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Time-optimal Coordination of Mobile Robots along Specified Paths

Florent Altché1,2, Xiangjun Qian1 and Arnaud de La Fortelle1

Abstract— In this paper, we address the problem of time-
optimal coordination of mobile robots under kinodynamic
constraints along specified paths. We propose a novel approach
based on time discretization that leads to a mixed-integer linear
programming (MILP) formulation. This problem can be solved
using general-purpose MILP solvers in a reasonable time,
resulting in a resolution-optimal solution. Moreover, unlike
previous work found in the literature, our formulation allows
an exact linear modeling (up to the discretization resolution)
of second-order dynamic constraints. Extensive simulations are
performed to demonstrate the effectiveness of our approach.

I. INTRODUCTION

The deployment of autonomous mobile robots is expected
to bring major benefits in many applications, and their
number is likely to grow dramatically in the next decades.
Therefore, the need to coordinate these robots, which means
finding a way for each of them to reach its target without
colliding with another robot, will become increasingly impor-
tant. A vast literature on motion planning, which generalizes
the problem of coordination, already exists (see e.g. [1]).

We consider the problem of optimally coordinating mul-
tiple robots along specified paths with variable speed un-
der kinodynamic constraints. The simplifying fixed path
assumption is notably suited for structured environments, for
instance traffic intersections or warehouses, where robots are
generally bound to navigate inside lanes or aisles. Various
methods exist to quickly find a feasible solution to this
problem, and many of these (see e.g. [2]) make use of the
so-called coordination (or configuration) space introduced
in [3]. However, the optimal coordination problem is known
to be NP-hard [4], even in the absence of dynamic con-
straints, and few methods exist to provide a good solution
with a high number of robots. As shown in [5], this algorith-
mic complexity stems from the implicit decision of choosing
which of any two potentially colliding robots should be the
first to pass, making the problem inherently combinatorial
with complexity scaling as high as 2N(N−1)/2 for N robots.
Exhaustive enumeration could be used for small instances
(see e.g. [6], [7]), but would be difficult to scale up with a
larger number of robots.

A possible way of handling this complexity is to prune
the corresponding decision tree by removing provably non-
optimal branches. Mixed-integer programming (MIP) is a
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widely-used framework that allows efficient handling of such
combinatorial problems. General MIP problems involving
arbitrary functions are very hard, but good techniques ex-
ist for a subclass of these problems, called mixed-integer
second-order cone programming, or MISOCP [8]. In these
problems, a convex quadratic objective function is minimized
with quadratic positive semi-definite or affine constraints. A
better-known subclass of MISOCP is mixed-integer linear
programming (MILP), where the objective function and
constraints are linear. These techniques have already been
applied to trajectory planning in general, and to the coordi-
nation problem in particular.

In [9], a MILP formulation is used to compute fuel-
optimal trajectories for multiple spacecrafts, while avoiding
collisions and exhaust gases from other crafts. However,
this model is inherently different from ours as paths are
not specified in advance in this formulation, leading to a
much higher computational complexity. On the opposite end
of the spectrum, Wang et al. [10] use MILP to find an
optimal velocity profile under piecewise-constant dynamic
constraints for a train on a fixed path, but do not consider
conflicts with other trains.

In [11], a mixed-integer nonlinear program is used to
ensure safe separation of aircrafts evolving along fixed paths,
with minimal deviation from an original flight plan. Even
though dynamic constraints are not considered, nonlinearities
stemming from the euclidean distance constraints render
the problem very hard to solve in reasonable time, with a
practical limit of 4 aircrafts.

Peng and Akella [12] consider a problem almost identical
to ours. First, they propose to discretize robot paths into
“collision-free” and “conflicting” segments. In a second step,
by identifying the time instants when robots can enter and
exit collision segments, they formulate collision avoidance
constraints for every pair of robots into a nonlinear mixed-
integer problem. However, the dynamic constraints are non-
convex in this formulation, rendering the problem unsuitable
for general-purpose solvers. To handle this difficulty, addi-
tional constraints are introduced to transform the problem
into two linear subproblems that are solved as MILPs and
give an upper and lower bound for the solution, but the actual
optimal value is only approximated.

