53 Δμ: 99% Δσ: 65%

μ: 62.5 σ: 21.7 Δμ: 0% Δσ: –43%

μ:5,000 σ:1,155 Δμ: 0% Δσ: –43%

μ: 30 σ: 3.3 Δμ: 0% Δσ: 76%

μ: 0.90 σ: 0.03 Δμ: 0% Δσ: –43%

μ: 6.1 σ: 1.4 Δμ: 0% Δσ: –43%

μ: 2.5 σ: 0.5 Δμ: –8% Δσ: –8%

μ: 2,375 σ: 650 Δμ: 0% Δσ: –43%

Baseline

distribution

(type 1)

Value

range

[unit]

Parameter

0.5 – 10

[Ad.]

25 – 100

[kg/s]

3,000 – 7,000

[MJ/m]

Type 2

Load factor

(LF)

Installed

capacity

ORC (PORC)

Uniform

Trunc–lognormal

Uniform

Uniform

Trunc–gaussian

Uniform

Borehole

depth (z)

Scaling

factor

enhan.

(Sfe)

2,000 – 6,000

[Meters]

3.6 – 8.6

[kW/(kg/s)]

2 or 3

[Ad.]

1,250 – 3,500

[kW]

20 – 40

[Years]

0.85 – 0.95

[Ad.]

Uniform

Uniform

Flow rate

(f)

Fuel for

drilling (d)

Lifetime

(LT)

Pumps

specific

power (Pp)

Number of

wells (Nw)

50%50% 70%
30%
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Section 3 is structured in two parts. In Section 3.1 we apply a base-
line GSA approach, without further questioning the description of the
inputs of themodel (i.e. we perform Steps 1, 2, 3A, 4 and 5, boxeswithin
Δμ: –11% Δσ: –8% Δμ: 11% Δσ: –8% Δμ: 0% Δσ: –14%

Δμ: 150% Δσ: 79% Δμ: 150% Δσ: 2% Δμ: 150% Δσ: 53%

Δμ: –13% Δσ: –8% Δμ: 13% Δσ: –8% Δμ: 0% Δσ: –14%

Δμ: –9% Δσ: –8% Δμ: 9% Δσ: –7% Δμ: 0% Δσ: –14%

Δμ: –7% Δσ: 62% Δμ: 7% Δσ: 62% Δμ: 0% Δσ: 51%

Δμ: –1% Δσ: –8% Δμ: 1% Δσ: –8% Δμ: 0% Δσ: –14%

Δμ: –9% Δσ: –8% Δμ: 9% Δσ: –7% Δμ: 0% Δσ: –14%

Δμ: 8% Δσ: –8%

Δμ: –11% Δσ: –8% Δμ: 11% Δσ: –8% Δμ: 0% Δσ: –14%

– –

Alternative distributions

Type 3 Type 4 Type 5

70%
30%

s: addressing high uncertainty on inputs' variabilitywhen performing
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the orange square in Fig. 1). After showing the interest of assessing the
sensitivity of the GSA results (Section 3.2), in Section 3.3 we perform
such investigation, by handling the same five steps mentioned above
with the addition of Step 3B (boxes within the green dotted square in
Fig. 1).

The final purpose of identifying the key inputs in this case study is
the setting of a simplified model, aimed for decision makers, able to es-
timate life-cycle GHG emissions of EGS as a function of a very limited
number of parameters. The development of simplified LCA models
based on the key parameters, initiated by Padey et al. (2013), is one
the possible applications of GSA in the LCA context and is emerging as
a useful technique aimed at decision makers. Simplified LCA models
are designed to address two of the commonly agreed drawbacks of
LCAs: (i) the complexity of the LCA process, which is time consuming
and requires expert knowledge (ii) the applicability of the results,
which often correspondonly to specific configurations of the systeman-
alyzed. These drawbacks may lead policy-makers to consider LCA as a
pretty inconclusive method, especially when aiming at comparing dif-
ferent technological options (Heath et al., 2010). Simplified LCAmodels
aim at overcoming these issues.
1

2

3

3.1. Application of the baseline GSA approach

3.1.1. Step 1: Identification of the LCA model
The LCA model analyzed in this case study, called “Reference model”

(Eq. 3 below), is designed for the analysis of the GHG performances of
EGS installed in central Europe and takes into account current technol-
ogies for all the equipment (Genter et al., 2010; Hettkamp et al., 2011;
Baujard et al., 2015; Bestec, 2012). The boundaries of the system ana-
lyzed include both sub-surface elements (i.e. the geothermal wells)
and surface equipment, like for instance the pumps, the heat exchanger
and the elements of an organic Rankine cycle (ORC) for the electricity
production (no cogeneration). Materials and energy flows related to
the hydraulic and chemical stimulation of the geothermal reservoir
are also accounted for.

The Reference model is a function of nine parameters (first column of
Table 1): the borehole depth (z), the produced flow rate (f), the number
of wells (Nw), the amount of fuel consumed during the drilling phase
(d), the load factor expressing the amount of equivalent operating
hours at nominal power in one year (LF), the lifetime (LT), a dimension-
less factor expressing the intensity of the stimulation of the reservoir
(SFe),1 the specific power of the pumps of the geothermal loop (Pp)
and the installed capacity of the ORC (PORC). These nine parameters
allow the calculation of the GHG performances as they are sufficient to
determine the size of the plant, the amount of material and energy
flows involved over its lifecycle and the total amount of the electricity
produced. Data regarding the background processes (e.g. raw material
extraction or steel production) necessary to elaborate the EGS life
cycle inventory are retrieved from Ecoinvent v2.2 (Ecoinvent Centre,
2010). The selected functional unit is the kWh of net electricity pro-
duced over the lifetime and delivered to the grid. Therefore, the output
results are expressed in terms of grams of CO2 equivalents per kWh.

