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Abstract In the present study, mean field models of grain growth (Hillert and Burke-Turnbull 

models) are compared with 3-D full field simulations considering an isotropic grain bound- 

ary energy and mobility and under the absence of second-phase particles. The present 3-D 

full field simulations are based on a level set description of the grain interfaces within a 

finite element framework. The digital initial microstructures are generated using a coupled 

”Vorono¨ı-Laguerre/dense sphere packing” algorithm. Based on full field simulation results, 

new formulations of Burke-Turnbull and Hillert models are proposed. In contrast with clas- 

sical formulations, the new ones account for the possible heterogeneity of the initial grain 

size distribution. 

Keywords Grain growth · Mean field modeling · Full Field modeling · Level set 

 
1 Introduction 

 
Metallurgists have long observed that the macroscopic properties of the material, such as 

ductility, strength, thermal conductivity and hardness are strongly related to the microstruc- 

ture, and especially to the mean grain size R . Thus, understanding the phenomenon of 

grain growth (GG) occurring after recrystallization is crucial for the optimization of the mi- 

crostructure and the final in-use properties of the material. 

 

Single-phase fully dense polycrystals can generally be described by a log-normal grain size 

distribution (GSD) Fatima Vaz and Fortes (1988); Raeisinia and Sinclair (2009); Luther 

and Könke (2009), defined by (R) and a standard deviation (σ ). The standard deviation is 

related to the width of the grain radius dispersion around (R). During grain growth mecha- 

nism, grain boundaries migrate under capillarity effects which results in an increase of (R) 

L.MAIRE 
MINES ParisTech, PSL - Research University, CEMEF - Centre de mise en forme des matériaux, CNRS UMR 

7635, CS 10207 rue Claude Daunesse 06904 Sophia Antipolis Cedex, France. 
Tel.: +33652693656 

E-mail: ludovic.maire@mines-paristech.fr 

B.SCHOLTES    C.MOUSSA    N.BOZZOLO    D.PINO  MUÑ OZ    M.BERNACKI 
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and σ . A previous study has highlighted that the heterogeneity in terms of GSD in the mi- 

crostructure at the early stages of grain growth may have a first-order influence on the overall 

kinetics Cruz-Fabiano et al (2014), but this work was only based on 2-D considerations. 

 
Macroscopic models, also called mean field (MF) models, are widely used to describe the 

grain growth kinetics, mainly due to their low computational cost. These models are based 

on empirical or semi-empirical laws and require experimental investigations to calibrate fit- 

ting parameters. Furthermore given that these models are most of the time based on average 

fields (mean radius and mean curvature), they are not adapted for capturing heterogeneous 

phenomena such as abnormal grain growth. 

 
Thanks to the increase in computer performances, finer approaches called full field (FF) 

models have emerged in the last decades. These approaches consider a complete description 

of the microstructure topology at the polycrystal scale. A review of the most significant nu- 

merical methods is given in Hallberg (2011). Probabilistic voxel-based approaches such as 

Monte Carlo Rollett et al (1989); Rollett and Raabe (2001); Holm et al (2001) and cellu- 

lar automata Raabe (1999) are very popular. Another approaches found in the literature is 

the phase-field Krill and Chen (2002) method, which offers the advantage of avoiding the 

difficult problem of tracking the interfaces. Finally, grain growth can also be modeled using 

a level set description of the interfaces within a finite element framework Bernacki et al 

(2008, 2011); Scholtes et al (2015); Hallberg (2013), which is the full field method used in 

this work. 

 

In this study we propose to quantify the influence of the initial GSD in the context of 3-D 

grain growth. More specifically, the predictions of the Hillert Hillert (1965) and Burke- 

Turnbull (B&T) Burke and Turnbull (1952a) grain growth models are confronted with full 

field numerical simulations at the scale of a Representative Elementary Volume (REV) and 

under the assumptions of isotropic grain boundary energy and mobility, constant tempera- 

ture and no precipitates. The digital initial microstructures are generated using a coupled 

”Vorono¨ı-Laguerre/dense sphere packing” algorithm Hitti et al (2012); Hitti and Bernacki 

(2013). 