The problem of non-convexity of the dynamic constraints
is also encountered in [7], where authors propose a convex-
ification method using linearization along a reference speed.
However, this approximation underestimates the maximum
and overestimates the minimum acceleration, leading to a
sub-optimal solution.

Our main contribution in this paper is the introduction of
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Fig. 1. Example of paths inside and outside the coordination region for a
two-lane road intersection.

a new formulation of the optimal coordination problem as a
MILP by discretizing over time instead of space, and using
bounding polygons to transcribe safety requirements as linear
constraints. This formulation allows an exact linear modeling
of second-order dynamics up to the discretization resolution;
solving this problem gives optimal velocity profiles for the
robots under these constraints. For illustration purposes, we
use the mean sojourn time as the minimization objective, but
other linear optimization criteria could also be chosen.

The paper is articulated as follows. In Section II, we
describe the modeling of the system of robots and the
general coordination problem, and we give some theoretical
insights on the problem from previous work in Section III. In
Section IV, we present our formulation of the time-optimal
coordination problem as a MILP problem. This formulation
is then validated using computer simulation on the example
of automated vehicles in an intersection, as presented in
Section V. Finally, Section VI concludes the study.

II. PROBLEM STATEMENT

We consider a set N of N robots evolving on prede-
termined paths, and we assume that coordination between
robots is only needed inside a bounded region, which we call
the coordination region. In the case of automated driving,
for instance, coordination is mostly needed in the middle
of road intersections, as illustrated in Fig. 1, while vehicles
only need to keep a safe distance with the vehicle in front of
them when they are not in the intersection. In this example,
the coordination region would be chosen as the center of
the intersection, including a portion of the roads leading to,
and exiting from this center. Note that the predefined path
assumption allows to only consider longitudinal movement of
the robots, thus reducing the computational complexity, and
is classical in robots coordination problems in a constrained
environment [12], [13].

Each robot i ∈ N is supposed to follow a predetermined
path γi inside the coordination region, so that we need only
consider the longitudinal comportment of the robots. The
dynamics of robot i are described as a double integrator:

(ṡi, v̇i) = (vi, ai) (1)

where si is the curvilinear position of robot i along its path,
vi its longitudinal velocity and ai its acceleration.

The origin of si is chosen so that si = 0 when the front of
the robot enters the coordination region, and si = souti > 0

when it fully exits the coordination region. si can therefore
be interpreted as the distance traveled by robot i inside the
coordination region. The velocity is assumed to be non-
negative and bounded, such that vi ∈ [0, vi]. The state of
robot i is noted xi = (si, vi); we call trajectory of robot
i the (continuous) function mapping a given time t to the
state of i at time t, noted xi(t) = (si(t), vi(t)). Boldface
x denotes the vector (x1, x2, ...), representing the state of
the multi-robot system and x(t) is the system trajectory. To
account for the dynamic constraints on the robots, we assume
that the longitudinal acceleration ai of robot i is bounded to
an interval

[
ai, ai

]
with ai < 0 < ai.

We assume that robot i enters the coordination region at
time tini with speed vini ∈ [0, vi], and is required to leave the
coordination region with speed vouti ; we let touti denote the
corresponding exit time. Note that vouti should be properly
chosen to avoid collisions outside of the coordination region,
for instance when a fast vehicle exits after a slower one.

For a pair of distinct robots i and j, we call collision set
between i and j, noted Cij ⊂ [0, souti ] ×

[
0, soutj

]
the set

of positions (si, sj) inside the coordination region where i
and j would collide; we say that i and j are conflicting if
Cij 6= ∅.

