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Least Restrictive and Minimally Deviating Supervisor for Safe
Semi-Autonomous Driving at an Intersection: An MIQP Approach

Florent Altché2,1, Xiangjun Qian1 and Arnaud de La Fortelle1

Abstract— Although significant progress has been made in
the last few years towards cooperative and autonomous driving,
the transition from human-driven to fully automated vehicles
is expected to happen slowly. The question of semi-autonomous
driving, where Advanced Driver Assistance Systems assist
human drivers in their decisions, will therefore become in-
creasingly important. In this paper, we consider the problem
of safe intersection crossing for semi-autonomous vehicles with
communication capacities. We design an intersection supervisor
based on a mixed-integer quadratic programming approach
which monitors the control inputs of each vehicle, and overrides
those controls when necessary to ensure that all vehicles can
navigate safely. Moreover, the solution control deviates mini-
mally from the vehicles target inputs: overriding only occurs
when it is strictly necessary, in which case the control is chosen
as close as possible to the driver’s intent. We theoretically prove
that the supervisor needs only consider a finite future time
horizon to ensure safety and deadlock avoidance over an infinite
time horizon, and we demonstrate through simulation that this
algorithm can work in real time. Additionally, unlike previous
work, our formulation is suitable for complex intersection
geometries with a high number of vehicles.

I. INTRODUCTION

While self-driving vehicles are not likely to reach con-
sumer market before a few more years, most of the tech-
nology required for semi-autonomy already exists. For in-
stance, adaptive cruise control [1] or advanced emergency
braking [2] are becoming standard equipment in new cars
to assist, and sometimes supplant, human drivers in order
to improve safety and driving comfort. Such systems are
efficient to prevent rear-end collisions, but they are not suited
to more complex situations such as intersections, which
represented more than 20% of road fatalities in the United
States in 2014.

Until recently, most studies considered fully autonomous
driving at intersections, assuming that vehicles were perfectly
controlled [3], [4], and able to exchange their future inten-
tions and to quickly and cooperatively react to any unex-
pected event. Some methods do exist to allow autonomous
cars to handle unexpected maneuvers from human-driven
vehicles [5], but the safety of the human-driven vehicle itself
is rarely considered.

In this article, we consider a road intersection with semi-
autonomous vehicles equipped with communication capabil-
ity, driving along fixed paths through the intersection (see,
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Fig. 1. Example of paths in a general intersection with three-lane roads.
The outer (dotted) square is the boundary of the supervision area, and the
inner square defines the collision area.

e.g., Fig. 1). At a given time, each vehicle is assumed to have
a preferred desired control input for the next few fractions of
a second: it can simply consist of tracking a desired speed
or a more complicated human input. As vehicles are not
fully autonomous, this target control may, or may not lead
the system of vehicles into a so-called “inevitable collision
state” [6], or in a deadlock configuration where no participant
is able to cross the intersection. Therefore, an outside input
is needed to ensure safe and non-blocking coordination of
the vehicles across the intersection. Note that the fixed-paths
assumption is classic in intersection problems, as vehicles
generally drive inside a preassigned lane.

Colombo et al. [7] introduced the idea of a supervisory in-
stance (called supervisor) tasked with preventing the system
of vehicles from entering undesirable states by overriding the
controls of one or several vehicles only when necessary. The
question of determining whether overriding is needed or not,
called “verification problem”, is NP-hard [8]. Under several
simplifying assumptions, this verification problem is shown
in [7] to be equivalent to solving a scheduling problem,
by assigning time slots during which only one vehicle is
allowed inside the intersection. This allows to design a so-
called least restrictive supervisor, which verifies the safety of
the desired inputs and overrides them if necessary. However,
the proposed supervisor only works with simple intersection
geometries with one conflict point, i.e. only one vehicle can
be inside the intersection at any given time. Moreover, no
bound is given on the controls used for overriding, which can
widely deviate from the desired ones. We call a supervisor
minimally deviating if it minimizes the difference between
the desired and overridden controls.