 
 

2 Full field modeling of grain growth 

 
2.1 Material parameters and numerical tools 

 

A 5h heat treatment at a constant temperature of 1050◦C for the austenitic 304L steel is 

simulated. Isotropic values are considered for the grain boundary mobility (M) and energy 

(γ). More precisely the product Mγ is fixed to 8.28 10−7 J.mm−2, which is representative 

of a 304L stainless steel at 1050◦C El Wahabi et al (2003); Cruz-Fabiano et al (2014). The 

material is assumed to be free of second phase particles (no Zener pinning effect). 

 
The numerical simulations are performed on a cubic REV whose edge length varies from 

2.00 to 2.85 mm. Each simulation was performed on 60 Intel Xeon CPUs. An unstructured 

mesh composed of 2923 tetrahedral elements is used. 

 
Eight different initial GSDs are considered to generate eight initial digital polycrystals. Each 

of them is defined by an initial mean grain radius (R0) and standard deviation σ0. Their 
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characteristics are summarized in table 1 (line 1-4). The distributions LNi with i 1, ..., 7 

follow a log-normal distribution. The last one, referred to as BiM, is bimodal with modes 

λ1 = 50µm and λ2 = 100µm. The initial number of grains in the REV is close to 8000 while 

at least 1200 grains remain at the end of the heat treatment (see Tab. 1 and Fig. 3). The REV 

dimensions, the time steps and the mesh size are chosen so as to justify a good convergence 

of results in terms of grain boundary kinetics Scholtes et al (2015, 2016). 

 

 
  LN1 LN2 LN3 LN4 LN5 LN6 LN7 BiM  

 

σ0 (µm) 

No. Grains 
 

 

 

ln 
.
σ f /(R f )

Σ
 

Table 1: Characteristics of the initial (lines 1-4) and final (lines 5-8) GSDs predicted by the 

full field simulations. 

 

 

 

 
2.2 Full field simulation results 

 
An histogram representing the instantaneous GSD is generated every minute of the heat 

treatment simulation. Each histogram is composed of 30 equally spaced intervals delimited 

by 0 and 300µm. Next the term distribution curve is introduced to denote a linear approx- 

imation of a GSD histogram. The objective of these distribution curves is to simplify the 

representation of the GSDs for future comparisons. Fig. 1 provides a schematic illustration 

of the distribution curve obtained by piecewise linear approximation of an histogram. 

The figure 2 shows all the distribution curves predicted by the full field simulations for every 

initial GSDs at the early (solid curves) and final (dashed curves) stages of the simulation. 

These will be confronted with the Hillert model predictions in the next section. 

 
Table 1 (line 5-8) presents the characteristics of the final GSDs predicted by the full field 

simulations. The ratio ln(σ f / R f ) is observed to tend towards the value -1.00 after 5h of 

treatment for every initial GSD. The figure 3 illustrates several REVs of full field simulations 

at the beginning and at the end of the heat treatment, for the LN1 and BiM initial GSDs. 

Among the REVs representing the log-normal GSDs, only the REV obtained for the LN1 

initial GSD is depicted since this latter is representative of all the log-normal initial GSDs. 

A preponderant blue color is observed at the beginning of the heat treatment for the LN1 

initial GSD, meaning that σ0 is small for this distribution and most grains have sizes close 

to R0 . In the BiM initial GSD, two preponderant blue and green colors are observed in the 

REV at the beginning of the heat treatment. These two colors depict the two modes of the 

bimodal distribution, centered on grain size values of 50µm and 100µm. 