To simplify the rest of the presentation, we assume that
the collision set between two robots is connected, i.e. we
exclude the case of non-conflicting segments between two
conflict segments, for instance when two paths intersect
multiple times. If this is not the case, the presented results
still hold provided every connected component Cpij of Cij is
considered individually. Moreover, we approximate the exact
collision set by a (minimal) bounding polygon with edges
either parallel to the horizontal or vertical axis, or to the
si = sj line. Under our hypotheses, four possible types of
conflicts can exist: robots can follow one another throughout
the coordination region (a), or have crossing (b), merging
(c) or diverging (d) paths, as illustrated in Fig. 2. Note that
cases (c) and (d) are not mutually exclusive, and paths can
merge and then diverge.

si
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Cij

(a) Following paths

si

sj
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(b) Crossing paths

si

sj

Cij

(c) Merging paths

si

sj
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(d) Diverging paths

Fig. 2. Possible cases for the collision set between two conflicting
rectangular robots i and j (assuming paths intersect orthogonally). The
edges of Cij are straight lines with equations si = A, sj = B or
|si − sj | = C where A,B,C are constants.

The above bounding polygon approximation is well suited



when robots have nearly rectangular shapes, and induces a
negligible loss of optimality in this case, as illustrated in Fig.
3. Note that arbitrary convex polygons can also be used, at
the cost of introducing additional binary variables.
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Fig. 3. Exact shape of the collision region Cij for (polygonal) car-like
robots. The blue rectangles represent the corresponding bounding polygon.

We now define the time-optimal coordination problem as:
Definition 1: The time-optimal coordination problem is

that of finding the optimal system trajectory x∗(t) minimiz-
ing the mean sojourn time 1

N

∑
i∈N (t

out
i − tini ), under the

following constraints for every robot i:
• initial conditions: xi(tini ) = (0, vini )
• kinematics: ṡi = vi ∈ [0, vi]
• dynamics: v̇i = ai ∈ [ai, ai]
• safety: for all t ≥ tini and for every robot j 6= i,

(si(t), sj(t)) /∈ Cij
• liveness: there exists touti < +∞ with si(touti ) = souti

• exit speed: vi(touti ) = vouti .
Note that in the above definition, the initial condition
xi(t

in
i ) = (0, vini ) corresponding to a fixed entry time can be

replaced by a fixed initial state constraint xi(0) = (s0i , v
0
i ).

III. THEORETICAL ANALYSIS

For an arbitrary pair of robots with non-empty collision
set, one necessarily passes before the other to avoid col-
lisions. For two conflicting robots i and j and a given
collision-free system trajectory, we say that i has priority
over j if i goes before j, and we note i � j in this
case. The collection of all priorities for all pairs of robots
can be encoded as a priority graph where robots are the
nodes and priorities are directed edges. It has been shown
in [5] that such priority graphs can be bijectively mapped to
homotopy classes of trajectories for the multi-robot system.
For a given continuous optimization criterion, there exists
at least one optimal trajectory in any non-empty homotopy
class. The global optimal trajectory x∗(t) can then be found
by enumerating all optimal trajectories for all priority graphs.

Therefore, the time-optimal coordination problem has both
a discrete (enumerating all priority graphs) and a continu-
ous part (optimizing the trajectories of every robots under
assigned priorities, which is a continuous optimal control
problem). The discrete part of the problem is combinatorial
since, for N robots inducing p pairs of conflicts, there are up
to 2p possible priority graphs. In general, p can be as high
as 1

2N(N − 1); however, many of these graphs can be dis-
carded for poor performance or for being incompatible with

the robots entry times. For this reason, branch-and-bound
algorithms seem particularly well-suited to our problem as
they are designed to find global optima without needing to
explore the whole decision tree.

IV. TIME-OPTIMAL COORDINATION

Using the above theoretical results, we formulate the
time-optimal coordination problem as a mixed-integer linear
program (MILP) which can be solved by widely-available
solvers using branch-and-bound techniques.

