
HAL Id: hal-01364119
https://minesparis-psl.hal.science/hal-01364119

Submitted on 12 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Signal Rate Inference for Multi-Dimensional Faust
Yann Orlarey, Pierre Jouvelot

To cite this version:
Yann Orlarey, Pierre Jouvelot. Signal Rate Inference for Multi-Dimensional Faust. The 28th sym-
posium on Implementation and Application of Functional Languages (IFL 2016), Aug 2016, Leuven,
Belgium. pp.1:1–1:12, �10.1145/3064899.3064902�. �hal-01364119�

https://minesparis-psl.hal.science/hal-01364119
https://hal.archives-ouvertes.fr

Signal Rate Inference for Multi-Dimensional Faust

Yann Orlarey
Grame, France

orlarey@grame.fr

Pierre Jouvelot
MINES ParisTech, PSL Research University,

France
pierre.jouvelot@mines-paristech.fr

ABSTRACT
We introduce a new signal-level, type- and rate-based seman-
tic framework for describing a multi-rate version of the func-
tional, domain-specific Faust language, dedicated to audio
signal processing, and here extended to support array-valued
samples. If Faust is usually viewed as a formalism for combin-
ing signal processors, which are expressions mapping input
signals to output signals, we provide here the first formal,
lower-level semantics for Faust based on signals instead. In
addition to its interest in understanding the inner workings
of the Faust compiler, which uses symbolic evaluation of
signal expressions, this approach turns out to be useful when
introducing a language extension targeting multi-rate and
multi-dimensional (array-valued) processing.

More precisely, we provide (1) new syntax and dynamic
semantics for (recursive) Faust-based signals, (2) a type and,
more interestingly, rational rate static semantics and (3) a
new rate inference algorithm, together with its soundness and
(relative) completeness theorems. Preliminary experiments
in a prototype implementation of this extension in the Faust
compiler are underway.

Keywords
Faust; audio signal processing; type systems

1. INTRODUCTION
The specifics of computer music call for the design and

implementation of domain-specific programming languages
(DSL) [1]. Faust [14] is one of these languages for real-time
signal processing applications, in particular real-time audio
processing; it boasts a thriving community of users, both in
academia (e.g., [16]) and industry 1. Faust is based on a few
core foundational principles.

Real-time signal processing. Because of its real-time
target, Faust is focused on the specification and ef-
ficient implementation of programs based on causal

1See, for instance, http://faustone.com.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

computations, with bounded memory and CPU foot-
prints, and minimal latency.

Simple well-defined formal semantics. Faust is not in-
tended to model the internal behavior of systems or
circuits. The only “interesting” semantics in is the one
that can be observed from the outside, that is of a
function that maps a tuple of time-dependent input
signals to a tuple of output signals.

High-level specification. Faust is designed to be a high-
level specification language rather than an implementa-
tion language. A key design choice is to make a clear
separation between the users’ role, in charge of spec-
ifications, and the role of the compiler, in charge of
implementing them. The way the user writes a Faust
program should not matter; only its meaning should
count. Ideally two different Faust programs with the
same meaning should have the same implementation2.

Functional approach. Functional programming provides
Faust with a high level of modularity, both to com-
pose and understand Faust programs. Moreover it
offers a very natural framework for signal processing.
Periodically-sampled digital signals can be modeled as
functions of time. Signal processors, which are Faust
primary constituants, are second-order functions oper-
ating on signals. Faust block-diagram algebra is a set
of third-order composition operations on signal proces-
sors. Finally, user-defined functions are higher-order
functions on block-diagram expressions.

The current version of Faust is monorate: all signals are
isomorphic to functions mappings integers (clock ticks) to
(scalar) sample values. In [9], an innovative extension to Faust
for handling both different clocks and multi-dimensional sam-
ples has been proposed: these features are of key import when
targeting efficient spectral processing applications. These
clocks are introduced here as rational rates that interact
with the size of the array-valued samples. When building
a signal of vectors of size n from a signal of rate r carrying
scalar, integer say, samples, one gets a signal operating at
rate r/n; conversely, serializing a signal of rate r carrying
samples that are vectors of size n, the resulting signal has a
rate rn. The overall purpose of this paper is to describe how

2Such a requirement is obviously undecidable in general, but
this does not preclude the Faust compiler from making its
best effort to attain it.

this approach can be handled within the Faust compiling in-
frastructure, while maintaining the general design principles
sketched above.

To fulfill its goals, the Faust compiler uses optimization
techniques based on a blend of symbolic evaluation and
abstract interpretation approaches. Instead of using Faust
signal processors directly as its core data structure to compile
user code, it uses an intermediate representation (Faust
IR) based on signal expressions3. Basically, a Faust signal
processor is first converted to a tuple of signal expressions
during a phase of symbolic propagation performed in the
compiler front-end. For example, the signal processor

+ abs

process

process = + : abs ;

expects two (the arity of +) inputs, sums them and feeds the
result (via the combinator :) to the absolute value signal pro-
cessor. This Faust signal processor expression is converted
into the Faust IR signal expression 〈abs(I0 + I1)〉 after prop-
agating the tuple of input signals 〈I0, I1〉; as explained below,
input signals are members of the dedicated domain I of
symbolic identifiers.

New tuples X = 〈X0, ...,Xn〉 of signal identifiers Xi are
introduced, together with their definitions D(X) as tuples
of signal expressions, when ~-recursive expressions occur in
Faust. For instance, the signal processor

+

process

process = + ~ _ ;

both outputs a signal S and feeds back (via the _ identity
signal processor) this same S, after a one-sample delay, as
the first argument of the + signal processor. This signal
processor expression is converted to the signal expression
X0, together with a binding D(X) = 〈X0@1 + I0〉 where4

X = 〈X0〉, after propagating the tuple of input signals 〈I0〉;
there, the @n expression denotes a n-sample delay operation.
A more complex example, introducing vector features, is
given, in a graphical representation actually generated by
the Faust compiler, in Figure 2.

In this paper, we provide the following contributions:
3In fact, the Faust compiler uses various IRs; we concentrate
here on the signal-level Faust IR.
4Here, X is a tuple, since there may be multiple recursive
signals in a single recursive signal processor expression.

• the first formal definition of Faust IR, including its
extension to handle the new multi-rate framework of [9];

• a new definition of multi-rate signals, based on a ratio-
nal model for its clocking mechanism;

• a new rate inference algorithm, for which both sound-
ness and (relative) completeness theorems are specified
and proven;

• a prototype implementation of this algorithm in an
experimental multi-rate version of Faust.

In Section 2, we describe a proposal for multi-rate signals
that use rational clocks. A multi-rate Faust IR based on
typed and rated signals is introduced in Section 3, together
with a clocked semantics and a Rate Subject Reduction prop-
erty. We provide a set of type and rating rules adapted to
multi-rate signals in Section 4 for which we state a (value)
Subject Reduction property. The core of the paper is Sec-
tion 5 where we describe our new rate inference algorithm,
together with its soundness and (relative) completeness theo-
rems. We briefly report on the related work in Section 6 and
discuss possible future work in Section 7 before concluding.

2. MULTI-RATE AND -DIMENSIONAL SIG-
NALS

Here we are interested in periodically-sampled and multi-
dimensional signals. We consider sampled signals as ap-
proximations of continuous signals, and we want to express
signals sampled at various rates, but also signals with multi-
dimensional sample values (that is not only signals of num-
bers, but also signals of fixed-size vectors of numbers, fixed-
size vectors of fixed-size vectors of numbers, etc.).

We define below more precisely the notions of time, sample
value and signal we are interested in.

2.1 Periodic time domain
In order to capture the idea of a sampled signal with a

specific sampling rate, we introduce the concept of periodic
time domain, notated Tr. The idea is to “sample” the con-
tinuous time domain R with a periodicity represented by a
rational rate r.