Several variations have been proposed based on the equiv-



alence demonstrated in [7]. Reference [9] designs a super-
visor which is robust to bounded uncertainties by adding
safety margins. Reference [10] leverages job-shop schedul-
ing to develop a supervisor that considers several possible
conflict points inside the intersection; however, vehicles are
modeled as single integrators which is not realistic in a real-
world setting. Campos et al. [11] proposed a Pareto-optimal
supervisor leading to a minimally deviating formulation by
recursively finding the most constrained vehicle, reserving
its optimal crossing time, and scheduling the crossing of
the other vehicles using the previously scheduled ones as
constraints. This method allows to minimize the deviation
between the overridden and desired controls, but may be
computationally intensive.

Inspired by previous work on using operations research
for autonomous intersection management [12] and studies
demonstrating the interest of using pairwise priorities be-
tween vehicles [13], we propose a novel design of a least
restrictive and minimally deviating supervisor. Our main
contribution is a new formulation of the supervisory problem
as a finite horizon Model Predictive Control (MPC) problem,
in which the safety constraints are modeled as mixed-
integer linear inequalities on vehicles control and a quadratic
objective function is used to penalize the deviation from the
vehicles target control inputs. This formulation, extending
our previous work on time-optimal coordination of fully au-
tonomous vehicles [14], results in a mixed-integer quadratic
program (MIQP) that can be solved using widely available
software. Compared to previous approaches [7], [9], [10], the
advantage of our formulation is twofold: 1) intersections with
complex geometries (crossing, merging and diverging paths)
can be handled intuitively, 2) the computational burden can
be significantly reduced as we only consider a finite time
horizon, and use highly efficient MIQP solvers.

The rest of this paper is articulated as follows. In Sec-
tion II, we describe the modeling of the system of vehicles
and, inspired by [7], [11], formally define a “Supervision
problem” and its optimal, minimally deviating version. In
Section III, we present an infinite horizon MPC formulation
which solves the discretized optimal supervision problem.
In Section IV, we deduce an equivalent, finite time hori-
zon MPC problem which guarantees infinite horizon safety
and deadlock avoidance. These results are demonstrated in
Section V using computer simulation; finally, Section VI
concludes the study.

II. PROBLEM STATEMENT

A. System modeling

We consider the problem of safely coordinating a set N of
N semi-autonomous vehicles at a generic road intersection,
which could be comprised of multiple entry and exit lanes.
Contrary to full autonomy, we assume that semi-autonomous
vehicles are able to safely navigate outside intersections,
for instance with adaptive cruise control techniques, but
need a form of coordination to safely cross intersections.
Therefore, we consider a finite supervision area comprising
the intersection and a portion of the roads leading to, and

exiting from the intersection, and only consider possible
collisions inside this area. In the supervision area, vehicles
are assumed to follow predetermined paths with good lateral
accuracy. Fig. 1 shows an example intersection between two
roads, each one comprising three entry and exit lanes, and
the corresponding possible paths inside the intersection.

We model the longitudinal dynamics of each vehicle as a
double integrator: for a vehicle i ∈ N following a path γi,
the curvilinear position si, longitudinal speed vi and control
input (or acceleration) ui are linked as(

ṡi
v̇i

)
=

(
vi
ui

)
. (1)

We choose the origin of si so that si = 0 when the front
bumper of vehicle i enters the supervision area, and si =
souti > 0 when its rear bumper exits the supervision area.
Vehicles are assumed to only move forward along their paths,
so that for all i ∈ N , vi ≥ 0. Furthermore, we consider
bounds on the speed and acceleration of each vehicle, noted
vi ∈ Vi = [0, vi] and ui ∈ Ui = [ui, ui] where ui < 0 <
ui. We let xi = (si, vi) be the state of vehicle i, and we
use the bold characters x = (xi)i∈N and u = (ui)i∈N to
respectively denote the vectors of states and control inputs
for the system of all vehicles.