A. Completed Collision Set

For conflicting robots i and j, we call completed collision
set Ci�j the set of configurations (si, sj) leading to a
collision or a violation of priority i � j; mathematically,
Ci�j = Cij + (R− × R+). Since we have approximated
each collision set Cij by a minimal bounding polygon with
edges parallel to the coordinate axes or to the si = sj lines,
the completed set Ci�j is also a polygon with the same
properties. Note that if Cij is not connected, a completed
collision set has to be defined for each connected component.

To formulate safety requirements as linear constraints, we
first define a partition of Ci�j as C‖i�j ∪ C⊥i�j . C

‖
i�j is the

subset of Ci�j with boundary parallel to si = sj , and C⊥i�j
the subset with boundary parallel to the si axis as illustrated
for the merging case in Fig. 4. Subset C‖i�j is the set of
priority violations (or collisions) that could happen when j
should follow i, and C⊥i�j is that of violations (or collisions)
that could happen when j should wait for i to pass. In
what follows, we note S‖ij(·) and S

‖
ij(·) the lower and upper

bounds of the projection of C‖i�j on the s· axis (for · = i

or j), and we define S⊥ij(·) and S
⊥
ij(·) similarly. However,

to ensure those subsets have empty intersection, we exclude{(
S
⊥
ij(i), sj

)
: sj ∈ [0, soutj ]

}
from C⊥i�j . If either C‖i�j or

C⊥i�j is empty, we let the corresponding lower and upper
bounds be equal to 0; note that in this particular case, those
subsets formally do not form a partition.

An important remark is that C‖i�j and C⊥i�j are both
connected and left invariant by translation of a vector from
{0} × R+. Therefore, with this decomposition, if S‖ij(i) ≤
si ≤ S

‖
ij(i), condition (si, sj) /∈ Ci�j is equivalent to

sj ≤ si − aij where aij is a constant corresponding to
a following distance and a potential offset of curvilinear
abscissa. If S⊥ij(i) ≤ si < S

⊥
ij(i), condition (si, sj) /∈ Ci�j

is equivalent to sj ≤ S⊥ij(j). If si is not in either of these
intervals, collisions or priority violations cannot occur. Note
that, if needed, a finer decomposition could be used to better
approximate the exact shape of the collision set, by using
bounding convex polygons with edges having slopes different
than 0 or 1, and defining one subset of Ci�j per edge.

B. Discretization

If priorities have been chosen, finding the best trajectories
in continuous time and space is equivalent to a nonlinear
time-optimal control problem in a non-convex space, which
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Fig. 4. Illustration of the completed collision set Ci�j in the merging
case, and the corresponding values of S⊥ij , S⊥ij(i), S

‖
ij(i) and S

‖
ij(i). sj =

S⊥ij(j) when j reaches B in Fig. 4a, and si = S
‖
ij(i) when i reaches C.

Similarly, si = S⊥ji(i) when i reaches B′. Also note that the equation for

the lower-right boundary of the collision set is si ≥ sj +S
‖
ij(i)−S⊥ij(j).

is usually difficult to solve. Several authors, among which
[12] and [7], have used spatial discretization to overcome this
difficulty and formulate a simpler problem. In this setting,
paths are divided into segments and the average speed vavg
and occupancy time tocc for each robot in each segment are
chosen as variables. One of the major issues arising from
this discretization is that the second-order dynamics of the
robot imply nonlinear (and non-convex) relations between
the length ` of a segment and these two variables. Indeed,
these constraints are written as ` = vavgtocc which translates
to ` ≤ vavgtocc ∧ ` ≥ vavgtocc; one of those inequalities
defines a non-convex set in the (vavg, tocc) plane that has to
be approximated in order to be treated in most optimization
frameworks, thus degrading solution quality.

Instead of using spatial segments, we propose a temporal
discretization which, to the best of our knowledge, has not
yet been used to solve the coordination problem with a fixed-
paths assumption. In what follows, we note τ > 0 the fixed
duration of a time step; for an integer k ≥ 0 and a robot i, we
note ski = si(kτ), and use similar notations for vi. We note
K the maximum number of time steps in the computation.