Definition 1 (Periodic time domain). The periodic time
domain Tr is the set of rational values corresponding to the
periodic r-sampling of the continuous time domain R, i.e.,:

Tr =
1

r
Z = { i

r
| i ∈ Z}, r ∈ Q∗ .

Here are some examples of time domains:

T1 = {. . . ,−2,−1, 0, 1, 2, . . . } ;

T2 = {. . . ,−1,−0.5, 0, 0.5, 1, . . . } ;

T1/3 = {. . . ,−6,−3, 0, 3, 6, . . . } .

Time domains have the following properties, for all r ∈ Q∗
and n ∈ N∗:

Tr = T−r ;

Tr ⊆ Tnr ;

0 ∈ Tr .

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

2

t : T1

1
(t

)

Figure 1: Constant signal 1: int[1, 1]1

2.2 Signal
We can define a multi-rate, multi-dimensional signal as a

function from a periodic time domain Tr to a set of multi-
dimensional sample values V extended with a distinguished
zero value noted 0V (see Section 2.2.1 for an explanation).

Definition 2 (Multi-rate, multi-dimensions signals). A multi-
rate, multi-dimensional signal s is a function of time, from a
periodic time domain Tr to a set of multi-dimensional sample
values V or 0V:

s : Tr → V ∪ {0V} .

Definition 3 (Simplified notation). To simplify the notation
of signal types we will use the following abbreviation:

Vr = Tr → V ∪ {0V} .

Sample values in V can be numbers (integers or floating-
points) or fixed-size vectors of samples. These values are
structurally typed, with a type in a domain T (see Section 4).
Moreover numbers can be restricted to belong to an interval
[l, h], where l and h are either integers or reals depending of
the considered type.

2.2.1 Negative time
The values of signals are usually needed starting from time

0 and up. But to take into account delay operations, negative
times are always mapped to zeros. In operational terms,
this corresponds to assuming that all delay lines are signals
initialized with 0s.

Definition 4 (Negative time). The value of a signal s : Vr

is always 0V when t < 0:

∀t ∈ Tr, t < 0 =⇒ s(t) = 0V .

2.2.2 Constant signal
Because of Definition 4, a constant signal is usually not

constant on its whole time domain, but only on its positive
half. For example, for the constant integer signal 1 and
t ∈ Z ≥ 0, we have 1(t) = 1, but, if t < 0, one has 1(t) = 0N
(see Figure 1).

Definition 5 (Constant signal). A signal s : Tr is constant
iff

∀t1, t2 ∈ Tr, t1 ≥ 0 and t2 ≥ 0 =⇒ s(t1) = s(t2) .

3. SIGNAL EXPRESSIONS
This section introduces the language of signal expressions

that form the basis of Faust IR. We describe its syntax,
semantics, including its new multi-rate and multi-dimensional
features.

3.1 Syntax

Definition 6 (Signal expression). A signal expression (E,D)
in S, resulting from the phase of symbolic propagation, is
defined by the following abstract syntax:

E ∈ S ::= k | f | In | Xi

| E1 ? E2 | E1@E2 | E ↑n| E ↓n
| v(E,n) | s(E) | E1#E2 | E1[E2]

(1)

where all recursively-defined tuple lists of identifiers X =
〈X0 . . . Xn−1〉 are bound in D, such that:

D(X) = 〈E0E1 . . . En−1〉 (2)

for a number n ∈ N+ of recursively-defining expressions Ei.

In the previous definition, we assume that:

- k is a constant integer signal;

- f is a constant float signal;

- In represents an external input signal;

- Xi, with D(X) = 〈E0E1 . . . En−1〉, represents the sig-
nal Ei of a group of mutually recursive signals;

- E1 ?E2 is a generic numerical operation on two signals;

- E1@E2 is a variable delay operation;

- E ↑n is an up-sampling by a (strictly) positive factor
n ∈ N+;

- E ↓n is a down-sampling by a factor n ∈ N+;

- v(E,n) is a vectorization operation of size n ∈ N+;

- s(E) is a serialization of a vector signal;

- E1#E2 is a concatenation of two vectors;

- E1[E2] is an access to the element of index E2 of the
vector-valued signal E1.

As can be noticed, even though signal expressions can
be recursive, the language S is in fact closer to Kleene’s
primitive recursive functions [10] or recurrence equations
than to a standard functional programming language. In fact,
Faust functional status is mostly embedded in its higher-level,
macro subsystem; all higher-order expressions expressed there
are evaluated, at compile time, to generate signal expressions
in S, which are studied in this paper.

3.2 Semantics
We assume that all expressions are decorated with a rate

information E(r); how to get this information is the main
purpose of this paper and is explained below.

We define the semantics Sa(E(r), D) of a signal expression
E of rate r with recursive definitions D (we omit D when
not needed in the equations below) in an input environment
a, mapping input identifiers to signals, as a function from

positive times, in Tr, to values5 in some V′⊥V′ , with V′ =
V∪{0V}. As mentioned above, all signal samples for negative
times in Tr have the appropriate 0V value.

The denotational semantics of a signal expression E(r)

based on rational clocks is defined as

λt.(Sa(E(r))t, if t ∈ Tr, and ⊥V, otherwise) ,

where S is defined as the least fixed point of the equations

Sa(k)t = k ,

Sa(f)t = f ,

Sa(In)t = a(In)t ,

Sa(Xi, D)t = Sa(πi(D(X)))t ,

Sa(E1 ? E2)t = s1(t) ? s2(t) ,

Sa(E1@E2)t = s1(t− s2(t)/r) ,

where we note si(t) = Sa(E
(ri)
i)t the value of Signal si,

corresponding to Ei, at Time t, while πi is the i-th projection
operator on lists. The multi-dimensional-specific features are
(partially) defined as

Sa(E1 ↑n)t = s1(btr1c/r1) ,

Sa(s(E1))t = s1(btr1c/r1)[mod(rt, n)], if |s1(t)| = n ,

Sa(E1 ↓n)t = s1(t) ,

Sa(v(E1, n))t = [s1(t− (n− 1)/r1), ..., s1(t− 1/r1), s1(t)] ,

Sa(E1#E2)t = s1(t)#s2(t) ,

Sa(E1[E2])t = s1(t)[s2(t)] .

where |v| denotes the length of Vector v.

3.3 Discussion
There are a couple of unusual features in the semantics

we just introduced. First, note that the recursive signals as
defined here are non-causal: nothing prevents meaningless
expressions (E,D) such as (〈X0〉,⊥[X → 〈X0 + 1〉]), where
⊥ denotes here a mapping for recursive definitions with an
empty domain. In practice, the Faust compiler always adds
an explicit 1-sample delay in recursive definitions, yielding
expressions such as 〈X0〉,⊥[X → 〈(X0@1) + 1〉]). Figure 2
provides an example of the introduction of these explicit
delays on feedbacks, on a different example. In the sequel,
we will always assume that signal expressions are syntactically
causal, along the scheme just presented.

Second, the creation of vectors via the vectorize v construct
is designed to minimize latency, a key issue in audio process-
ing. In Faust multi rate, compiled to the signal language
presented here, as soon as a single input sample is available, it
is padded with 0s and an almost empty vector is output. The
vectorize construct semantics is illustrated in Figure 3 (some
information regarding a possible implementation of vector op-
erations is provided in Figure 4). This unusual initialization
process is designed to ensure the following properties.

Proposition 7 (Vector Commutation Properties). The sig-
nal semantics S ensures that:

• vectorize(n):serialize = @(n-1);

5As usual, a partially-ordered domain X⊥X is defined for
every set X, such that ⊥X < x for all x ∈ X. A partial
function f defined over X and with values in Y can thus
be seen as a total function from X to Y⊥Y ; its domain of
definition Dom(X) is defined as {x ∈ X | f(x) 6= ⊥Y }.