(R0) (µm) 

ln (σ0/(R0)) 

Initial state (t = 0h) 
62.0 66.0 74.3 75.3 

6.90 11.8 19.4 7.50 

-2.20 -1.71 -1.35 -2.30 
7920 7576 7474 8100 

 

82.2 
25.9 

-1.14 

7460 

 

89.4 
30.9 

-1.05 

7636 

 

99.0 
17.7 

-1.71 

7588 

 

75.2 
25.5 

-1.08 

7472 

 Final state (t = 5h)     

(R f ) (µm) 
(µm) 

109 120 135 111 151 
39.0 45.0 53.2 39.8 59.9 

160 
66.3 

138 
50.7 

115 
36.0 

  -1.03 -0.98 -0.93 -1.03 -0.92 -0.88 -1.00 -1.16 

No. Grains  1483 1278 1244 2552 1221 1341 2803 2092 
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Fig. 1: Distribution curve obtained by linear approximation of an histogram 

 
 

3 Confrontations of full field simulation results with Hillert model 

 
3.1 Hillert model 

 

 
In 1965, Hillert proposed a mean field model Hillert (1965) for normal grain growth. This 

model has already been discussed in many studies. Several authors, as in Darvishi Kamachali 

and Steinbach (2012); Darvishi Kamachali et al (2015); Suwa et al (2008); Rios et al (2006), 

recently confronted the predictions of this model with full field simulation results. Hillert 

model is considered to be more accurate than other grain growth models such as the one  

of B&T Burke and Turnbull (1952b), since it is based on a discrete representation of the 

microstructure. This discrete microstructure is composed of N classes of spherical grains 

having a radius Ri (i 1, ..., N ). Each class of grains evolves according to the following 

equation: 

Ṙi = β Mγ 

. 
  1  

− 
 1 
Σ 

, (1) 

where Ṙi  is the time derivative of Ri and Rcr is a critical grain radius. By applying the vol- 

ume conservation in 3-D, it can be demonstrated that Rcr = R2 / R Chao and Guoquan 

(2004); Rios et al (2006); Darvishi Kamachali et al (2015). For each initial GSD, the number 

of classes in the Hillert model has been taken equal to the number of grains in the REV of 

the corresponding full field simulation (see Tab. 1). The parameter β is a geometrical di- 

mensionless constant which refers to the inherent approximations concerning the assumed 

idealized geometry in the Hillert model representation. In 3-D, β is assumed to be close to 

unity Hillert (1965). Other authors have nevertheless reported values above unity, such as 

β c 1.25 Darvishi Kamachali and Steinbach (2012) and β c 1.1 Suwa et al (2008). Darvishi 
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Fig. 2: Initial (solid curves) and final (dashed curves) distribution curves predicted by the 

full field simulations for the different initial GSDs. 

 

 
Kamachali et al (2015) recently discussed a linear relationship valid in 3-D between the pa- 

rameter β and the index R 2/ R2 which aims to account for the geometrical relations 

between the neighbourhood grains for any given initial distribution. 

 
Hereafter, the notation Hi(β ) designates Eq. 1. So Hi(1) corresponds to the classical Hillert 

formulation Hillert (1965). As it employs several grain classes, this model has the advantage 

of being able to predict the GSD evolution in addition to the (R) evolution. Previous works 
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LN1 t = 0h LN1 t = 5h 

 

BiM t = 0h BiM t = 5h 
 

Fig. 3: Grain boundary networks at initial and final stages of the simulation for the LN1 and 

BiM initial GSDs. The color code corresponds to the equivalent sphere radius of each grain. 

 

 

 

 

 

 

 

 

 

have shown the ability of the classical Hillert model to correctly capture the grain growth 

kinetics in 2-D for different initial GSDs Cruz-Fabiano et al (2014). In the same manner as 

for full field simulations, a GSD histogram is generated every minute of the Hillert simu- 

lation. The distribution curves are then deduced from the GSD histograms according to the 

method illustrated on Fig. 1. 

0 62.5 125 187.5 250 
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Fig. 4: Computed L2
 error between the Hillert and full field distribution curve. 