C. Variables

Besides variables ski and vki , we need to introduce a
few supplementary variables, all of them binary. For two
conflicting robots i and j, we let πij = 1 if and only if (iff)
i � j, and for all time steps k we define several variables εij
that indicate if, at time step k, robots i and j have entered
and/or exited C⊥i�j and C‖i�j .

Specifically, we let ε•,inij (i, k) = 1 iff ski ≥ S•ij(i) and
ε•,outij (i, k) = 1 iff ski ≥ S

•
ij(i), where • is either ‖ or ⊥,

and we define similarly ε•,inij (j, k) = 1 iff skj ≥ S•ij(j) and
ε•,outij (j, k) = 1 iff skj ≥ S

•
ij(j).

We also introduce, for every robot, the variables µki = 1
iff ski ≥ 0 and σki = 1 iff ski ≥ souti , respectively indicating
if the robot has entered and exited the coordination region
at time step k.

D. Objective function

As stated earlier, we wish to minimize the average sojourn
time, which is equivalent (since entry times are prescribed)

to minimizing the average exit times. Since our formulation
does not use time as a variable, we use

O =
1

N

∑
i=1...N
k=0...K

σki (2)

for our objective function. O is the average number of time
steps spent after exiting the coordination region, which ap-
proximates (to the duration of a time step τ ) the total amount
of time spent after exiting the coordination region, divided by
τ . More precisely, O = 1

N

∑
i=1...N (K − kouti + 1) where

kouti is the time step at which robot i exits the coordination
region, and thus maximizing O is equivalent to minimizing
the average value of kouti .

E. Constraints

Many of the constraints needed for the coordination prob-
lem are conjunctions (noted ∧), or logical implications (⇒);
we use the binary variables introduced in the previous section
as indicators, and use a “big-M” formulation [14] to enforce
those constraints. In what follows, left-hand side terms are
variables, and right-hand side terms are problem parameters.

a) Binary variables: To ensure the additional binary
variables are set to the correct value, the following helper
conditions are enforced for all 0 ≤ k ≤ K, every robot
i ∈ N and every robot j ∈ N conflicting with i:

µki = 0⇒ ski ≤ 0 (h1)

µki = 1⇒ ski ≥ 0 (h2)

σki = 0⇒ ski ≤ souti (h3)

σki = 1⇒ ski ≥ souti (h4)
πij+πji = 1 (h5)

Constraints similar to (h1)-(h2) are used for ε•,inij (i, k),
ε•,inij (j, k), ε•,outij (i, k) and ε•,outij (j, k), where • is either ⊥
or ‖. Constraint (h5) ensures that exactly one of the variables
πij and πji is set to 1. Note that strict inequalities cannot
be enforced in a MILP framework; therefore, the above con-
straints do not specify the value of each indicator variables at
its point of discontinuity. This limitation, however, has little
effect on the solutions.

b) Initial and terminal values, bounds: To account for
the initial values of the variables and the different bounds on
the problem, we use the following boundary constraints for
all 0 ≤ k ≤ K − 1 and each robot i:

µki = 0⇒ vk+1
i = vini (b1)

σk+1
i = 1⇒ vki = vouti (b2)

s0i = − vini tini (b3)

sKi ≥ souti (b4)

v0i = vini (b5)

vki ∈ [0; vi] (b6)

Conditions (b1), (b3) and (b5) enforce the initial constraint
xi(t

in
i ) = (0, vini ), (b2) the final speed constraint, (b6)

enforces the bounds on speed and (b4) ensures the liveness
constraint, as all robots are required to exit in finite time.



c) Kinodynamic constraints: We assume that robots use
a constant acceleration during each time step. Under this
assumption, we enforce the kinodynamic constraints using
the conditions, for all 0 ≤ k ≤ K − 1 and every robot i:

σki = 0⇒ sk+1
i − ski −

1

2
τ
(
vk+1
i + vki

)
= 0 (k1)

σki = 0⇒ vk+1
i − vki ≤ aiτ (k2)

σki = 0⇒ vk+1
i − vki ≥ aiτ (k3)