We consider complex intersection geometries with merg-
ing, diverging, crossing and non-conflicting paths, in which
both rear-end and side collisions may occur. For two vehicles
i, j with a risk of rear-end collision, we note S‖ij =

[
s
‖
ij , s

‖
ij

]
the interval of positions si where i can have rear-end colli-
sions with j. For vehicles on the same path, S‖ij = [0, souti ];
for vehicles on paths diverging at the curvilinear position
sdivergeij , S‖ij = [0, sdivergeij ]; for vehicles on merging paths,
S
‖
ij is in the form [smergeij , soutij ]. If there is no risk of rear-end

collision for i and j, we let S‖ij = ∅.
We call collision area the center of the intersection where

side collisions can occur, as presented in Fig. 1. Note that
side collisions cannot occur for vehicles on diverging paths,
but can occur for merging paths. The portion of the path of a
vehicle i comprised in the collision area is called the collision
segment for vehicle i, and we note S⊥i =

[
s⊥i , s

⊥
i

]
the set of

curvilinear coordinates corresponding to this segment. For
two vehicles i and j, we let Cij be the set of positions
(si, sj) ∈ S⊥i × S⊥j where a side collision between i
and j can happen, and we say that two vehicles i and j
are conflicting if Cij 6= ∅. To ensure a safe crossing of
the intersection, we require that two conflicting vehicles
cannot be inside their collision segments simultaneously.
However, to reduce unnecessary delays and increase traffic
efficiency, non-conflicting vehicles are allowed to be inside
their collision segments at the same time.

At a given time τ , we say that the corresponding system
state x(τ) is safe if there exists a control t 7→ u(t) ∈∏
i∈N Ui defined over [τ,+∞[ corresponding to a safe

infinite-horizon system trajectory t 7→ x(t) over [τ,+∞[,
i.e. for which no rear-end or side collision happens at any
future time. On the contrary, if no such control exists, the



state x(τ) is called an inevitable collision state [6]. Formally,
an infinite horizon trajectory is safe if, ∀t ≥ τ,∀i, j ∈ N :

Cij 6= ∅ ⇒ (si(t), sj(t)) /∈ S⊥i × S⊥j (2)

(si(t), sj(t)) ∈ S‖ij × S
‖
ji ⇒

(si(t) ≥ sj(t) + dij ∨ sj(t) ≥ si(t) + dji) (3)

where dij and dji account for a safe following distance and
a potential offset of longitudinal positions between vehicles.
Note that condition (3) corresponds to either i following j or
j following i, accounting for the case of vehicles on merging
paths, for which a relative order is not set in advance.

B. Discretized dynamics

At a given time, each vehicle has a certain desired control
ui,des, for instance taking into account passengers comfort,
energy consumption or time constraints. The vector of these
desired controls defines a desired system control udes. De-
pending on the dynamic constraints and the current system
state, this desired control may lead the system into an unsafe
situation, i.e. a state where a collision is inevitable.

Following the ideas introduced in [7], we define a Super-
visor as an instance working in discrete time, which assigns
a control to each vehicle to ensure that the system remains
in a safe state for all future times. We let ∆t > 0 be the
duration of a time step for the supervisor, and we assume that
individual vehicles update their control in discrete time with
the same time step duration, so that the dynamic equations
for a vehicle i can be rewritten as:

sk+1
i = vki ∆t+

1

2
uki ∆t2 (4)

vk+1
i = vki + uki ∆t (5)

where ski , vki and uki are respectively the position, speed and
control of the vehicle at the beginning of the time interval
[k∆t, (k+1)∆t[. We note xki = (ski , v

k
i ) the state of a single

vehicle, and we let xk = (xki )i∈N and uk = (uki )i∈N .
As in the continuous case, we formally introduce the safety

of the discretized system: at a time instant κ, we say that the
current system state xκ is safe if there exists a piecewise-
constant control (uk)k≥κ that ensures the existence of a
safe infinite-horizon system trajectory (xk)k≥κ. Note that
directly discretizing conditions (2) and (3) is not sufficient to
ensure the infinite horizon safety of the discretized system.
Therefore, we adopt the following sufficient conditions for
system safety, adapted from (2) and (3), and we require that
for all k ≥ κ and all i, j ∈ N ,(

Cij 6= ∅ ∧ ski ∈ S⊥i
)
⇒ sk+1

j /∈ S⊥j (6)

(ski , s
k
j ) ∈ S‖ij × S

‖
ji ⇒(

sk+1
i ≥ sk+1

j + dij ∨ sk+1
j ≥ sk+1

i + dji
)

(7)(
(ski , s

k
j ) ∈ S‖ij × S

‖
ji ∧ s

k+1
i ≥ sk+1

j + dij
)
⇒

sk+1
i − sk+1

j +
∆t

2

(
vk+1
i − vk+1

j

)
≥ dij (8)

The additional condition (8) ensures the absence of longitu-
dinal collisions between two time steps.