 

The notation L2 represents the instantaneous L2  relative error measured between the dis- 

tribution curves predicted by the Hillert and full field models. This quantity is computed as 

follows: 

‚

.  
N  .

S

 

 

 
 

SjΣ2 

 

 

Hi( 
 

 

N 

∑(Si
j)

2
 

i=1 

where, as illustrated on Fig. 4, the distributions are approximated by a linear interpolation 

and Si (resp. Si’) denotes the area of the i-th obtained trapezoid under the Hillert (resp. the 

full field) distribution curve. Hereafter the notation (L2 ) designates the time average of the Hi 

L2 (t) errors for a given simulation : 

2 1 2 
 

(LHi) = 
Nincr 

∑LHi(t), (3) 

where Nincr is the number of time increments (equal to 300 in this study, dt = 1min). 

 

 

 
3.2 Optimization of the Hillert model 

 
 

The values of L2 errors obtained with the Hi(1) model are depicted by blue bars on Fig.5. 

This error remains globally constant around 20% for all the initial GSDs. These results con- 

firm the versatility of this model although a difference of 26% is observed for the LN4 and 

, (2) t) = 100 × L2 
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Fig. 5: Comparison in terms of L2 error on the distribution curves predicted by the full 

field and Hillert models (see Eq. 2 for details). 

 

 

 

 
BiM initial GSDs. The distribution curves predicted by the Hi(1) (blue curves) and the FF 

model (red curves) are also compared at different stages of the heat treatment on Fig. 7. 

The kinetic of grain growth obtained with the Hillert model seems to be slower than that 

obtained with the FF model. This is observable on Fig. 7 at each instant of the simulation by 

a time shift of the Hillert distribution curves with respect to the full field distribution curves. 

 

 
As stated above, the value β = 1 proposed by Hillert relies on many assumptions. For ex- 

ample Hillert consider that each shrinking grain has four immediate neighbours just before 

disappearing. Furthermore he considered that the β value is two times larger in 3-D than 

in 2-D where β = 0.5 according to Hillert Hillert (1965). Although these assumptions are 

judicious and justified, we propose to recalibrated this Hillert parameter based on the re- 

sults of the full field simulations. Thus, several Hillert calculations have been performed by 

varying the beta value from 0.5 to 2 by step of 0.01. We denote βopt the value of β in Eq. 1 

that minimizes (L2 ) error for each initial GSD. The values of βopt are provided in Tab. 2. Hi 
2

 
Red bars on Fig. 5 show the residual LHi error obtained with βopt. These residual errors 
have approximately been reduced by half compared to the classical value of β equal to 1. 

Furthermore the values of βopt are distributed around a mean value of 1.40 noted βfit (see 

green dots on Fig.6). 

β = 1; 
βfit = 1.40; 

βopt; 
κfit = 1.59 

κopt 
H

i 
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Fig. 6: Optimized values βopt and κopt obtained by inverse analysis from the FF simulation 

results and fitting values βfit and κfit obtained by an average of the optimized values. 

 

To validate the calibrated value of β = 1.40, the distribution curves predicted by the Hi(1.40) 

(green curves) and the full field models (red curves) are compared at different stages of the 

heat treatment on Fig. 7. It is worth noting that Hi(1.40) model provides non negligible im- 

provements for the prediction of the GSDs compared to the initial Hi(1) model. Indeed, the 

time shift observed Fig. 7 between full field and Hi(1) distribution curves has been now rec- 

tified since this new value of β = 1.4 is larger than the old one and thus logically increases 

the kinetic of grain growth. In a general way, the shapes of the GSDs are also in good agree- 

ment with the observation of Darvishi Kamachali and Steinbach (2012). GSDs are observed 

to be initially sharp and then become larger and larger during the heat treatment. After 2.5h 

of treatment in the BiM initial case, one single peak is observed on the distribution curve, 

which means that the two modes merge in the first hours of the heat treatment. 