Condition (k1) enforces the kinematic constraints (under the
constant acceleration assumption); (k2) and (k3) account for
the dynamic constraints. Note that the constant acceleration
hypothesis could be relaxed using third-order dynamics, or
more general second-order cone programming, as

xki − vki τ +
aiτ

ai − ai
yki −

1

2(ai − ai)
yki

2 ≤ ai aiτ
2

2(ai − ai)

xki − vki τ +
aiτ

ai − ai
yki −

1

2(ai − ai)
yki

2 ≥ ai aiτ
2

2(ai − ai)
where xki = sk+1

i −ski and yki = vk+1
i −vki . A justification for

this extension can be found in [15] which shows that these
constraints exactly describe the set of reachable positions and
speeds under second-order integrator dynamics with bounded
acceleration in a given time τ .

d) Safety constraints: Using the previously-defined in-
dicator variables ε and the results from Section IV-A, we
translate the safety constraints as follows: for every pair of
conflicting robots (i, j) and for all 0 ≤ k ≤ K − 1:

πij = 1 ∧ ε⊥,outij (i, k) = 0⇒ ε⊥,inij (j, k + 1) = 0 (s1)

πij = 1 ∧ ε‖,inij (j, k) = 1 ∧ ε‖,outij (i, k) = 0⇒
sk+1
i − sk+1

j ≥ aij (s2)

πij = 1 ∧ ε‖,inij (j, k) = 1 ∧ ε‖,outij (i, k) = 0⇒
sk+1
i − sk+1

j +
τ

2

(
vk+1
i − vk+1

j

)
≥ aij (s3)

with aij = d‖ + S
‖
ij(i)− S⊥ij(j), in which d‖ is a following

distance (from front of the follower to rear of the leader)
between two robots. The term S

‖
ij(i)−S⊥ij(j) in aij accounts

for the potential offset in curvilinear position between two
robots in the case of merging paths (and vanishes in other
cases), as illustrated in Fig. 4. Condition (s1) can be phrased
as “if i has priority and has not yet passed the collision
set, then j cannot go in”. The additional condition (s3) is
used to ensure that no collision occurs between two time
steps; for the same reason, (s1) involves ε⊥,outij (i, k) and
ε⊥,inij (j, k + 1). This approach can be seen as a systemati-
zation of the concept of spatio-temporal trajectory envelopes
presented in [13], [16], where the temporal extent of these
envelopes is automatically adjusted during resolution.

Note that the above formulation can be used in the case
of a collision set with multiple connected components, by
introducing a set of variables π and ε, and of parameters S
and S for each of these components. This method allows
simultaneous resolution over multiple conflict areas, thus
ensuring the solution is a global optimum and not comprised

of several local optima, which would be the case if each
connected component was treated separately.

F. Optimization problem

To simplify notations, we note X the tuple of all the
variables described above. The optimization problem (in
which indices have been omitted for readability) of finding

max
X

O(X) (3)

s.t. (h1)− (h5), (b1)− (b6), (k1)− (k3), (s1)− (s3)

either gives a solution to the discretized time-optimal coor-
dination problem, or is infeasible. Specifically, infeasibilities
can either be caused by the choice of a too small value for the
number of time steps K, or because the initial states of the
robots do not allow a safe passage through the intersection.

The sub-optimality caused by the time discretization van-
ishes as the time step goes to zero. Since the limit on
computation time effectively sets a lower bound on the time
step duration, it is desirable to choose a value providing
good quality solutions in reasonable time. This issue will be
discussed in Section V. However, an additional artifact arises
from time discretization with a finite resolution, as objective
function O does not distinguish solutions with sojourn times
differing by less than the duration of a time step for at least
one robot. To correct this issue, we make use of the fact that
maximizing the speed of a robot allows to minimize its (non-
discretized) sojourn time. Therefore, adding an “averaged
normalized speed” term 1

NK

∑
i,k

vki
vi

to function O allows
to choose, among all solutions of (3), the one with highest
average speed and thus smallest average sojourn time. Note
that the weighting of the added term ensures this solution
is still optimal for problem (3), and the modified objective
function has been used in our simulations.

