Improvement of 3D mean field models for capillarity-driven grain growth based on full field simulations
Résumé
In the present study, mean field models of grain growth (Hillert and Burke–Turnbull models) are compared with 3D full field simulations considering an isotropic grain boundary energy and mobility and under the absence of second-phase particles. The present 3D full field simulations are based on a level set description of the grain interfaces within a finite element framework. The digital initial microstructures are generated using a coupled “Voronoï–Laguerre/dense sphere packing” algorithm. Based on full field simulation results, new formulations of Burke–Turnbull and Hillert models are proposed. In contrast with classical formulations, the new ones account for the possible heterogeneity of the initial grain size distribution.
Domaines
Matériaux
Fichier principal
Improvement of 3D mean field models for capillarity driven grain growth based on full field simulations.pdf (920.2 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...