 

In order to investigate further the theory of Darvishi Kamachali et al (2015), we define κ0 

as : 

κ0 =
  βopt 

, (4) 

(R)2/(R2)(t=0) 

βopt ;  βfit = 1.40 
κopt  ;  κfit = 1.59 
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where the index R 2/ R2 is taken at the instant t = 0s of the treatment. This choice has  

been done since this value does not significantly evolve during a simulation. The different 

values of κ0 computed for every initial GSDs are provided in Line 3 of Tab. 2. These ratios 

are not constant between each initial GSDs, meaning that there is not a direct relation be- 

tween β and the index R  2/ R2  
(t=0)  for our cases. However this index, which considers 

the geometrical characteristics of neighbouring grains, could be useful to enrich the classical 

Hillert model (see Eq. 1). 

 
Thus by replacing the β parameter in Eq. 1 by the product of an assumed constant parameter 

noted κ times the ratio R 2/ R2 , we can consider the following Hillert model derived from 

the Darvishi Kamachali theory Darvishi Kamachali et al (2015) : 

 

 

Ṙ κ 
(R)2 

Mγ 

.
 1  

 

 

 1 
Σ

  (5) 

(R2) Rcr 

− 
Ri 

,
 

 

where κ is a constant parameter. We performed several Hillert calculations using this new 

formulation (see Eq. 5) and by varying the κ value from 1 to 2 with a step of 0.01. We 

denote by κopt the value of κ that minimizes (L2 ) for each initial GSD. The κopt values are Hi 
2
 

presented in Line 4 of Tab. 2. Grey bars on Fig. 5 show the residual LHi error obtained with 
κopt. These residual errors are slightly little smaller than those obtained with βopt. However 

this difference is not significant enough to affirm that the model given by Eq. 5 gives better 

predictions than Hi(1.4) model. Furthemore the κopt values are distributed around a mean 

value of 1.59 noted κfit (see red dots on Fig.6) resulting also in a low L2 error close to that 

obtained with the Hi(βfit) model (see purple bars on Fig. 5). These similar errors are logically 

due to the fact that the Hi(1.4) (Eq. 1) and the new Hillert formulation (Eq. 5) give very close 

predictions since the index R 2/ R2 does not change much during all our simulations. 

Finally, the distributions curves obtained according to the new Hillert formulation all overlay 

with those obtained according to the Hi(1.4) model. 

 

 
  LN1 LN2 LN3 LN4 LN5 LN6 LN7 BiM  

βopt 1.32 1.32 1.28 1.43 1.41 1.39 1.52 1.53 
βfit 1.40 

κ0 1.35 1.36 1.38 1.43 1.57 1.58 1.57 1.72 
κopt 1.48 1.47 1.53 1.53 1.67 1.63 1.69 1.7 

    κfit 1.59  

 

Table 2: (Line 1-2) Optimized Hillert model parameter βopt calculated by inverse analysis 

from the full field simulation results (see eq. 1) and fitted Hillert model parameter βfit ob- 

tained by averaging the values of βopt. (Line 3) Values of κ0 defined as the ratio between 

βopt and the initial index  R  2/ R2   at time = 0s of every simulation. (Line 4-5) Optimized 

κ values (κopt) calculated by inverse analysis from the full field simulation results (see eq. 

5) and fitted κ value (κfit) obtained by averaging the values of κopt. 

i = 
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Fig. 7: Distribution curves predicted by the full field, Hi(1) and Hi(1.40) models for the 

different initial GSDs. 
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4 Confrontations of full field simulation results with B&T model 

 
4.1 B&T model 

 

 
For materials with a singlemode and uniform grain size, describing the evolution of R 

could be sufficient as this quantity determines the global mechanical behavior of the mate- 

rial. Especially the Hall-Petch relationship states that the Yield stress of metallic materials 

can be expressed as a function of R −0.5 Petch (1953). Furthermore in such cases, the initial 

GSD can be unknown and consequently the Hillert model can hardly be used. Thus, other 

mean field models can be used as a good alternative to describe the grain growth kinetics. 