Moreover, our formulation could also be used for continu-
ous arrivals of robots in real-time. Let T be an upper bound
for the computation time for NT robots: at a given time t
we consider the set Nt of robots entering the coordination
region between times t and t+T , and we assume |Nt| ≤ NT .
If optimal trajectories have been assigned for the robots of
Nt−T and taking those as constraints for the robots ofNt, we
can compute optimal trajectories for those robots before they
reach the entry of the coordination region. Constraint (b1)
ensures those trajectories remain feasible by that time and
can therefore be assigned to the robots of Nt. Note that this
time-receding method may, however, cause sub-optimalities
compared to considering all robots at once.

Also note that optimizing robots speed profiles for min-
imum sojourn time comes in pair with reducing safety
margins to a minimum. For actual applications, this may
cause problems in the case of unexpected events such as
failure of a robot, which could make other robots unable to
avoid a collision. Future work will study how to balance
efficiency with the ability to cope with contingencies, to
improve the robustness of the coordination.



V. SIMULATION RESULTS

The use of the above optimization problem to find a
time-optimal coordination has been validated by computer
simulation on the example of autonomous vehicles in the
intersection of Fig. 1. The simulation is based on the free
traffic modeling tool SUMO [17] and uses its path generation
algorithm to compute collisions sets.

Vehicles are generated either deterministically (first simu-
lation), or using random Poisson arrival times with normally-
distributed entry speeds truncated to a minimum and a max-
imum speed (second and third simulations). Optimization
problem (3) (using the modified objective function) is then
run into the commercial MILP solver Gurobi [18], using its
Python interface to generate the constraints. Lastly, if the
problem is feasible, the solution trajectories are simulated in
SUMO using the TraCI interface to verify that they do not
generate collisions.

In all simulations, vehicles are modeled as rectangles of
5m length by 2m width, with [ai, ai] = [−3,+4] m s−2.
The exit speed for all i ∈ N is set as vouti = v = 15m s−1,
which ensures the absence of collisions outside of the
coordination region. The entry speed vini is deterministically
chosen in the first simulation and is normally distributed with
average 12m s−1 and standard deviation 3m s−1, truncated
to [10, 15] m s−1 in the second and third simulations.

Simulations were performed on a personal computer run-
ning on a 3.60GHz Intel Core i7-4790 CPU with 16GB of
RAM. A replay of some of our simulations is available in
the accompanying video submission1.

A. Microscopic simulation

We first demonstrate the ability of our method to find the
global optimum on a simple example with three vehicles in
the case of the intersection displayed in Fig. 1: vehicle 1 goes
from south to west, vehicle 2 from west to east and vehicle 3
from north to south. Vehicles initially start at (s01, s

0
2, s

0
3) =

(0, 0, 25) m with speeds (vin1 , v
in
2 , v

in
3 ) = (5, 15, 10) m s−1.

Fig. 5a shows the globally optimal trajectories for each
vehicle, which lies in the homotopy class represented by
priorities 3 � 2, 2 � 1, 3 � 1. For comparison purposes,
Fig. 5b shows the (locally) optimal trajectories when sub-
optimal priorities 1 � 3, 3 � 2, 1 � 2 are enforced. The
optimum average sojourn time found by our algorithm is
6.5 s, and the example sub-optimal one is 8.4 s.

B. Influence of time step duration

The discretization time step has a double effect on the
solution: first, we assume constant acceleration during one
time step. Second, the safety constraints require that one
robot of each conflicting pair leaves the conflict area one
time step before the other can enter.