The parameterized Reference model is presented in Eq. 3. Further de-
tails on the development of this formula can be found in Lacirignola et
al. (2014) and in the Supporting information S1.

GHGEGS Ref
gCO2eq
kWh

� �

¼ z � Nw�α1 þα2 � dþ LT� f �α3 þ PORC � LT�α4 þ Nw�SFe�α5

LT�LF�PORC− f � Pp�8760 ð3Þ
1 SFe is a multiplying factor used to scale up the values of the life cycle inventory of a
“base case” stimulation of the geothermal reservoir. High values of SFe correspond to a
strong enhancement campaign (i.e. high consumption of water, fuel and acid).

Please cite this article as: Lacirignola,M., et al., LCA of emerging technologie
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α1 ¼ 498; 761:36 gCO2eq=m½ �; α2 ¼ 90:56 gCO2eq= MJ �mð Þ½ �;
α3 ¼ 487; 363:03 gCO2eq � s= kg � yð Þ½ �;
α4 ¼ 50; 603:13 gCO2eq= kW � yð Þ½ �; α5 ¼ 25; 757; 089:05 gCO2eq½ �;

Starting from this model, GSA is applied to reduce the number of pa-
rameters of Eq. 3, thus obtaining a more simple calculation tool (called
“Reduced model”), which can be easily used by decision makers. Indeed,
once identified the key parameters, we express the GHG performances
as a function of only those few variables, while fixing the others to
their median value.

3.1.2. Step 2: Description of the inputs of the model
In order to consider a large panel of possible EGS configurations, each

of the nine parameters is characterized by a variability range that reflects
the possible characteristics (i.e. interval of realistic values for each param-
eter) of the EGS in accordance with the scope of the model (see second
column of Table 1). Moreover, a baseline probability distribution is asso-
ciated to each variability range (third column of Table 1). This is
established based on technical survey, literature review and discussion
with experts. The boundaries of the intervals and the baseline distribu-
tions reflect the best current knowledge on EGS within the scope of the
model, considering the current installations and the future potential
power plants. In this paper,we use the same boundaries and distributions
proposed by Lacirignola et al. (2014). A random sample of 500,000 values
for each of the nine input parameters is then generated.

Based on these settings, aMonte Carlo sample of the output is also ob-
tained. That is, the GHG performances of 500,000 possible randomly gen-
erated EGS configurations. We use the simple Monte Carlo sampling
scheme because the dimension of the input space is relatively limited
and it allows the computation of confidence intervals with bootstrap. In
the Supporting information S2, we present a comparison between the
output of the Reference model and the results of different case studies
available in literature (Huenges, 2010; Frick et al., 2010; Bauer et al.,
2008; Platt et al., 2012; Sullivan et al., 2013; Lacirignola and Blanc,
2013). Globally we observe that our results are coherent with literature
and that most of the GHG results lay within the 23–40 gCO2eq/kWh
range.

3.1.3. Step 3A: Baseline global sensitivity analysis
In this step, the “baseline”GSA is performed: each input parameter is

characterized by its baseline distribution within its variability range
(second and third column in Table 1). The nine parameters are statisti-
cally independent (see Lacirignola et al. (2014) for a more detailed
Fig. 2. Results of the baseline GSA: first order Sobol indices of the nine input parameters:
the circles indicate the three highest parameters of the ranking.

s: addressing high uncertainty on inputs' variabilitywhen performing
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discussion on the independency). Under this assumption, we estimate
the global sensitivity through the Sobol Indices.

The results of the baseline GSA are shown in Fig. 2. We observe that
the parameter responsible for most of the variability of the GHG results
is the installed capacity PORC, with a SiFirst of 0.46. The second within the
ranking is the borehole depth z (SiFirst=0.18), followed by thenumber of
wells Nw (SiFirst=0.09). These three key-parameters are together re-
sponsible for about 73% of the variability of the output (sum of their
first order Sobol Indices). The other six variables have a Si

First lower
than 0.06. Moreover, by observing the total order Sobol Indices (pre-
sented in the Supporting information S3), we see that nomajor interac-
tion effects occur: hence the Si

First are sufficient to identify the most
influent parameters.

100 bootstraps of 500,000 random samples are performed, showing
no major fluctuations of the Si

First (cf. narrow boxplots in Fig. 2). There-
fore, the size of the input samples is satisfactory. In the Supporting infor-
mation S4, we propose an illustration of the numerical instability of the
GSA results that occurs when a too small sample is used.

We also observe that the Si
First of d and LT are very close, with their

interquartile ranges overlapping: this means that their ranking posi-
tions may swap when running two different bootstraps. Such behavior
may be avoided but with a prohibitory increase of the sample size:
thus, to reduce the computational costs, we keep the size of 500,000
random samples and we take note of this residual numerical instability
(presented in the Supporting information S5).

3.1.4. Steps 4 and 5: Overall evaluation and identification of the key
parameters

An evaluation of the results was realized all along the calculations of
the previous steps, without finding inconsistencies: results are also co-
herent with those of Lacirignola et al. (2014), which constitutes the
basis of the case study.