In 1952, Burke and Turnbull (B&T) investigated the physical mechanisms of grain growth. 

They particularly assumed that grain boundaries migrate by atom transport toward their cen- 

ter of curvature, under a force due to their curved shape. These findings gave rise to the B&T 

model Burke and Turnbull (1952a), which predicts a parabolic evolution of R as a function 

of the time t: 
 

(R) − (R0)  = δ Mγt, (6) 

where δ = 0.5 according to Burke and Turnbull (1952a); Darvishi Kamachali and Steinbach 

(2012). This analytic mean field model has the advantage of being extremely simple to use 

since it requires only a value for the product (Mγ) and for the initial mean grain size (R0). 

The predictions of the B&T model will be confronted with the full field simulation results, 

using the following relative L2 error: 
 

 

 
L2 % 

 
100 × 

5h 

∑ ((R)FF(t) − (R)B&T(t))
2
 

. t=0 
 

 

 

 
 , (7) 

B&T( ) = 
, 5h 

∑(R)2 (t) 
t=0 

where R B&T and R FF represent, respectively, the instantaneous values of R  in the B&T 

and full field models. 

 

 

4.2 New formulation of the B&T model 

 

 
The resulting L2

 

 
measured between the classical B&T model predictions (Eq. 6) and the 

full field simulation results are illustrated by blue bars on Fig. 8. It is worth noting that these 
L2 are smaller than the (L2  )  calculated in the previous section. Indeed L2 relies on 

B&T Hi B&T 
2

 

a single quantity which is the mean grain size of the material. On the other hand (LHi) re- 
flects the difference of shape between the two distribution curves. Results show that L2 is 
globally high for any initial case. Furthermore, L2

 B&T 

B&T error globally increases when the ratio 

σ0/(R0) decreases. This finding is actually quite logical and can be easily explained. Indeed 
in the case of small σ0/(R0) ratios, the grain boundary kinetic slows down at the early stages 

of the treatment because most grains have a initial radius close to (R). Consequently the in- 

crease of (R) takes longer to initiate and a plateau or even a decrease could be observed  at 

FF 
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Fig. 8: Comparison in terms of L2 error on the R values predicted by the full field simula- 

tions and the different B&T formulations (see Eq. 6 and Eq. 8 for more details). 

 

 
the beginning of the thermal treatment. These typical evolutions occurring during the tran- 

sient regime are not straightforward to capture with the classical B&T model. Furthermore 

given that the transient regime can last few hours in some initial configurations, it cannot be 

neglected by the models. These results confirm the interest of improving the classical B&T 

model. Recent numerical investigations in 2-D have also pointed out that B&T model is not 

accurate for every σ0/(R0) initial ratios Cruz-Fabiano et al (2014). 

In order to make the classical B&T formulation more accurate, the first objective is to de- 

termine whether there exists for each initial GSD, other δ values, noted δopt, that correctly 

describe the grain growth kinetics. These δopt  values are obtained by minimizing the L2 
 

for each initial GSD. The resulting fitting curves obtained by combining Eq. 6 and the δopt 

are depicted in Fig. 9 (dashed curves) for the LN4 and LN6 initial GSDs, which present the 

smallest and highest σ0/ R0 ratios, respectively. It is observed that changing the values of 

δ does not correct the description of the transient regime. In particular for small σ0/ R0 

ratios, a model such as B&T model cannot be accurate enough to describe these particular 

mean grain size evolutions. 