In Fig. 6 we show the average optimality loss caused by
choosing larger time step durations for a random set of 85
initial configurations of 15 vehicles. For each instance, the
resolution-optimal average time tτopt is computed for time

1Also available at https://youtu.be/RiW2OFsdHOY
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Fig. 5. Optimal trajectories within given priority classes, corresponding to
a global (left) and local (right) optimum
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Fig. 6. Average relative optimality loss (compared to a 0.125 s time step),
depending on time step duration, for 85 instances of 15 vehicles. Error bars
correspond to 1 standard deviation for instances above or below average.

step durations τ ranging from 0.125 s to 5 s. The relative
loss of optimality is computed as

tτopt−t0.125opt

t0.125opt
. Interestingly,

the averaged values fit closely to an affine function with slope
7.2% per second for the above set of parameters. The loss
of optimality remains less than 6% when the time step is
smaller than 1 s; moreover, the solution of (3) converges as
the time step duration vanishes.

The kinodynamic parameters, i.e. the maximum speed
v and the acceleration bounds ai and ai influence the
magnitude of the optimality loss. Fig. 7 shows a comparison
of the losses of optimality for three different scenarios,
namely “reference”, “lower speed” and “higher accelera-
tion”. Reference parameters are, as before, (v, ai, ai) =
(15m s−1,−3m s−2, 4m s−2). The same set of 85 initial
configurations is used for those three scenarios, and we
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Fig. 7. Average relative optimality loss (compared to a 0.25 s time step),
depending on time step duration, for 85 instances of 15 vehicles with
reference parameters (red), lower maximum speed of 10m s−1 (blue) and
higher absolute values of accelerations [ai, ai] = [−6,+8] m s−2 (green).
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Fig. 8. Averaged computation time over 10 instances for a time step
duration of 1 s and a varying number of vehicles.

only vary the kinodynamic parameters; in the lower speed
scenario, initial speeds are also reduced by 33%. We find
that an increase of time step duration causes higher losses
of optimality in instances with more dynamic robots (higher
speeds or higher absolute values of acceleration bounds) than
those with less dynamic ones. As a result, the time step
duration can be adapted to the dynamic characteristics of
robots; for instance using longer time steps for slower robots.

C. Computation time

To measure the computation time required to solve prob-
lem (3) for the intersection displayed in Fig. 1, we run
the simulator for different numbers of vehicles with a fixed
time step of 1 s (Fig. 8). Computation time remains below
1 s for up to 8 vehicles, which would make our approach
suitable for real-world applications. Note that the same 30 s
time horizon is considered across all simulations to provide
fair comparison, while a shorter horizon could be used for
problems involving fewer robots, thus reducing computation
time; moreover, the presented MILP problem has been for-
mulated for clarity rather than execution speed, notably by
introducing redundant variables. As a result, performance can
likely be further improved to process more robots in the same
time frame.

VI. CONCLUSION

This article presents a new approach to compute time-
optimal trajectories for the coordination of mobile robots in
a structured environment, taking into account kinodynamic
constraints. Assuming each robot follows a predetermined
path and using well-chosen bounding polygons, it is possible
to formulate this problem as a mixed-integer linear program.
By using temporal instead of spatial discretization, our ap-
proach allows an exact modeling of second-order integrator
dynamics with piecewise-constant acceleration. The formu-
lated problem mixes the discrete choice of relative priorities
between conflicting robots with the continuous optimization
of speed profiles respecting these priorities.

Extensive computer simulations have been run, on the
example of a road intersection with autonomous vehicles,
using the open-source traffic simulator SUMO and commer-
cial MILP solver GUROBI. These simulations demonstrate
the ability of our approach to compute optimal, collision-free
trajectories in reasonable time.

Using consumer-grade hardware, the proposed method can
treat up to 8 robots in less than a second. It is therefore
suitable for real-time use, for instance for robots in an auto-
mated warehouse or autonomous vehicles at an intersection.
In situations where computation time is more important than
optimality, our formulation could also be used to design
more efficient heuristics, with provable performance bounds,
or to assess potentially dangerous situations where no safe
trajectories exist. More general quadratic programming tech-
niques could allow to use more complex objective functions,
and relax the constant acceleration assumption while still
providing an exact modeling of the dynamic constraints,
opening many perspectives for future research.
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