��������� ��������
���

�
������

�����

������

�

������ ������

�

������

���������

������

��

��

�������
���

������

�
��

� ��

Figure 2: process = vectorize(10,_) : +~_ : serialize;

9 8 7 6 5 4 3 2 1 5

6

7

2

3

4

0

0

1

vectorize
3

… 8 7 6 5 4 3 2 1 0… 8 7 6 5 4 3 2 1 0

Figure 3: Vectorization by 3

• vectorize(1):serialize = _.

Finally, the upsampling operation does not introduce 0-
padding as is often done in the literature. As described above,
our model keeps the sample value constant between each
time tick. Informally, we view the up- and down-sampling op-
erations as performing “focus-varying” approximations over
an (ideal) continuous function representing the “actual” sig-
nal, viewed as the limit of a family of step functions, i.e.,
constant over intervals. Performing upsampling this way
has the advantage, as we will see, of keeping the upsampled
types tight, without having to perform a least upper bound
operation with a zero type to accommodate for 0-padding.

4. TYPING RULES
Types and rates of signal expressions are defined by a

set of rules Γ ` (E,D) : Tr indicating how to compute the
type Tr of a signal expression E with recursive definitions
D according to a signal type environment Γ storing type
hypothesis for each input and recursive signal.

4.1 Types

-2 -1 0 1 2 3 4 5 6

x 0 0 x(0) x(1) x(2) x(3) x(4) x(5) x(6)

V[0]:=0 V'[0]:=x(1) V[0]:=x(4)

fill V[1]:=0 V'[1]:=x(2) V[1]:=x(5)

V[2]:=x(0) V'[2]:=x(3) V[2]:=x(6)

V[0] V'[0] V[0]

V[1] V'[1] V[1]

V[2] V'[2] V[2]

V[0] V[1] V[2] V'[0] V'[1] V'[2] V[0]

0 0 x(0) x(1) x(2) x(3) x(4)

Vectorize(x,3)

Serialize(Vectorize(x,3))

Serialize(Vectorize(x,n)) = @(x,n-1)
Serialize(Vectorize(x,1)) = @(x,0) = x

Figure 4: How vectorize is implemented

Definition 8 (Sample types). The type domain T for sample
values is defined recursively by the following syntax:

T ::= int[l, h] | float[l, h] | [n]T ,

where types denote the set of values they abstract.
Signals are associated to types derived from the type of

their sample values. We note Tr the type of a signal that
maps the time domain Tr to sample values of type T. This
way, a signal in Vr has type Tr.

Definition 9 (Type model). A sample type T is associated
to the set of values M(T) it denotes, defined inductively as:

• {n ∈ Z | l ≤ n ≤ h}, if T = int[l, h];

• {r ∈ R | l ≤ r ≤ h}, if T = float[l, h];

• {(v0, ..., vn) | vi ∈ M(T1)}, if T = [n]T1, i.e., the set of
fixed-size vectors of n > 0 elements in M(T1).

Note that our interval calculus does not allow for undefined
values to occur. It is customary in other languages to assume
that a type does not preclude the appearance of undefined
values (denoted by the ⊥V symbol in the language semantics
above). Our type system is designed to ensure, at compile
time, that such “values” cannot occur in an actual well-typed
signal expression; the function it denotes is always total. For
instance, a signal expression trying to perform a division
operation with a signal of divisors of sample type int[−2, 2]
will be rejected by the type checker6. Our interval calculus is
also used to ensure that audio delay lines have a bounded size
(to guarantee a fixed memory footprint for signal processors)
and that array sizes are compile-time constants.

Definition 10 (Zero type). Each sample type T has an
associated zero type, notated 0T, defined by the rules below:

0int[l,h] = int[0, 0] ;

0float[l,h] = float[0.0, 0.0] ;

0[n]T = [n]0T .

When V represents the set of sample values denoted by a
type T, we know 0V has7 also type 0T.

Definition 11 (Type operations). The type domain sup-
ports type operations that are either (1) extensions of usual
arithmetic operations or (2) a least-upper bound opera-
tion t. For a generic type operator ? (including t) and
N,N ′ ∈ {int, float}, they are partially defined by the follow-
ing rules:

int t float = float ;

[l, h] t [l′, h′] = [min(l, l′),max(h, h′)] ;

N [l, h] ? N ′[l′, h′] = (N tN ′)([l, h] ? [l′, h′]) ;

[n]T ? [n]T′ = [n](T ? T′) .

under the sole conservative constraint that, for any arithmetic
operator ?, [l, h] ? [l′, h′] = [L,H] such that, for all x ∈ [l, h]
and x′ ∈ [l′, h′], the value of x ? x′ is in [L,H]. Note that
total arithmetic type operations are thus always definable,
using the worst-case definition [l, h] ? [l′, h′] = [−∞,+∞].

6Faust users can always introduce explicit min and/or max
operations to explicitly bound intervals to make such func-
tions total.
7We say that Value v has type T, noted v : T, when v ∈ M(T).

4.2 Signal type environment Γ

Definition 12 (Signal-type environment). A signal type
environment Γ is used to store type hypotheses for incoming
signals. It maps each mutually recursive signal Xi and each
input signal In to an appropriate signal type Tr:

Γ(Xi) = N [l, h]r, N ∈ {int, float} ;

Γ(In) = float[−∞,+∞]r ,
(3)

and, in each binding, for some appropriate N, l, h and r. Note
how scalar types are annotated with a value interval. This
information is crucial to ensure that Faust expressions can
be compiled with a statically-known memory footprint, in
particular when handling delay lines. This information is
also used to ensure that vector operations are safe: the size
information used to create them is know at compile time,
while array accesses are known to be within array bounds. As
we can see, since Faust is a mostly audio-oriented DSL, it has
been decided that only scalar signal types can be assigned
to input signals. This means that communications with
the outside world are limited to scalar signals (this scalar
property is also checked for the resulting output signals), and
that vectors can only be communicate in serialized form.

While the full audio range is often represented by the in-
terval [−1.0,+1.0] in practice, this restriction is not enforced
in Faust and signals can make use of the full floating-point
range.

Mutually recursive signals can be seen as additional scalar
inputs and outputs, where each output is connected to the
corresponding input via a 1-sample delay. The type and rate
of the corresponding input and output must be the same.
Even though our algorithm could probably handle arbitrary
types on recursive signals, we indeed believe that taking a
simpler approach is granted in the type of audio applications
we envision.

4.3 Typing rules
The signal typing rules Γ ` (E,D) : Tr are provided below

by induction on E. Since D is seldom used, we note E the
pair (E,D) when D is not used locally in a given rule.

Definition 13 (Constant signals typing rules).

Γ ` k : int[k, k]1
(Int)

Γ ` f : float[f, f]1
(Float)

Definition 14 (Input and recursive signals).

Γ ` In : Γ(In)
(Input)

Γ ` (Ei, D) : Γ(Xi) D(X) = 〈E0E1 . . . En−1〉 i ∈ [0, n− 1]

Γ ` (Xi, D) : Γ(Xi)
(Recursive)

The typing rule for recursive signals is unusual in that, in
addition to specifying that the type of a recursive signal
identifier is directly available in the typing environment Γ,
it also checks that the corresponding recursive definition
present in D is properly typed.

Definition 15 (Numerical operations on signals).

Γ ` Ei : Tr
i T = T1 ? T2

Γ ` E1 ? E2 : Tr
(Op)

Definition 16 (Delay operation).

Γ ` E1 : Tr
1 Γ ` E2 : int[k1, k2]r 0 ≤ k1 ≤ k2

Γ ` E1@E2 : (T1 t 0T1)r
(Delay)

Definition 17 (Up and Down sampling).

Γ ` E : Tr

Γ ` E ↑n: Tnr
(Up)

Γ ` E : Tnr

Γ ` E ↓n: Tr
(Down)

Definition 18 (Vectorize and Serialize).