For the selection of the key parameters,we set the threshold for their
aggregated contribution to 66%, i.e. they must cover at least two thirds
of the variability of the output. This is set to ensure a sufficient represen-
tativeness of the Reduced model. Within this framework, we conclude
that PORC, z and Nw can be identified as key parameters: they show
the three highest Sobol Indices and the sum of their Si

First is indeed
higher than 0.66. The obtained results are also in accordance with intu-
ition: the energy produced over the lifetime is directly related with the
installed capacity (PORC), and the amount of drilled meter (which de-
pend on z and Nw) is widely considered the main source of GHG emis-
sions (Menberg et al., 2016).
1

2

3

Fig. 3. Results of a GSA under a different hypothesis regarding the description of the
variability of LT (for all the other parameters, the baseline distributions are used): the
circles indicate the three highest parameters of the ranking.
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3.2. Sensitivity of the GSA results: an example based on the case study

Now let's see what happen if we had made different choices during
Step 2. Let's imagine that for some reason (e.g. lack of data or choice to
have a more conservative approach) we had set, for the variable LT, a
uniform instead of a Gaussian distribution for the baseline scenario.
The results are shown in Fig. 3 (in this simulation, for the other eight
variables, the baseline distribution are unchanged i.e. are the ones
shown in the third column of Table 1). We observe a doubling of the Si-
First of LT, which now appears to be the third more relevant variable
(slightly overtaking Nw) while it was only the 5th of the ranking in
Fig. 2. Therefore, in this casewewould rather identify PORC, z and LT (in-
stead of Nw) as key parameters together responsible for more than 66%
of the variability of the output. Other conclusions may also be drawn
when changing the description of other variables (another example is
provided in the Supporting information S6, where an alternative de-
scription of PORC is tested).

This simple example shows that the description of the variability of
the inputs is essential and has a high influence on the identification of
the key parameters. Such description is usually based on quite uncertain
assumptions, especially when studying an emerging technology like the
EGS. In these cases, the analysis of the robustness of the GSA results is es-
sential to investigate their sensitivity. Such analysis can be executed with
the approach showed in the next section, namely by performing the addi-
tional Step 3B.

3.3. Proposed GSA approach to address high uncertainty regarding the in-
puts' description

3.3.1. Steps 1, 2 and 3A
As discussed in Section 2 (Methodology), the proposed strategy to

address the lack of confidence in the inputs' description represents an
extension of the baseline GSA approach presented in Section 3.1 (see
Fig. 1). Steps 1, 2 and 3A are to be performed exactly in the same way
as illustrated in Sections 3.1.1, 3.1.2 and 3.1.3, therefore there is no
need to repeat their content here. Once completed the baseline GSA
(Step 3A), we proceed to the analysis of the influence of the distribu-
tions (Step 3B) in order to investigate the robustness of the GSA results.

3.3.2. Step 3B: Analysis of the influence of the inputs' description

3.3.2.1. 3B – (I) Criteria to identify the set of key parameters. The threshold
for the aggregated contribution of the key parameters is set to 66%
(same as in Section 3.1): this will allow a comparison between the out-
come of the baseline and the proposed GSA approaches.

3.3.2.2. 3B– (II) Definition of alternative descriptions of the inputs. For each
of the nine inputs, several possible alternative distributions are identi-
fied. As discussed in the Methodology (Section 2), the number and the
characteristics of the alternatives is set by the modeler, provided that
all of them are realistic according to the current knowledge and the
goal and scope of the analysis. In this study, we consider in total five
types of continuous distribution (including the baseline one) per pa-
rameter, except for the number of wells Nw (three discrete distribu-
tions) as shown in Table 1 (third to seventh column). It is important
to note that, for each single parameter, the boundaries of its variability
interval (where to apply the alternative distributions) remain un-
changed. In fact, such boundaries represent the minimum and maxi-
mum values for the i-th parameter according to the goal and scope of
this case study.

In the baseline case, most of the parameters are characterized by a
uniform distribution: this is essentially due to lack of data (Lacirignola
et al., 2014), resulting in a conservative assessment.With the alternative
distributions, we account for the realistic possibility that the values at
the boundaries (either closer to the minimum or the maximum of the
range) are the most probable: this is done by establishing trapezoid
s: addressing high uncertainty on inputs' variabilitywhen performing
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Table 2
Representation of the calculation process for the GSA reiteration.We observe one parameter at a time: each §i-thGSA takes into account one of the several ki-th non-baseline distributions
for the i-th parameter, while the baseline distribution is set for all the others. 100 bootstraps per GSA are performed.

§ GSA z SFe f d LF LT Pp Nw PORC

§1 (Baseline)
×100

bootstraps

Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 2 (×100) TYPE 2 Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 3 (×100) TYPE 3 Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 4 (×100) TYPE 4 Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 5 (×100) TYPE 5 Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 6 (×100) Baseline TYPE 2 Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 7 (×100) Baseline TYPE 3 Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 8 (×100) Baseline TYPE 4 Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 9 (×100) Baseline TYPE 5 Baseline Baseline Baseline Baseline Baseline Baseline Baseline

§ 32 (×100) Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline TYPE 2

§ 33 (×100) Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline TYPE 3

§ 34 (×100) Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline TYPE 4

§ 35 (×100) Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline TYPE 5

[…] […] […] […] […] […] […] […] […] […]
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distributions (or step functions for Nw). We also explore the possibility
of a Gaussian description of the variability of the inputs, considering two
possible standard deviations. According to the knowledge of themodel,
other methods for generating alternative distribution can be also con-
sidered (e.g. displacement of the mean or the mode of the distribution,
homothetic transformation, etc.)

We define the following settings for our alternative distributions: (i)
uniform: all values equiprobable; (ii) truncated Gaussian with standard
Fig. 4. Sum of the Si
First of the top two, three and four parameters in the ranking. The

boxplots are based the results of 3,500 GSAs as defined in Table 2.
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deviation set to 1/6 of the interval's width; (iii) truncated centered
Gaussian with standard deviation set to 1/3 of the interval's width;
(iv) trapezoid, with the probability associated to the left boundary of
the interval five times higher to the one associated to the right boundary
; (v) trapezoid, with the probability associated to the left boundary of
the intervalfive times lower to the one associated to the right boundary.
The parameter Nw is characterized by a discrete variability range with
two values (i.e. two or three wells): the probability distributions are
hence step functions allocating to those two values respectively a prob-
ability of: 50% and 50% (equiprobability), 70% and 30% or 30% and 70%.