 

 
In order to also check the consistency of this law in the steady-state regime, the curves 

log( R 2- R0 
2)=f(log(t)) have been plotted on Fig. 10 according to full field results. A lin- 

ear approximation of these curves is also added. We observed that the slopes of the linear 

 

B&T (Eq. 6) 

(αopt; nopt) 
(αfit; nfit) 

L
2

 
(%
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Fig. 9: Evolution of R / R0 during the heat treatment. Solid curves corresponds to the full 

field results, dashed curves represent the B&T predictions obtained by combining Eq. 6 and 

δopt and dotted curves represent the B&T predictions obtained by combining Eq. 8 and the 

couple (αopt; nopt). 

 

approximations are quiet different for every initial GSD as already observed in the work  

of Cruz-Fabiano et al (2014), which means that the classical B&T formulation cannot be 

sufficient to describe the kinetic of grain growth for every initial GSD. 

 
Based on the previous observations, a new formulation of the B&T model has been proposed 

in Cruz-Fabiano et al (2014) including a new fitting exponent n aiming to take into account 

the different slopes observed on the Fig. 10 and the transient regimes observed on Fig. 9 : 

 

(R)2 − (R0)
2 = αMγtn, (8) 

where α is considered as a fitting parameter depending, in the same manner as the exponent 

n, on the initial GSD characteristics. Thus the validity of the classical B&T model (see Eq. 

(6)) can be easily verified if the slope n is equal to 1 and the fitted parameter α is equal to 0.5. 

   

FF  - LN6 

FF  - LN4 

Eq.6 (δopt) 

Eq.8 (αopt;nopt) 
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Fig. 10: Evolution of log( R 2- R0 
2) as a function of log(t) during the steady state regimes 

according to full field results. Linear approximations are added in dashed line. 

 

 
 

 

   ln(σ0/(R0)) -2.20 -1.71 -1.35 -2.30 -1.14 -1.05 -1.71 -1.08  

Table 3: (line 1-2) Optimized B&T model parameters αopt and nopt obtained by inverse 

analysis from the full field simulation results (see Eq. 6) ; (line 3-4) Fitted mean field model 

parameters αfit and nfit obtained by using the new formulations of Eq 9. (line 5) Ratio of the 

initial GSD characteristics. 

 
 

Inverse analyses were performed in order to obtain optimal values of αopt and nopt which 

minimize L2 . These values are plotted in Fig. 11 and the corresponding L2 are illus- 

trated by red bars on Fig. 8. Interestingly, the results of Tab. 3 and Fig.8 show that there 

exists, for each initial distribution, a set of parameters (αopt;nopt) which predicts very ac- 

curately the evolution of (R), with L2 < 5%. Furthermore the LN6 initial GSD presents 

the couple of parameters (αopt;nopt) that is closest to the B&T classical parameters (α =  

0.5; n = 1). This distribution has the largest ratio (σ0/(R0) c 0.35) of this study. It is worth 

LN1 

LN2 

LN3 

LN4 

LN5 

LN6 

LN7 

αopt 

LN1 

6.20e-6 

LN2 

6.00e-4 

LN3 

1.66e-2 

LN4 

4.50e-6 

LN5 

7.45e-2 

LN6 

1.22e-1 

LN7 

6.18e-4 

BiM 

35.0 
nopt 2.13 1.69 1.37 2.11 1.24 1.20 1.64 0.56 
αfit 8.67e-6 5.67e-4 1.22e-2 3.69e-6 7.32e-2 1.58e-1 5.66e-4 1.22e-1 
nfit 2.06 1.67 1.39 2.13 1.23 1.16 1.67 1.18 
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noting that increase the ratio σ0/ R0 should lead to a new couple of parameters (αopt;nopt) 

even closer to the B&T parameters. Cruz-Fabiano et al (2014) found in 2-D a couple param- 

eters (αopt;nopt) close to B&T parameters for initial GSDs having a ratio σ0/(R0) c 0.45. 