Γ ` E : Tnr

Γ ` v(E,n) : [n]Tr
(Vectorize)

Γ ` E : [n]Tr

Γ ` s(E) : Tnr
(Serialize)

Γ ` Ei : [ni]T
r
i T = T1 t T2

Γ ` E1#E2 : [n1 + n2]Tr
(Concat)

Γ ` E1 : [n1]Tr
1 Γ ` E2 : int[k1, k2]r 0 ≤ k1 k2 < n1

Γ ` E1[E2] : Tr
1

(Access)

Definition 19 (Type/rate-correct signal expression). A sig-
nal expression (E,D) is said type/rate-correct iff there exist
Γ, T and r such that Γ ` (E,D) : Tr.

Definition 20 (Signal type). A signal s is said to have type
Tr, noted s : Tr, iff, for all t ∈ Tr, one has s(t) : T.

Proposition 21 (Subject Reduction). Assume a causal
and type/rate-correct signal expression (E,D) such that Γ `
(E,D) : Tr. Then:

• Tr = Dom(Sa(E(r)));

• and, if a(In) : Γ(In) for all input signals In, then

Sa(E(r)) : Tr.

Note that the first consequence of this Proposition is not
as obvious as might be thought at first: if the fact that
Dom(Sa(E(r))) ⊆ Tr is indeed obvious (see Section 3), the
equality is a consequence of the typing constraints.

4.4 Sample-type inference
In all signal typing rules above but one, sample types and

rates are independent. The only one that creates a depen-
dence is (Serialize); the size of the vector of the incoming
signal is needed to compute the rate of the output signal.
Therefore, we can infer first the sample-types independently,
and then the rates, once the type information is available.
In this section, we will rewrite the typing rules by separating
the sample-types and the rates, in a two-step process.

First, a new, simpler type environment, noted Ω = Ω(Γ),
is derived from Γ; it is just a mapping that associates to each
x in the domain of Γ the value type T, discarding the rate
information r present in Γ(x) = Tr.

Second, the sample-type rules are defined as just the signal
typing rules of Section 4 where rate information is erased. In
each rule, all typing judgments Γ ` (E,D) : Tr are replaced
by Ω ` (E,D) : T.

Lemma 22 (Sample Type Consistency). If Γ ` (E,D) : Tr,
then Ω(Γ) ` (E,D) : T.

Proof. Trivial. Since the datatypes of signal values do not
depend on rates, removing rate information does not prevent
data-only type checking to proceed.

With this two-step approach, the role of the straightfor-
ward sample-type inference algorithm (not presented here)
will just be to compute a sample type environment Ω for any
given signal (E,D).

5. RATE INFERENCE
Starting with a tuple of expressions L = 〈E0, E1, . . .〉

that share a common recursive environment D and which,
typically, represent the output signals of a Faust program,
the rate inference algorithm is a three-stage process that

• extends L with all the recursive subexpressions that
can be reached,

• infers a rate environment ∆i for each expression Ei of
the extended L,

• and forms ∆ by combining the ∆i together.

5.1 Rate environments

Definition 23 (Rate environment). A rate environment ∆
is a mapping that associates to some input signal In and
mutually recursive signal Xi a rate r.

Definition 24 (Joinable environments). Two environments
∆1 and ∆2 can be joined, written ∆1 ' ∆2, iff

∀x ∈ Dom(∆1) ∩Dom(∆2), ∆1(x) = ∆2(x) . (4)

Definition 25 (Union of joinable environments). The union
of two joinable environments ∆1 and ∆2 is written ∆1 ∪∆2.
The resulting environment is such that:

Dom(∆1 ∪∆2) = Dom(∆1) ∪Dom(∆2) ;

(∆1 ∪∆2)(x) =

{
∆1(x), if x ∈ Dom(∆1)
∆2(x), if x ∈ Dom(∆2) .

(5)

Definition 26 (Scaled environment). We define n∆ as the
environment ∆ scaled by an integer factor n, i.e., such that:

Dom(∆) = Dom(n∆) ;

∀x ∈ Dom(∆), (n∆)(x) = n∆(x) .
(6)

Definition 27 (Rate-scalable expressions). A typable ex-
pression E is rate-scalable, written Adj(E), if one can scale,
or “adjust”, its rate r by scaling its environment, i.e., for any
signal type environment Γ and type T:

Γ ` E : Tr ⇒ nΓ ` E : Tnr , (7)

where the notion of rate environment scaling is straightfor-
wardly extended to signal type environments Γ. The idea
behind rate-scalable expressions is that some signals can have
their rate adjusted, i.e., properly scaled, when the context
in which they are used requires it, and others don’t. For
instance, X1 ↓3 +2 cannot see its rate, here 1 (constants
have a fixed rate of 1), modified, while X1 ↑2 +I0, whose
rate only depends on the ones of X1 and I0, can indeed be
adapted if these do have to change. Our algorithm will take
advantage of such flexibility whenever possible.

Proposition 28. Expressions E ↓n, E ↑n, v(E,n) and
s(E) are also rate-scalable, as are binary expressions, when,
recursively, E is rate-scalable.

Definition 29 (Uniform rate environment). A rate environ-
ment ∆ is said uniform iff all x in Dom(∆) have the same
rate scalability in ∆.

Environments of identifiers that are all rate-scalable are
decorated with a rate scalability of 1: ∆1. For other ex-
pressions, the environment will be decorated with a 0 value:
∆0. In the sequel, all rate-scalable rate environments are
uniform.

5.2 Combining rate environments
Definition 30 (Independent rate environments). Two rate
environments ∆1 and ∆2 are independent iff

Dom(∆1) ∩Dom(∆2) = ∅ . (8)

Definition 31 (Dependent rate environments). Two rate
environments ∆1 and ∆2 that are not independent are called
dependent and thus satisfy the following equation:

Dom(∆1) ∩Dom(∆2) 6= ∅ . (9)

Definition 32 (Rate environment addition). The addition
∆v1

1 + ∆v2
2 of two dependent environments ∆v1

1 and ∆v2
2

is (partially) defined as follows, for some x ∈ Dom(∆1) ∩
Dom(∆2):

ri = ∆i(x) m = lcm(r1, r2) (m
r1

)v1∆1 ' (m
r2

)v2∆2

∆v1
1 + ∆v2

2 → ((m
r1

)v1∆1 ∪ (m
r2

)v2∆2)v1v2
(10)

Basically, if there is an identifier x in the intersection of
the ∆i, we need to be sure they provide the same rate to
x, to allow the ∆i to be combined together. If one of these
environments is fixed (vi = 0), we just have to recover the
rate associated to x there, namely ∆i(x). However, if one
environment (or both) is rate-scalable, we have more leeway,
and can scale them to ensure they provide the same rate; we
pick here the lcm(r1, r2) to be this common rate.

Two comments are warranted about this important rule.
First, note that the above definition is well-formed; the ex-
act choice of x in the rules above has no impact on the
end result, since all rate environments are uniform, and
so rates will be modified always in the same way. Sec-
ond, even though the least common multiplier operation
is usually applied to natural numbers, we use here its exten-
sion to rationals (see, e.g., [18]), where lcm(n1/p1, n2/p2) =
lcm(n1, n2)/gcd(p1, p2). The important aspect here is that
the ratio of such a least common multiplier with its ni/pi
arguments is always a natural number.

Lemma 33. The addition of two rate environments ∆v1
1 +

∆v2
2 defined by the rule above is a (1) commutative and (2)

associative operation.

Proof.

1. Commutativity is obvious, since ' is an equivalence
relation

2. Associativity is a direct consequence of the associa-
tivity of the operators used to define rate environ-
ment addition: multiplication on rates, product of
rate-scalabilities, set intersection and union, and lcm
operation on rationals. .

The domain of dependent rate environments is thus a
commutative semigroup for addition.

5.3 Local rate inference rules
The rate inference algorithm described here uses a set of

rules

E,Ω→ 〈∆v, r〉

that express how to compute, for an expression E and sample-
type environment Ω, a compatible rate environment ∆, with
its rate-scalability v, and a so-called local rate r. They are
called local since they don’t handle recursive signals, which
is addressed in a subsequent phase. As usual, Ω is omitted
when not needed locally.