Table 1 also displays the difference between the alternative and the
baseline distributions in terms of relative variation of the mean μ and
standard deviation σ (see also the Supporting Information S7 for a
more detailed discussion of the differences).

3.3.2.3. 3B – (III) Reiteration of the GSA. In this step, several GSA are per-
formed, according to the strategy represented in Table 2. As defined in
the previous steps, the Reference model is based on 9 parameters
(N = 9) and 5 probability distributions per parameter are considered
except for Nw. Therefore, the calculation strategy is based on 35 differ-
ent combinations of the distributions (indicated as §i in the first column
of Table 2). Bootstrapping is also performed: each of the 35 GSA is re-
peated 100 times. Therefore, according to Eq. 2, 3,500 potentially differ-
ent rankings are obtained in this study (indeed, each bootstrap
corresponds to a new GSA calculation).

3.3.2.4. 3B – (IV) Analysis of the influence of the inputs' description. Fig. 4
shows that, as a result of the several GSAs performed, the sum of the Si-
First of the first two parameters of the ranking can range from 0.55 to
s: addressing high uncertainty on inputs' variabilitywhen performing
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covered by 5 different  
parameters

Fig. 6. Sensitivity of the ranking with respect to the description of the input parameters:
aggregated results of the analysis one parameter at a time.
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0.69 (the boxplots are based on the Si
First issued from 3,500 GSAs). This

means that, in most cases, two key inputs are responsible for less than
66% of the overall variability of the output (in the remaining cases,
their aggregated contribution can achieve 69% at best). Conversely, the
sum of the Si

First of the first three parameters of the ranking is always
higher than 0.66. We conclude that in order to be sure to cover at
least 66% of the variability of the output (as established at the beginning
of Step 3B), it is necessary to constitute a set of at least three key
parameters.

We now analyze the results of the ranking among the 9 inputs of the
model, considering that those in the first three positions should be se-
lected as key parameters. We start by observing the results of the five
GSA calculations in which we modify the description of the borehole
depth (z): these GSAs are noted §1, §2, §3, §4 and §5 in Table 2 and
each of them is repeated 100 times (bootstrapping). Therefore, we ob-
tain 500 ranking results. The outcome is presented in Fig. 5: the num-
bers in the boxes indicate the amount of times the parameters is
found in that given ranking position. For instance, the parameter z
(borehole depth, Fig. 5A) results 2nd in the ranking after 400 GSAs, 3rd

after 68 GSAs and 4th after the remaining 32 GSAs. Then, we observe
the results of the 500 GSAs in which we modify the description of the
next input parameter, SFe (GSAs noted as §1, §6, §7, §8, §9 in Table 2,
each of those repeated 100 times, Fig. 5B), and so on. The aggregated re-
sult of all 3,500 GSA calculations is presented in Fig. 6.

Based on these figures, the following observations can be formulated:

a) When modifying the description of the variability of the depth (z)
(Fig. 5A), we see that the flow rate (f) and z itself may pass from
being “key” (above the red dotted line) to “non-key” (below the
red dotted line). For instance, the flow rate is in the 4th position
(non-key) for most of the calculations, but in 32 GSAs it results 3rd

in the ranking (key). The same thing is observed when modifying
the description of the variability of the lifetime (LT) (Fig. 5E). Here
the number of wells (Nw) and the LT itself oscillate between key
and non-key positions. Therefore, the description of the variability
of z and LT has a significant influence on the selection of the key pa-
rameters. The importance of the description of z is also shown in the
Supporting Information S8, where we analyze the changes observed
on the single contribution of each parameter.

b) The description of the variability of PORC (installed capacity, Fig. 5I)
may cause a swapamong thefirst two positions of the ranking. How-
ever, this influence is not significant because in these calculations
the top three positions are always covered by the same three
Please cite this article as: Lacirignola,M., et al., LCA of emerging technologie
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variables (PORC, z and Nw)
c) Also the descriptions of SFe, f, d, LF, Pp and Nw (Figs. 5B, 5C, 5D, 5F,

5G, 5H) do not have an influence on the selection of the key param-
eters, because they cause changes in the ranking only between the
4th and the 7th positions.

d) As expected, we observe that the lifetime (LT) and the fuel for dril-
ling (d) often swap their ranking position (respectively the 5th and
6th), even when no change is made on their distributions. This is
due to the fact that their SiFirst are very close (cf. Fig. 2) and even
small perturbations in the random samples used for theGSA can eas-
ily “generate” the swaps. This phenomenon of residual numerical in-
stability, already discussed in Section 3.1.3, is observed in all of the
results of Fig. 5.

e) When observing the aggregate results of the 3,500 rankings (Fig. 6),
we see that the three highest positions, due to the sensitivity of the
parameters to their description, may be covered by five different
variables: PORC, z, Nw, f and LT. Those are all potential key-variables
to be selected for the Reduced model.

Based on these results, we conclude that the descriptions that have
an influence on the identification of the key parameters are the ones
of z and LT.

3.3.2.5. 3B – (V) Consideration of the level of confidence of the inputs' de-
scription. Once identified the importance of the description of the vari-
ability of z and LT according to the scope of the study, we must
inquire about their level of confidence. As stated before, only few EGS
power plants currently exist in Europe. Thus, the baseline distributions
chosen are based on few data and expert knowledge (Lacirignola et al.,
2014). Therefore on one hand their level of confidence is low (it may
change in the future when new data will be available), but on the
other hand it can't be further improved since it reflects the best current
knowledge. In conclusion, an alert regarding the description of these
two parameters must appear when the conclusions of the analysis are
formulated (Step 5, see Section 3.3.4).