 
The predictions of R obtained by combining Eq. 8 with the set of parameters (αopt;nopt) 

have been plotted on the Fig. 9 (dotted curves) for the LN4 and LN6 initial GSDs. It is 

clearly observed that the resulting curves obtained with Eq. 8 (dotted curves) are closer to 

full field predictions than resulting curves obtained with Eq. 6 (dashed curves). However, 

the transient regime characterized by a decrease in R during the first hour of treatment is 

not well described yet. 

 
It is worth noting that the αopt and the nopt values increase and decrease respectively with 

the σ0/ R0 ratio (see Tab. 3). This trend has already been observed in the study proposed 

by Cruz-Fabiano et al (2014). These observations confirm that the ratio σ0/ R0 is relevant 

for describing the evolution of α and n. Furthermore, the sets of parameters (αopt;nopt) are 

observed to be quasi identical for the two LN2 and LN7 initial GSDs which present the 

same σ0/ R0   ratio. By plotting the parameters ln(αopt) and nopt  as a function of the ra-   tio 

ln(σ0/ R0 ) on Fig 11, two linear relationships can be deduced for the n and α model 

parameters: 

 

 

 

ln(αfit) = 8.53 ln 

.
 σ0   

Σ 

+ 7.11 nfit = −0.78 ln 

.
 σ0  

Σ 

+ 0.34, (9) 

(R0) (R0) 
 
 
 

where these two constant parameters are quiet different from those obtained in Cruz-Fabiano 

et al (2014) probably due to the fact that this study is investigated in 3-D. Combining Eq. 8 

and Eq. 9 results in the following improved B&T formulation: 

 

 

 

 
(R) − (R0) = 1224.15 

 
  σ0 

8.53 

(R0) 

 

 
Mγt 

−0.78 ln

. 
  σ0   

Σ

+0.34 

 

 
. (10) 

 

 

 
Although the set (ln(α) = 3.56; n = 0.56) obtained for the BiM initial GSD predicts well 

the evolution of R , it does not follow the trends obtained for the log-normal initial GSDs 

(see Fig. 11). So the formulation of the B&T model given by Eq. 10 is only accurate for log- 

normal initial GSDs. By using α = αfit and n = nfit in Eq. 9 and 10, small L2 are obtained 

(see beige bars on Fig. 8 (b)). An interesting prospect of this study will be to perform the 

same analysis for different bimodal distributions. 
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( ) ( ) 

Conclusion 

 
 

The present study is devoted to the modeling of ideal grain growth phenomenon. More 

specifically, the Hillert and B&T grain growth models have been confronted with large full 

field simulations at the polycrystal scale. These full field simulations are based on a level 

set method working within a finite element framework. Eight initial GSDs have been con- 

sidered for the comparisons. 

 
The Hillert model is shown to be versatile since it considers the initial GSD of the mi- 

crostructure. However this model relies on a first-order parameter β which needs to be finely 

calibrated. Numerical full field investigations have highlighted a new value for β , which is 

globally constant around 1.4 for all initial distributions. We have finally demonstrated that 

the calibrated Hillert model predicts finely R and the evolution of the distribution curves, 

even for the BiM distribution. 

 
The classical B&T model does not take into account the initial GSD, which makes it inac- 

curate in many cases. Based on full field simulation results, a new B&T formulation given 

in Eq. 9 has been proposed. This new formulation has been proven able to predict accurately 

the evolution of R for any log-normal initial GSD, regardless of σ0 and R0 . On the other 

hand, this new model is not universal and needs to be improved in order to consider other 

kinds of initial GSDs, like bimodal distributions. 

 
Future work will be dedicated to (I) discuss the variability of the full field results obtained 

in comparison with the MacPherson-Srolovitz equation MacPherson and Srolovitz (2007) 

(II) perform additional simulations considering anisotropic grain boundary energy and/or 

mobility (III) complete the development of a full field model devoted to dynamic recrys- 

tallization (IV) perform the same kind of analysis in the context of the static and dynamic 

recrystallization phenomena (V) perform experimental measurements to be compared with 

the newly proposed mean field formulations. 
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