Note that our algorithm infers, from rates for constants,
inputs and recursive signals that are assumed to be integers,
rates that are also integer, and not rational, as introduced
above. Also, to show the flexibility of our approach, we fixed
the rate scalability of constants to 0 and the ones of identifiers
to 1; this could easily be parameterized by introducing a rate
scalability environment, for instance to include fixed-rate
input signals.

Definition 34 (Rules for numbers). All numbers are of
fixed rate 1. We note ⊥ the rate environment with an empty
domain.

k → 〈⊥0, 1〉 (Int)

f → 〈⊥0, 1〉 (Float)

Definition 35 (Rules for inputs). All inputs, actual inputs
but also inputs of recursive signals, are of rate-scalable rate,
initially 1.

In → 〈⊥[In → 1]1, 1〉 (Input)

Xi → 〈⊥[Xi → 1]1, 1〉 (Recursive)

Definition 36 (Rules for up-sampling and serialize).

E → 〈∆v, r〉
E ↑n→ 〈∆v, nr〉 (Upsampling)

Ω ` E : [n]T E → 〈∆v, r〉
s(E)→ 〈∆v, nr〉 (Serialize)

Definition 37 (Rules for down-sampling and vectorize).
Note the “-var” rule variants below are compatible with their
non-“-var” versions; consistency is thus ensured.

E → 〈∆v, nr〉
E ↓n→ 〈∆v, r〉 (Down)

E → 〈∆1, r〉 m = lcm(n, r)

E ↓n→ 〈(m
r

∆)1,m/n〉 (Down-var)

E → 〈∆v, nr〉
v(E,n)→ 〈∆v, r〉 (Vectorize)

E → 〈∆1, r〉 m = lcm(n, r)

v(E,n)→ 〈(m
r

∆)1,m/n〉 (Vect-var)

Definition 38 (Rules for monorate binary signal expres-
sions). To handle in a general way binary expressions that
force their subexpressions to have the same rate, we intro-
duce, for the sake of simplicity, a generic monorate pairing
operator between signal expressions, typed with a pair of
types.

(E1, E2)→ 〈∆v, r〉
E1 ? E2 → 〈∆v, r〉 (Op)

(E1, E2)→ 〈∆v, r〉
E1@E2 → 〈∆v, r〉 (Delay)

(E1, E2)→ 〈∆v, r〉
E1#E2 → 〈∆v, r〉 (Concat)

(E1, E2)→ 〈∆v, r〉
E1[E2]→ 〈∆v, r〉 (Access)

Definition 39 (Rules for pairs of expressions). General rule
for a monorate pair of expressions (E1, E2).

Ei → 〈∆vi
i , ri〉 ∆′i = ∆i[o→ ri] ∆′

v1
1 + ∆′

v2
2 → ∆v

(E1, E2)→ 〈∆v
/o,∆(o)〉

(Pair)
where ∆′i introduces o as a free identifier not in the domain
of any of the ∆i; here, one can think of o as a proxy for the
result. Since it is used in the correctness proof, but serves no
other purpose, it is removed in the end result environment
(∆/x is identical to ∆, except it is undefined for x).

Proposition 40. If E,Ω→ 〈∆1, r〉, then E is rate-scalable.

5.4 Soundness

Definition 41 (Well-typed Mapping). A recursive mapping
D is well-typed in Γ, written Γ ` D, iff, for all X ∈ Dom(D)
and i ∈ [0, length(D(X))− 1], one has Γ ` (Ei, D) : Γ(Xi).

Definition 42. A pair (Ω,∆) is included into Γ, written

(Ω,∆) < Γ, iff, for all x in Dom(∆), one has Γ(x) = Ω(x)∆(x).

Lemma 43. If (Ω,∆1 ∪∆2) < Γ, then (Ω,∆i) < Γ.

Proof. By definition.

Theorem 44 (Local Rate Inference Soundness). Assume
that Ω ` (E,D) : T and (E,Ω)→ 〈∆v, r〉, for some ∆, v and
r. Then, for any integer p and signal environment Γ, if one
has

• (Ω, pv∆) < Γ

• and Γ ` D ,

then Γ ` (E,D) : Tpvr.

This is the first of the main theorems of this paper. Assume
that we have a signal expression E that includes recursive
signals kept into the mapping D. Moreover, we assume
that E, together with D, is properly sample-typed, i.e., it
has a ”standard” type T in some “standard” sample type
environment Ω. Assume also that, when performing rate
inference on (E,Ω) via the → relation, we derive some rate
environment ∆ and related rate scalability v, together with
a rate r for Signal E. Then, two cases can occur.

• Either v = 0, in which case pv = 1 for all p, and thus
we also assume that (Ω,∆) is compatible with, i.e.,
is included into, some signal environment Γ (which
includes rate information for identifiers), with which
moreover D can be also properly typed.

• Or v = 1, in which case ∆ is rate-scalable, and thus we
can pick any p and Γ such that (Ω, p∆) is compatible
with Γ, as long as D is properly typed.

Then, under all these assumptions, the theorem states that
E with D has Type T and Rate r (or pr, if v = 1) in the
type and rate environment Γ. The rate inference algorithm
is thus sound.
Proof. By induction on E and case analysis.

Numbers. Trivial, with the (Int) and (Float) typing rules,
since v = 0, ∆ = ⊥ and r = 1.

Input. We have 〈∆v, r〉 = 〈⊥[In → 1]1, 1〉.
By definition of < with v = 1, we know Γ = Γ0[In →
float[−∞,+∞]p] for some Γ0. Since v = 1 and r = 1,

we have Tpvr = Ω(In)p = float[−∞,+∞]p. We thus
get the conclusion by the (Input) typing rule.

Recursive. We have 〈∆v, r〉 = 〈⊥[Xi → 1]1, 1〉.
By definition of < with v = 1, we know Γ = Γ0[Xi →
Ω(Xi)

p] for some Γ0. Since, moreover, r = 1, we

have Tpvr = Ω(Xi)
p. Also, since Γ ` D, we know

that for all X ∈ Dom(D) and Xi ∈ Dom(X), one has
Γ ` Ei : Γ(Xi). Thus, by application of the (Recursive)
typing rule, we deduce that Γ ` Xi : Γ(Xi), yielding
the conclusion.

Upsampling. We have E = E′ ↑n and 〈∆v, r〉 = 〈∆v, nr′〉,
with E′ → 〈∆v, r′〉.
By the (Up) sample typing rule, Ω ` E : T implies that

Ω ` E′ : T. Thus, by induction, we get Γ ` E′ : Tpvr′ .

By the (Up) typing rule, we then get Γ ` E : Tnpvr′ .
Since r = nr′, then, we obtain the conclusion.

Serialize. We have E = s(E′) and 〈∆v, r〉 = 〈∆v, nr′〉, with
E′ → 〈∆v, r′〉 with Ω ` E′ : [n]T′.

By induction, we get Γ ` E′ : [n]T′
pvr′

.

By the (Serialize) typing rule, we then get Γ ` E :

T′
npvr′

. Since r = nr′, then, we conclude Γ ` E : T′
pvr

.

Down. We have E = E′ ↓n and 〈∆v, r〉 such that E′ →
〈∆v, r′〉 and r′ = nr.

By the (Down) sample typing rule, Ω ` E : T implies

that Ω ` E′ : T. Thus, by induction, Γ ` E′ : Tpvr′ .

By the (Down) typing rule, since Tpvr′ = Tpvnr, we

then get Γ ` E : Tpvr, yielding the conclusion.

Down-var. We have E = E′ ↓n and 〈∆v, r〉 = 〈(m
r′ ∆′)1,m/n〉

such that E′ → 〈∆′1, r′〉 and m = lcm(n, r′). We also
assume that (Ω, p∆) < Γ, since v = 1.