3.3.3. Step 4: Overall evaluation
A consistency check was performed all along the application of the

methodology and no counterintuitive results were spotted. The aggre-
gated results of Step 3B (Figs. 5 and 6) are coherent with the one of
the baseline GSA (Step 3A, Fig. 2). They provide sufficient information
to enhance the understanding of the model and to formulate alerts for
the final phase of the study, i.e. the identification of the key parameters
and the generation the Reduced model. Such Reduced model will be ob-
tained by fixing the non-key parameters to their median value.

3.3.4. Step 5: Identification of key input parameters of the LCA model
If we were relying only on the baseline GSA (Step 3A), we would

have selected without hesitation only three key parameters: PORC, z
and Nw (the results of the baseline GSA, Section 3.1, shows that PORC,
z and Nw are together responsible for more than 66% of the variability
of the output). However, the results of Step 3B provide useful additional
information. Indeed, we found (Fig. 4) that three key parameters are
sufficient to cover 66% of the output's variability (as requested at the be-
ginning of Step 3B) no matter the type of distribution used to describe
the inputs. However, Fig. 6 shows that the top three positions of the
ranking may be covered by five different variables (PORC, z, Nw, f and
LT) depending on the description of the inputs (especially z and LT as
discussed in Section 3.3.2.4).We are also alerted on the uncertainty car-
ried by the descriptions of z and LT, since their level of confidence is low
and no improvement is to be foreseen with the current knowledge. In
conclusion, given that the descriptions of some inputs are influent on
the GSA result and are also uncertain, it is preferred to select as key pa-
rameters all the five that could possibly cover the three highest posi-
tions of the ranking.
s: addressing high uncertainty on inputs' variabilitywhen performing
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3.3.5. Application of the GSA results: generation of the Reduced model
Based on this enhanced knowledge of the Reference model, we con-

clude that the Reduced modelmust be a function of these five variables:
PORC, z, Nw, f and LT. We will let the user of the Reduced model define
their values, instead of fixing them to their median value beforehand.

Hence, the resulting formula for the estimation of the GHG perfor-
mances of EGS is given by Eq. 4:

GHGEGS Reduced
gCO2eq
kWh

� �

¼ Nw�ω1 � zþω2 þ LT�ω3 � f þω4 � PORC

LT�PORC− f �ω5
ð4Þ

With:

ω1 ¼ 120:70 gCO2=m � h=y½ �; ω2 ¼ 5;161:87 gCO2=h=y½ �;
ω3 ¼ 61:82 gCO2eq � s=kg � h½ �; ω4 ¼ 6:42 gCO2eq=kWh½ �;
ω5 ¼ 6:10 kW � s=kg½ �;

A comparison of the results of some LCAs of EGS proposed by differ-
ent authors from literature (Frick et al., 2010; Bauer et al., 2008;
Huenges, 2010)with the results obtained through the formula of the Re-
ducedmodel (Eq. 4) is proposed in the Supporting Information S9. Glob-
ally, we observe that the results of the Reduced model are coherent with
those from literature, attesting the robustness of this simplified tool
based on these 5 key parameters that allow a rapid calculation of the
life cycle impacts without undertaking the long and complex LCA
procedure.

4. Discussion

With the case study, we show that the description of the inputs may
have a significant influence on the GSA results (for instance, the ranking
of the LT fluctuates over four positions, depending on the description of
its variability) and on their exploitation (in our example, we finally de-
cide to include f and LT in the set of key variables). However, this aspect
is not addressed by the literature nor by the available calculation soft-
wares. Indeed, tools to perform local and global sensitivity analysis are
available in both commercial and open-source softwares, however
these tools do not consider the question of the “sensitivity of the sensi-
tivity analysis”. We propose here a firstmethodological approach to un-
derstand the magnitude of the influence of the inputs' description on
the identification of the key parameters and to take appropriate actions
if needed.

Of course, when comparing to a baseline GSA approach, our strategy
entails an additional task (i.e. Step 3B of themethodology), however the
increase in complexity and calculation cost is reasonable, considering
the added value it provides. As stated in the Introduction, our strategy
is principally aimed for modeler analyzing emerging products or tech-
nologies. In fact, when the object of the LCA is a new or innovative
item, the entry data of the GSA are usually lacking or highly uncertain
and can possibly lead to completely misleading assessments. Obviously,
unreliable results are of little interest: our methodology allows increas-
ing their robustness and pointing sources of unreliability that need to be
discussed. Moreover, considering that the GSA itself has a non-negligi-
ble computational cost, investigating its robustness is essential to con-
solidate the effort made by the modeler (which otherwise may be
vain or questionable).

As discussed in Section 2, the proposed calculation strategy (Table 2)
is based on the observation of the ranking's variations that occur when
wemodify the description of just one parameter at a time (while, for the
others, the baseline description is set). A more advanced approach
would consider all the possible random combinations of descriptions
of the inputs. Referring to our case study this means that, for one single
GSA, each of the nine parameters would be randomly characterized by
one of the alternative distributions: concretely such strategy would
Please cite this article as: Lacirignola,M., et al., LCA of emerging technologie
global sensitivity analysis, Sci Total Environ (2016), http://dx.doi.org/10.1
correspond to the realization of a sort of “GSA of the GSA”. However,
in this paper we keep an OAT approach for the reiteration of the GSAs
for several reasons. To start, our first objective is to highlight the interest
of investigating the sensitivity of the GSA output and to present, with a
concrete application, the importance of the initial hypothesis on the
final results. Then, given the seminal character of this publication, we
aimed at presenting a first, explorative approach to address the sensitiv-
ity problem: indeed the interpretation of the OAT results is easier, given
that the changes in the output can be ascribed only to one input at the
time. Other than being conceptually challenging, the GSA of the GSA
would also entail a dramatic increase of the computational resources
needed. In fact, in order to explore the entire space of combinations,
the number of ranking to be established would be the following:

Total number of rankings GSA of the GSAð Þ ¼ ∏
N

i
ki

� �
∙B ð5Þ

For our case study, this corresponds to about 120 millions of rank-
ings. Even with lower values for ki or B, the total amount of repeated
GSAs is in the order of millions, namely three orders of magnitude
higher than the one used in this paper. In conclusion, we believe that
our OAT reiteration of the GSA allows drawing useful recommendations
while keeping the computational strategy relatively simple. It also con-
stitutes a first brick in the investigation of the sensitivity of the GSA re-
sults. The exploration of a “GSA of the GSA” strategy (and the set-up of
appropriate indicators to exploit its results) will be object of further
studies.

On the other hand, some remarks can be also formulated with the
aim of simplifying the calculation strategy of Step 3B. Indeed, the com-
putational cost of the analysis may also be a problemwhen the number
of input parameters N is high (e.g. several dozens). In this case, two so-
lutions are suggested:

– Perform an initial screening to reduce the number of uncertain pa-
rameter. This can be done with a qualitative sensitivity method
like the one proposed by Morris (1991). Such approach is for in-
stance presented by Andrianandraina et al. (2015) and Wei et al.
(2015).

– Exclude from the analysis the parameters with a high level of confi-
dence regarding their description. Indeed, in the methodology that
we described, we analyze the sensitivity of all the N parameters
(Step 3B – (III)) and we inquire a posteriori about the level of confi-
dence of their description (Step 3B - (V)). This is proposed in order
to acquire a global understanding of the model. However, since the
highly reliable descriptions will not be challenged further (even if
they results being very influent on the ranking), the modeler may
exclude them from the analysis performed in Step 3B (in this case,
Step 3B – (V) will be moved before Step 3B – (I)).

Another relevant remark is that the conclusions of the analysis of
course depend on the choices and hypothesis made by the modeler
(e.g. the features of the alternative distributions). However, this is an in-
trinsic characteristic of any sensitivity analysis. We believe that the pro-
posed methodology, while relying on some reasonable assumptions,
still allows enhancing the understanding of the model.

5. Conclusions

Global sensitivity analysis is a powerful tool to study the influence of
the different parameters of complex models and to establish a ranking
among them, in order to identify the ones that are most influent on
the variability of the output. However, the application of GSA has to be
handled with care, since its results can be heavily influenced by the ini-
tial assumptions: this aspect is particularly critical when studying new
products or emerging technologies. With the EGS case study we
s: addressing high uncertainty on inputs' variabilitywhen performing
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provided a clear illustration of how the description of the variability of
one input can affect its position in the ranking and its contribution to
the output's variance. This research proposes a strategy for a wise use
of GSA in the LCA context investigating the stability of the parameters'
rankingwhile considering their level of confidence.We develop ameth-
odology that allows estimating the sensitivity of theGSA resultswith re-
spect to the description of the variability of the several inputs and to
take appropriate action for a relevant identification of key the parame-
ters of the model.

While our methodology implies an augmentation of the computa-
tional cost (when compared to the execution of one single GSA), the in-
crease in complexity is still reasonable and the results are sufficiently
readable. Some options to simplify or to enhance the calculation strate-
gy are also discussed.

In conclusion, our methodology allows an enhanced understanding
of the LCA model and in particular of the relevancy of the inputs' de-
scription. This is fundamental to assess the robustness of theGSA results
and for the development of future experiments. The strategy illustrated
here has not been proposed so far in literature, hence this study pro-
vides a relevant contribution to the debate on the application of GSA
to LCAs. Moreover, since GSA is also applied in many other different
fields of science and engineering, the analysis proposed in this article
may also contribute to the enrichment of the sensitivity studies outside
the LCA context.

Acknowledgements

Wewould like to acknowledge Dr. Thierry Ranchin and all themem-
bers of the O.I.E. centre of MINES ParisTech for their useful comments
and warm support during the realization of this study. We also ac-
knowledge the three anonymous reviewers for their valuable com-
ments that helped us to improve significantly the quality of this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2016.10.066.

References

Andrianandraina, Ventura, A., Senga Kiessé, T., Cazacliu, B., Idir, R., Van der Werf, H.M.G.,
2015. Sensitivity analysis of environmental process modeling in a life cycle context: a
case study of hemp crop production, J. Ind. Ecol. 19, 978–993. (doi:10.1111/jiec.12228).

Azadi, P., Brownbridge, G., Mosbach, S., Inderwildib, O., Kraft, M., 2015. Simulation and life
cycle assessment of algae gasification process in dual fluidized bed gasifiers. Green
Chem. 17:1793–1801. http://dx.doi.org/10.1039/C4GC01698J.

Bauer, C., Dones, R., Heck, T., Hirschberg, S., 2008. Environmental assessment of current
and future Swiss electricity supply options. Proceedings of the International Confer-
ence on the Physics of Reactors “Nuclear Power: A Sustainable Resource”, 14–19 Sep-
tember 2008. Switzerland, Interlaken.

Baujard, C., Genter, A., Graff, J.J., Maurer, V., Dalmais, E., 2015. ECOGI, a NewDeep EGS Pro-
ject in Alsace, Rhine Graben, France. Proceedings World Geothermal Congress 2015,
19–25 April 2015 (Melbourne, Australia).

Bestec, 2012. The Insheim Geothermal Project (http://www.bestec-for-nature.com/
j2510m/index.php/en/projects-en/insheim-en, Accessed July 2016).