By the (Down) sample typing rule, Ω ` E : T implies
that Ω ` E′ : T. Thus, by induction on E′, with
pm

r′ as p′ and v′ = 1 in this inductive step, we get

Γ ` E′ : Tpm
r′ r

′
, i.e., Γ ` E′ : Tpm.

By the (Down) typing rule, we then get Γ ` E : Tpm/n,
yielding the conclusion.

Vectorize and Vect-var. Use the same reasoning as for
(Down) and (Down-var).

Binary expressions. Direct consequence of the proof for
pairs of expressions.

Pair of expressions. We have E = (E1, E2) and E →
〈∆v

/o, r〉 such that Ei → 〈∆vi
i , ri〉, ∆′

v1
1 + ∆′

v2
2 → ∆v

and r = ∆(o). We proceed by case on the pair (v1, v2).
Note that the removal of Identifier o from ∆ has no
influence on the induction steps taken in the proof
below, since they are irrelevant in the typing of Ei.

(0, 0). By definition of the rate environment addition, we
have ∆v = (∆′1 ∪∆′2)0 with ∆′1 ' ∆′2. Thus,
for all x in Dom(∆′1) ∩ Dom(∆′2) and thus o,
one has ∆(x) = ∆′1(x) = ∆′2(x). This entails
r1 = ∆′1(o) = ∆′2(o) = r2.

By induction, since (Ω,∆′1 ∪ ∆′2) < Γ implies
(Ω,∆′i) < Γ and thus (Ω,∆i) < Γ, we have Γ `
Ei : Tri

i . Thus, with r1 = r2 = ∆(o) and T =
(T1,T2), we get the conclusion Γ ` E : Tr.

(0, 1). We have ∆v = (∆′1 ∪ n∆′2)0, for n = m/r2.

Here, one can show, similarly as above with ∆′1 '
n∆′2, that r1 = nr2.

By induction, since (Ω, (∆′1 ∪ n∆′2)) < Γ implies
(Ω, nvi∆′i) < Γ and thus (Ω, nvi∆i) < Γ, we have
(using p2 = n) that Γ ` Ei : Tniri

i with ni = nvi .
Thus, with n0r1 = n1r2 = ∆(o) and T = (T1,T2),
we get the conclusion Γ ` E : Tr.

(1, 0). This is the symmetrical case of the previous one.

(1, 1). Here, r = ∆(o) = lcm(r1, r2). The rate addition
rule ensures that ∆v = (r

r1
∆′1 ∪ r

r2
∆′2)1.

Since (Ω, p∆) < Γ implies (Ω, p r
ri

∆′i) < Γ and

thus (Ω, p r
ri

∆i) < Γ, we have, by induction with

pi = p r
ri

, that Γ ` Ei : T
p r

ri
ri

i . Thus, with

p r
ri
ri = pr = p∆(o) and T = (T1,T2), we get the

conclusion Γ ` E : Tpr.

5.5 Integer Completeness
We define an integer-only version Γ `N E : TR of the

Γ ` E : TR typing relation. In `N, it is assumed that all
derivation trees use only integer rates.

Theorem 45 (Local Rate Inference Integer Completeness).
If Γ `N E : TR, then there exist ∆, v ∈ {0, 1}, r ∈ N and
k ∈ N such that (E,Ω(Γ)) → 〈∆v, r〉 with R = rkv and
(Ω(Γ), kv∆) v Γ.

This is the second important theorem of this paper. As-
sume that there exists a derivation, involving only integer
rates, of the type and integer rate TR of a signal expression
E in a signal environment Γ. Then, this theorem states that
the rate inference algorithm (E,Ω(Γ))→ 〈∆v, r〉 will succeed
in finding a rate environment ∆ with a rate-scalability v and
(integer) rate r. Moreover, the inferred rate r will be mini-
mal in the sense that, if the expression is found rate-scalable
(v = 1), then the derived rate R will be an integer multiple
of r and the multiplication factor (k = R/r) is fine-tuned to
make all signals in ∆ compatible, after multiplication with
k, with the signal environment Γ.
Proof. By induction on E and case analysis, assuming
Γ `N E : TR. As usual, Ω(Γ) is omitted when not needed.

Numbers. Trivial, with the (Int) and (Float) typing rules,
with ∆ = ⊥, v = 0, r = 1 and any k.

Input. We just have to choose ∆, v and r such that 〈∆v, r〉 =
〈⊥[In → 1]1, 1〉. Since we know that Γ `N In : TR,
finally just choose k = R to ensure the conclusion.

Recursive. This case is the same as for inputs (note that
the usually tricky handling of recursive types does not
translate when only looking at rates).

Upsampling. We have E = E′ ↑n and, using the (Up)

typing rule, we have Γ `N E′ : TR′
with R = nR′.

By induction, there exist a tuple 〈∆′v
′
, r′〉 and k′ such

that (E′,Ω(Γ))→ 〈∆′v
′
, r′〉 and R′ = r′k′v

′
.

Applying the (Up) sampling step of the rate inference

algorithm, we just choose 〈∆v, r〉 = 〈∆′v
′
, nr′〉. We are

left with finding k such that R = rkv, i.e., such that

nR′ = nr′kv
′

or R′ = r′kv
′
. We just choose k = k′.

Serialize. We have E = v(E′, n). This case is similar to the
upsampling case, except that, in addition, one needs to
use the Sample Type Consistency property to establish
Ω(Γ) ` E′ : [n]T ′, which is needed to execute the
(Serialize) algorithm step.

Down. We have E = E′ ↓n and, using the (Down) typing

rule, we have Γ `N E′ : TR′
with nR = R′.

By induction, there exist a tuple 〈∆′v
′
, r′〉 and k′ such

that (E′,Ω(Γ))→ 〈∆′v
′
, r′〉 and R′ = r′k′v

′
.

There are three cases.

• First, assume there is r′′ such that r′ = nr′′. Us-
ing the (Down) algorithm step, choose 〈∆v, r〉 =

〈∆′v
′
, r′′〉.

Then, we only have to find k such R = r′′kv, i.e.,

nR = nr′′kv = r′kv, i.e., such that R′ = r′kv
′
.

Thus, just choose k = k′ to complete the step.

• Then, assume that there is no such r′′ and v′ = 0.
This would make the rate inference algorithm fail.
Yet, such a case is impossible, since, having both
R′ = r′k0 by induction and R′ = nR by typing,
the rate r′ must be a multiple of n, a contradiction.

• Finally, we have v′ = 1, which enables the (Down-
var) algorithm step.

Here, we choose 〈∆v, r〉 = 〈m
r′ ∆′1,m/n〉, where

m = lcm(n, r′). We need to find k such R =
(m/n)kv, i.e., such that nR = mk1. We choose
k = r′k′/m,

First, k is indeed an integer. We have r′|r′k′
and n|r′k′, since r′k′ = R′ = nR. Thus m =
lcm(n, r′)|r′k′.
Moreover, k∆ = r′k′/m(m

r′ ∆′) = k′∆′, and thus
(Ω(Γ), kv∆) v Γ, completing the step.

Vectorize. Use the same reasoning as for (Down).

Pair of expressions. We have E = (E1, E2). Using the
(Op) typing rule, we also have Γ `N Ei : Ti

R.

By induction, there exist tuples 〈∆vi
i , ri〉 and ki such

that (Ei,Ω(Γ))→ 〈∆vi
i , ri〉, with the conditions R =

rik
vi
i and (Ω(Γ), kvii ∆i) v Γ.

Using the (Pair) algorithm step, choose ∆v = ∆′
v
/o

with ∆′v = (∆′
v1
1 + ∆′

v2
2)v1v2 and r = ∆′(o). This

environment addition is well-defined, since (1) one can
take x = o in the antecedent of the definition of addition
and (2) (m

r1
)v1∆′1 ' (m

r2
)v2∆′2, with m = lcm(r1, r2).

Property (2) is true by the Joinable Environment Scal-
ing Equivalence lemma (see below) for ∆1 and ∆2,
since, by induction, we have (Ω(Γ), kvii ∆i) v Γ.

It is, also, true for o, present in both ∆′i. Indeed,

∆′i(o) = (m
ri

)viri = (m
ri

)vi(R/kvii) = (
mk

vi
i

R
)vi(R/kvii) =

mviR1−vi , since vivi = vi. Since R = r1k
v1
1 = r2k

v2
2 ,

one has R = m′m for some m′. Thus, we get ∆′i(o)=
mvi(m′m)1−vi = mm′1−vi , and two cases occur.

• When the values of vi are equal, we obtain the
sought equality.

• Assume then, wlog, that v1 = 0 and v2 = 1. We
need to show that m (for v2 = 1) is equal to
R (for v1 = 0). Indeed, in this particular case,
m = lcm(r1, r2) = lcm(R,R/k2) = R.

We can now proceed to proving the two conclusion
conditions of the theorem.

• We have to find k such that R = ∆′(o)kv1v2 =
(m
ri

)virik
v1v2 .

First, assume v1 = v2. Then, R must be equal
to (m

r1
)v1r1k

v1v2 . Choose k = r1k
v1
1 /m (which is

an integer since r1|r1k
v1
1 and r2|r2k

v2
2 = r1k

v1
1).

Then R must be (m
r1

)v1r1(r1k
v1
1 /m)v1v2 , which

is (m
r1

)v1r1(r1k1/m)v1 , since v1v2 = v1. After

simplification, we get R = r1k
v1
1 , which is true.

In the second case, the vi are different. Then, wlog,
we take v1 = 0. After simplifying the formula for
R, we need to show that R = m. This is indeed
true, since R = r1 = r2k2 and k2 is an integer,
leading to m = r1 = R.

• We need to show that (Ω(Γ), kv∆) v Γ, with
v = v1v2.

First, assume v1 = v2. We have set k = r1k1/m,
which gives kv1v2∆ = (r1k1/m)v1(m

r1
)v1∆1, which

yields kv1v2∆ = kv11 ∆1, giving the conclusion.

In the second case, with different vi and v1 = 0,
we need to show (Ω(Γ),∆) v Γ. It is a direct
consequence of the induction for ∆1. For the ∆2

part of ∆, we need to show that (Ω(Γ), (m
r2

)1∆2) v
Γ. Yet, we have R = r1 = r2k2, yielding m = r1;
we need (Ω(Γ), (r1

r2
)∆2) v Γ, i.e., (Ω(Γ), k2∆2) v

Γ, which is true, by induction.

Lemma 46 (Joinable Environment Scaling Equivalence).
If kv11 ∆1 ' kv22 ∆2 and r1k

v1
1 = r2k

v2
2 , then (m

r1
)v1∆1 '

(m
r2

)v2∆2, with m = lcm(r1, r2).

Proof. For all elements in ∆1 ∩∆2, by case on vi [15].

5.6 Rate inference
Rate inference is performed by first computing the local

rates of the expressions Ei in the list L of signal outputs;
all recursively defined signals used in Ei are gathered in a
mapping D. If a rate can be successfully inferred for every

expression Ei, the next step is to compute a global ∆ by
combining all these ∆vi

i environments. At the end of this
process, one compute a reduced rate environment ∆. The
last point is then to check that all recursive signals have the
same input and output rate. The rate inference algorithm is
provided in Figure 5.6.

rates(L, D) :

%-- Input:

%-- List L of n signal outputs Ei

%-- Mapping D for recursive signals

%-- Output:

%-- Typing environment Γ
%-- (with Γ(oi) the type/rate of Ei)

%-- Infer types and local rates

for each Ei in L
(Ωi,Ti) = sample_type((Ei, D));
(∆vi

i , ri) = local_rate((Ei,Ωi));

%-- Compute the global sample type

%-- environment

Ω =
⋃n−1

i=0 Ωi[oi → Ti];

%-- Compute the global rate environment

Rs =
⋃n−1

i=0 {∆i[oi → ri]
vi};

while ∃ intersecting R1 and R2 in Rs
Rs = Rs ∪ {R1 +R2} − {R1, R2};

∆ =
⋃

R∈RsR;

%-- Build the global signal type

%-- environment

Γ = [];

for each x in Dom(∆)

Γ = Γ[x→ Ω(x)∆(x)];

%-- Check recursive signals

for each X in Dom(D)
for each i from 0 to length(D(X))− 1

Ti
ri = type/rate(Γ, (πi(D(X)), D));

check (Ti
ri == Γ(πi(X)));

return Γ;

Figure 5: rates signal rate inference algorithm

Definition 47 (Type/Rate Correctness). A list L of n sig-
nals = 〈E0, E1, . . . En−1〉, with its recursive mapping D, is
type/rate correct iff there exists Γ such that, for all Ei, there
exist type Ti and rate ri such that Γ ` (Ei, D) : Tri

i .

Theorem 48 (Rate Inference Soundness). If rates(L,D)
returns Γ, then L is type/rate correct for this Γ.

Proof. By definition of type/rate correctness, picking rates(L,
D) for Γ, one needs to show that, for all Ei, there exist a
type and rate. For this, for each expression Ei, we use the
Local Rate Inference Soundness theorem, after checking that
each of its conditions is valid.

1. The first condition, Ωi ` (Ei, D) : Ti, is satisfied, since
sample type inference is performed on each Ei with the

sample_type algorithm (not described here). Use then
the weakening typing rule, from Ωi to Ω.

2. The second condition, (Ei,Ωi)→ 〈∆vi
i , ri〉, is ensured

by the calls to local_rate.

3. For the third condition, using p = ∆(oi)/ri, we see that
Γ is built so that (Ω, pvi∆i) < Γ.

4. The fourth and final condition, Γ ` D, is satisfied by
the final checks on Γ.

Thus, by Local Rate Inference Soundness, proper sample
type Ω(oi) and rate ∆(oi) exist for each expression Ei.

Theorem 49 (Minimum Rate). The rates provided by rates

are minimal.

Proof. Consequence of the Local Rate Inference Integer
Completeness theorem, since all k there are integers.

6. RELATED WORK
As a specifically audio-oriented DSL, Faust takes its roots

into at least three domains: functional languages, music
languages and synchronous languages. The last two families
are strongly related to clocking issues.

Music languages such as Faust or Csound [4] make a clear
distinction between audio rates, the pervasive digital audio
sample rate information (44 kHz or 48 kHz), and control rates
(kr in Csound parlance), related to the frequency at which,
for instance, user interface components are sampled. The
distinction is, in fact, mostly motivated by performance is-
sues. Our rate information provides a finer-grained and more
flexible way to handle a wide variety of rate requirements.

Regarding synchronous languages, the most relevant ref-
erences are the ones related to the Synchronous Dataflow
Model (see Lee et al’s seminal work [12], or [2] for a more
recent, parameterized variant). In fact, our work can be seen
as both (1) a reframing of the solving of “balance equations”
in SDF [11] in the framework of annotated type systems [13]
and (2) an extension of this scheme to rational rates. Con-
trarily to Lee et al’s global, integer matrix-based version,
our rate algorithm is defined by induction on the syntax
of expressions, allowing for the early and precise detection
of rate inconsistencies and type theoretic-like correctness
proofs. Our technique can also handle explicit rate and type
constraints on input-output signals; in particular, typical
audio environments expect them to carry scalar values, with
no buffering required and fixed rates. More generally, our
type and rate scheme is intended to include more involved
typing and rational rating conditions (see Section 7). We
believe that our static semantics approach, complimentary
to the one usually adopted in the literature, is thus flexible.