Bisinella, V., Conradsen, K., Højlund Christensen, T., Fruergaard Astrup, T., 2016. A global
approach for sparse representation of uncertainty in life cycle assessments of waste
management systems. Int. J. Life Cycle Assess. 21 (3):378–394. http://dx.doi.org/10.
1007/s11367-015-1014-4.

Cucurachi, S., Heijungs, R., 2014. Characterisation factors for life cycle impact assessment
of sound emissions. Sci. Total Environ. 468-469:280–291. http://dx.doi.org/10.1016/j.
scitotenv.2013.07.080.

Cucurachi, S., Borgonovo, E., Heijungs, R., 2016. A protocol for the global sensitivity anal-
ysis of impact assessment models in life cycle assessment. Risk Anal. 36:357–377.
http://dx.doi.org/10.1111/risa.12443.

Ecoinvent Centre, 2010. Ecoinvent data v2.2. Ecoinvent reports No.1–25 (http://
www.ecoinvent.org. Accessed July 2016).
Please cite this article as: Lacirignola,M., et al., LCA of emerging technologie
global sensitivity analysis, Sci Total Environ (2016), http://dx.doi.org/10.1
Frick, S., Kaltschmitt, M., Schröder, G., 2010. Life cycle assessment of geothermal binary
power plants using enhanced low-temperature reservoirs. Energy 35, 2281–2294.

Genter, A., Baumgartner, J., Cuenot, N., Graff, J.J., Kolbel, T., Sanjuan, B., 2010. The EGS
Soultz Case Study: Lessons Learnt after Two Decades of Geothermal Researches. Sec-
ond European Geothermal Review, Mainz.

Groen, E.A., van Zanten, H.H.E., Heijungs, R., Bokkers, E.A.M., de Boer, I.J.M., 2016. Sensitiv-
ity analysis of greenhouse gas emissions from a pork production chain. J. Clean. Prod.
129:202–211. http://dx.doi.org/10.1016/j.jclepro.2016.04.081.

Heath, G., Plevin, R., Kim, H.-C., Sovacool, B., 2010. special session on meta-analysis of en-
ergy LCAs. Presented at Life Cycle Assessment X: Bridging Science, Policy and the Pub-
lic, 2–4 November 2010 (Portland, USA).

Heijungs, R., 1996. Identification of key issues for further investigation in improving the
reliability of life-cycle assessments. J. Clean. Prod. 4 (3–4), 159–166.

Hettkamp, T., Baumgärtner, J., Teza, D., Gandy, T., Frost, J., 2011. Production pump tech-
nology in the Landau and Insheim geothermal projects. Proceedings of the Soultz
Geothermal Conference, 5–6 Oct 2011 (Soultz-sous-Forêts, France).

Huenges, E., 2010. Geothermal Energy Systems: Exploration, Development and Utiliza-
tion. Wiley-VCH.

Huijbregts, M.A.J., 1998. Part I: a general framework for the analysis of uncertainty and
variability in life cycle assessment. Int. J. Life Cycle Assess. 3 (5), 273–280.

Iooss, B., 2011. Revue sur l'analyse de sensibilité globale de modèles numériques. Journal
de la Société Française de Statistique 152, 3–25.

IPCC, 2013. The IPCC Fifth Assessment Report - Climate Change 2013: The Physical Sci-
ence Basis. Working Group I. IPCC Secretariat, Geneva, Switzerland.

ISO 14040, 2006. Environmental management - Life cycle assessment - Principles and
framework. International Standard Organization.

ISO 14044, 2006. Environmental management - Life Cycle Assessment - Requirements
and guidelines. International Standard Organization.

Jacquemin, L., Pontalier, P.-Y., Sablayrolles, C., 2012. Life cycle assessment (LCA) applied to
the process industry: a review. Int. J. Life Cycle Assess. 17:1028–1041. http://dx.doi.
org/10.1007/s11367-012-0432-9.

Lacirignola, M., Blanc, I., 2013. Environmental analysis of practical design options for en-
hanced geothermal systems (EGS) through life-cycle assessment. Renew. Energy 50:
901–914. http://dx.doi.org/10.1016/j.renene.2012.08.005.

Lacirignola, M., Hage Meany, B., Padey, P., Blanc, I., 2014. A simplified model for the esti-
mation of life-cycle greenhouse gas emissions of enhanced geothermal systems. Geo-
thermal Energy 2 (8). http://dx.doi.org/10.1186/s40517-014-0008-y.

Lloyd, S.M., Ries, R., 2007. Characterizing, propagating, and analyzing uncertainty in life-
cycle assessment a survey of quantitative approaches. J. Ind. Ecol. 11, 161–179.

Marini, C., Blanc, I., 2014. Towards prospective life cycle assessment: how to identify key
parameters inducing most uncertainties in the future? Application to photovoltaic
systems installed in Spain. Proceedings of the International Conference on Computa-
tional Science and Its Applications, Guimarães, Portugal, June 30 – July 3, 2014, Part
III:pp. 691–706 http://dx.doi.org/10.1007/978-3-319-09150-1_51.

Menberg, K., Pfister, S., Blum, P., Bayer, P., 2016. A matter of meters: state of the art in the
life cycle assessment of enhanced geothermal systems. Energy Environ. Sci. 9:
2720–2743. http://dx.doi.org/10.1039/C6EE01043A.

Moomaw, W., Burgherr, P., Heath, G., Lenzen, M., Nyboer, J., Verbruggen, A., 2011. Annex
II: Methodology, IPCC Special Report on Renewable Energy Sources and Climate
Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA.

Morris, M.D., 1991. Factorial sampling plans for preliminary computational experiments.
Technometrics 33 (2), 161–174.

Padey, P., Girard, R., Le Boulch, D., Banc, I., 2013. From LCAs to simplifiedmodels: a generic
methodology applied to wind power electricity. Environmental Science & Technology
47, 1231–1238.

Platt, M., Balon, B., Appelhans, K., Bracke, R., 2012. Ökobilanzdaten der geothermischen
Strom- und Wärmeerzeugung in Deutschland imBereichTreibhausgase. Proceedings
of the German Geothermal Congress, 13–16 November 2012. Karlsruhe, Germany.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
Tarantola, S., 2008. Global Sensitivity Analysis—The Primer (Chichester).

Sobol', I.M., 2001. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Math. Comput. Simul. 55, 271–280.

Sullivan, J.L., Clark, C., Han, J., Harto, C., Wang, M.Q., 2013. Cumulative energy, emissions
and water consumption for Geothermal Power Production. J. Renew. Sustain. Energy
5 (023127. doi: 10.1063/1.4798315).

Van Wees, J.-D., Boxem, T., Angelino, L., Dumas, P., 2013. A prospective study on the geo-
thermal potential in the EU, GEOELEC Deliverable n. 2.5. (http://www.geoelec.eu/
concep/library/, Accessed July 2016).

Wei, W., Larrey-Lassalle, P., Faure, T., Dumoulin, N., Roux, P., Mathias, J.D., 2015. How to
conduct a proper sensitivity analysis in life cycle assessment: taking into account cor-
relations within LCI data and interactions within the LCA calculation model. Environ-
mental Science & Technology 49 (1):377–385. http://dx.doi.org/10.1021/es502128k.

Wolf, P., Groen, E.A., Berg, W., Prochnow, A., Bokkers, E.A.M., Heijungs, R., de Boer, I.J.M.,
2016. Assessing greenhouse gas emissions of milk production: which parameters
are essential? Int. J. Life Cycle Assess. http://dx.doi.org/10.1007/s11367-016-1165-y.
s: addressing high uncertainty on inputs' variabilitywhen performing
016/j.scitotenv.2016.10.066

doi:10.1016/j.scitotenv.2016.10.066
doi:10.1016/j.scitotenv.2016.10.066
http://dx.doi.org/10.1039/C4GC01698J
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0010
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0010
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0010
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0010
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0015
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0015
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0015
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0020
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0020
http://dx.doi.org/10.1007/s11367-015-1014-4
http://dx.doi.org/10.1007/s11367-015-1014-4
http://dx.doi.org/10.1016/j.scitotenv.2013.07.080
http://dx.doi.org/10.1016/j.scitotenv.2013.07.080
http://dx.doi.org/10.1111/risa.12443
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0040
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0040
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0050
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0050
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0055
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0055
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0055
http://dx.doi.org/10.1016/j.jclepro.2016.04.081
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0065
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0065
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0065
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0070
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0070
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0075
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0075
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0075
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0080
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0080
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0085
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0085
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0090
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0090
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0095
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0095
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0100
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0100
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0105
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0105
http://dx.doi.org/10.1007/s11367-012-0432-9
http://dx.doi.org/10.1016/j.renene.2012.08.005
http://dx.doi.org/10.1186/s40517-014-0008-y
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0125
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0125
http://dx.doi.org/10.1007/978-3-319-09150-1_51
http://dx.doi.org/10.1039/C6EE01043A
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0140
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0140
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0140
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0140
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0145
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0145
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0150
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0150
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0150
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0155
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0155
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0155
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0160
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0165
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0165
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0170
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0170
http://refhub.elsevier.com/S0048-9697(16)32232-X/rf0170
http://dx.doi.org/10.1021/es502128k
http://dx.doi.org/10.1007/s11367-016-1165-y
http://dx.doi.org/10.1016/j.scitotenv.2016.10.066

	LCA of emerging technologies: addressing high uncertainty on inputs' variability when performing global sensitivity analysis
	1. Introduction
	2. Methodology
	2.1. Step 1: Identification of the LCA model
	2.2. Step 2: Description of the inputs of the model
	2.3. Step 3A: Baseline global sensitivity analysis
	2.4. Step 3B: Analysis of the influence of the inputs' description
	2.4.1. 3B – (I) Criteria to identify the set of key parameters
	2.4.2. 3B – (II) Definition of alternative descriptions of the inputs
	2.4.3. 3B – (III) Reiteration of the GSA
	2.4.4. 3B – (IV) Analysis of the influence of the inputs' description
	2.4.5. 3B – (V) Consideration of the level of confidence of the inputs' description

	2.5. Step 4: Overall evaluation
	2.6. Step 5: Identification of key input parameters of the LCA model
	2.7. Application of the GSA results

	3. Case study
	3.1. Application of the baseline GSA approach
	3.1.1. Step 1: Identification of the LCA model
	3.1.2. Step 2: Description of the inputs of the model
	3.1.3. Step 3A: Baseline global sensitivity analysis
	3.1.4. Steps 4 and 5: Overall evaluation and identification of the key parameters

	3.2. Sensitivity of the GSA results: an example based on the case study
	3.3. Proposed GSA approach to address high uncertainty regarding the inputs' description
	3.3.1. Steps 1, 2 and 3A
	3.3.2. Step 3B: Analysis of the influence of the inputs' description
	3.3.2.1. 3B – (I) Criteria to identify the set of key parameters
	3.3.2.2. 3B – (II) Definition of alternative descriptions of the inputs
	3.3.2.3. 3B – (III) Reiteration of the GSA
	3.3.2.4. 3B – (IV) Analysis of the influence of the inputs' description
	3.3.2.5. 3B – (V) Consideration of the level of confidence of the inputs' description

	3.3.3. Step 4: Overall evaluation
	3.3.4. Step 5: Identification of key input parameters of the LCA model
	3.3.5. Application of the GSA results: generation of the Reduced model


	4. Discussion
	5. Conclusions
	Acknowledgements
	Appendix A. Supplementary data
	References