Moving to other synchronous languages such as Lustre [6],
Signal [3] or Lucid Synchrone [5], to mention a few, Faust
does not attempt to provide the wide spectrum of clock-
ing and data manipulation specifications present in these
general-purpose synchronous languages. The emphasis is, as
presented in the introduction, to match audio DSP features
and their associated hard real-time, efficiency requirements.
If our rational model for rates can be seen, in some sense, as
a special case of the more abstract clocking mechanisms pro-
vided in these frameworks, i.e., “clocks as abstract types” [7]
or integer clocks [8], we believe that the tight intertwining of

our rate model and efficient inference algorithm will provide
value to Faust users.

Even though some papers on type-based clock mechanisms
mention explicit rate inference algorithms, most authors limit
their covering of this topic to a few comments about Hindley-
Milner-based schemes. Yet, interestingly, in [17], a more
precise description of a clock inference system is provided. In
some sense, our usage of scalability parameters can be seen
as a way of handling the equivalent of “rate schemes” within
the rate inference algorithm itself. But, in addition to the
structural type information found in Hindley-Milner systems,
our problem also addresses the algebra of rate annotations.

7. FUTURE WORK
The typing rules and inference of Sections 4 and 5 are

probably too strict to be of real practical interest. In par-
ticular, constant signals, for instance numbers, have to be
up-sampled to be used in any expression of rate r > 1, which
is very inconvenient. In this section we propose possible
future work related to relaxing the typing and rate rules, and
mention the probable impact on the rate inference process.

One possible evolution of the typing rules is to accept
to combine signals of different rates provided one rate is a
multiple of the other. This can done with the introduction
of a single Rate coercion rule, as follows, assuming n ∈ N∗.

Γ ` E : Tr

Γ ` E : Tnr
(Rate coercion)

All equations r1 = r2 that appeared in the strict rate
inference algorithm, and had to be enforced via unification,
have, in the relaxed rate inference algorithm, to be replaced
by appropriate parametrized equalities of the form n1r1 =
n2r2. Note that the introduction of the (Rate coercion) rule
is equivalent to adding implicit up sampling operations in the
language, thus allowing, in theory, to get rid of the explicit
(Upsampling) rule. We suggest to keep it nonetheless, if only
for documentation purposes.

Another possibility would be to add an explicit subrating
rule such as

Γ ` Ei : Tri
i Tr = Tr1

1 ? Tr2
2

Γ ` E1 ? E2 : Tr
(Subrating)

which would allow subrated expressions to be passed to
primitive operations. We introduce here a natural extension
of the ? relation over sample types with

Tr1
1 ? Tr2

2 = (T1 ? T2)max(r1,r2), if min(r1, r2)|max(r1, r2) .

The difference between the two approaches is that, for in-
stance, the constant signal 10 becomes a signal with multiple
rates in the first case, while, with the second approach, it
is the flexibility of the subrating rule that allows to pass 10
(with its rate of 1) to an operator where a signal of a different
rate, 2 say, is expected, as would be the case in an expression
such as 10 + 7 ↑2. Referential transparency issues, and more
experiments, can help decide which approach is best.

More unusual, and intriguing, would be to allow some sort
of “contravariant” subrating on constant expressions. For
instance, when connecting a constant signal K of value 10
at Rate 1 to a slow-going signal expression S (for instance a
slider enabling some sort of user interfacing at Rate 1/100),
it would interesting to allow K to be deemed equivalent
rate-wise to this slower signal (note this is going the opposite

way of the previous proposals, which would have forced S to
go as fast as K, i.e., adopt a rate of 1). This makes sense
since our knowledge of the constancy of K makes it amenable
to a slower rate without loss of information. Moreover, this
information is explicitly present with our type system, K
having the type int[10, 10]1 (and this behavior would be
generalized automatically to all expressions proven constant
by the typechecker).

Finally, we are envisioning the possibility of adding rate
constraints explicitly, either at the language level or within
the embedding sound architecture, for instance to enforce a
particular I/O rate, required by the outside world (e.g., the
fact that a particular rate must be an integer, say 44kHz).
The best way of doing so is also a matter of more experi-
menting, at the language-design and usage levels.

8. CONCLUSION
We show in this paper how the Faust digital audio process-

ing language, traditionally based on scalar monorate signals,
can be extended to handle multi-dimensional multi-rate sig-
nals. Specifically, we provide a formal definition of a new
Intermediate Representation for Faust extended to enable
the handlingof the multi-rate framework proposed in [9]. We
show how such signals can be formally defined on a rational
model of its clocking mechanism.

On the practical side, we designed a new (type and) mul-
tirate inference algorithm, for which both soundness and
(relative) completeness theorems are specified and proven.
A prototype implementation of this algorithm in the Faust
compiler static semantics phase, in a experimental multi-rate
version of Faust, is underway.

Acknowledgments
Part of this project was funded by the ANR FEEVER project.
We thank Emilio Gallego Arias and Olivier Hermant for their
thorough proofreading of this paper.

9. REFERENCES
[1] K. Barkati and P. Jouvelot. Synchronous programming

in audio processing: A lookup table oscillator case
study. ACM Comput. Surv., 46(2):24, 2013.

[2] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur.
Bpdf: A statically analyzable dataflow model with
integer and boolean parameters. In Proceedings of the
Eleventh ACM International Conference on Embedded
Software, EMSOFT ’13, pages 3:1–3:10, Piscataway, NJ,
USA, 2013. IEEE Press.

[3] A. Benveniste, P. Le Guernic, and C. Jacquemot.
Synchronous programming with events and relations:
the Signal language and its semantics. Science of
Computer Programming, 16(2):103 – 149, 1991.

[4] R.C. Boulanger. The Csound Book: Perspectives in
Software Synthesis, Sound Design, Signal Processing,
and Programming. The Csound Book: Perspectives in
Software Synthesis, Sound Design, Signal Processing,
and Programming. MIT Press, 2000.

[5] P. Caspi, Gr. Hamon, and M. Pouzet. Lucid synchrone:
un langage pour la programmation des systèmes
réactifs. In Systèmes temps réel. Lavoisier, 2007.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice.
Lustre: A declarative language for real-time

programming. In Proceedings of the 14th ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’87, pages 178–188,
New York, NY, USA, 1987. ACM.

[7] J.-L. Colaço and M. Pouzet. Embedded Software: Third
International Conference, EMSOFT 2003, Philadelphia,
PA, USA, October 13-15, 2003. Proceedings, chapter
Clocks as First Class Abstract Types, pages 134–155.
Springer Berlin Heidelberg, 2003.

[8] A. Guatto. A Synchronous Functional Language with
Integer Clocks. PhD thesis, Université de recherche
PSL, France, 2016.

[9] P. Jouvelot and Y. Orlarey. Dependent vector types for
data structuring in multirate Faust. Comput. Lang.
Syst. Struct., 37(3):113–131, July 2011.

[10] S. C. Kleene. General recursive functions of natural
numbers. Math. Annalen, 112(1):727–742, 1936.

[11] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal
processing. IEEE Trans. Comput., 36(1):24–35,
January 1987.

[12] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proc. of the IEEE, 75(9):1235–1245, Sept 1987.

[13] F. Nielson. Annotated type and effect systems. ACM
Comput. Surv., 28(2):344–345, June 1996.

[14] Y. Orlarey, D. Fober, and S. Letz. Syntactical and
semantical aspects of Faust. Soft Comput.,
8(9):623–632, September 2004.

[15] Y. Orlarey and P. Jouvelot. Signal rate inference for
multi-dimensional faust. Technical Report E/394/CRI,
CRI, MINES ParisTech, PSL Research University, May
2016.

[16] J.O. Smith. Introduction to Digital Filters: With Audio
Applications. Music signal proc. series. W3K, 2008.

[17] J. P. Talpin and S. K. Shukla. Automated clock
inference for stream function-based system level
specifications. In Tenth IEEE International High-Level
Design Validation and Test Workshop, pages 63–70,
Nov 2005.

[18] R. Zazkis and J. Truman. From trigonometry to
number theory... and back: Extending lcm to rational
numbers. Digital Experiences in Mathematics
Education, 1(1):79–86, 2015.