C. Supervision problem

At the beginning of a time step κ and for an initially
safe system state xκ, we note uκdes the desired (constant)
system control over [κ∆t, (κ + 1)∆t[. The Supervisor is
tasked with returning a safe (constant) control uκsafe for the
set of vehicles so that the next system state xκ+1 is safe. In
what follows, we note Uκsafe ⊂

∏
i Ui the set of safe constant

system controls over [κ∆t, (κ+ 1)∆t[.
As introduced in [7] we define the (least restrictive)

Supervision Problem (SP ) as follows:
Problem 1: SP . For a safe system state xκ and a desired

system control uκdes, return uκsafe = SP (xκ,uκdes) such that
uκsafe ∈ Uκsafe and so that uκsafe = uκdes if uκdes ∈ Uκsafe.

In the supervised driving paradigm, the control actually
implemented by the vehicles over [κ∆t, (κ+1)∆t[ is uκsafe.
The supervision problem SP is least restrictive in the sense
that an “overriding” only occurs when the desired system
input would steer the system into an inevitable collision state.
The fact that the state reached using uκsafe is safe ensures
the recursive feasibility of SP .

We now define the optimal Supervision Problem (SP ∗),
which is a generalization of [11]. We say that a supervisor
solving SP ∗ is a minimally deviating supervisor for a given
norm || · || over the set of bounded system controls

Problem 2: SP ∗. For a system state xκ and a desired
system control uκdes, return u∗κsafe = SP ∗(xκ,uκdes) such
that u∗κsafe = arg minu∈Uκsafe

||uκ − uκdes||.
Note that the optimal supervision problem is an instance

of the least-restrictive supervision problem, in the sense
that any solution to SP ∗ is a solution to SP .However,
not all solutions of SP are solutions of SP ∗. Previous
literature [7], [9], [10] mainly considers SP , by converting
it to an equivalent scheduling problem. Campos et al. [11]
proposed to exhaustively enumerate all solutions of SP to
find the solution to SP ∗, which may be computationally
costly. In this paper, we propose an MPC-based approach
that can solve SP ∗ efficiently, even with a large number of
vehicles and complex intersection geometries.

III. INFINITE HORIZON MPC FORMULATION FOR SP ∗

In this section, we present an infinite horizon MPC for-
mulation to exactly solve the optimal supervision problem
SP ∗.

For two conflicting vehicles i and j, we introduce the
binary decision variable πij which is equal to 1 if i goes
before j, and 0 otherwise; we require that πij + πji = 1.
Moreover, we define a set of indicator variables ε such
that ε⊥,ini (k) = 1 if ski ≥ s⊥i and ε⊥,outi (k) = 1 if
ski ≥ s⊥i . Similarly, we let ε‖,inij (•, k) = 1 if sk• ≥ s

‖
ij(•)

and ε
‖,out
ij (•, k) = 1 if sk• ≥ s

‖
ij(•) for • = i or j.

Reference [14] shows how constraints (2) and (3), as well as
the constraints on the indicator variables ε can be enforced
using linear inequalities involving continuous and integer
variables using a “big-M” formulation. To ensure safety and
deadlock avoidance over an infinite time horizon we require,
for every pair of conflicting vehicles i and j and for all time



steps k:

πij = 1 ∧ ε⊥,outi (k) = 0⇒ ε⊥,inj (k + 1) = 0 (s1)

πij = 1 ∧ ε‖,inji (k) = 1 ∧ ε‖,outij (k) = 0⇒
sk+1
i − sk+1

j ≥ dij (s2)

πij = 1 ∧ ε‖,inji (k) = 1 ∧ ε‖,outij (k) = 0⇒

sk+1
i − sk+1

j +
∆t

2

(
vk+1
i − vk+1

j

)
≥ dij (s3)

Note that (s1), (s2) and (s3) respectively correspond
to (6), (7) and (8).

Conditions (s2) and (s3) are used for vehicles on merging
paths. For non-conflicting vehicles having following con-
straints (i.e. on parallel or diverging paths), similar conditions
are required but the value of πij is implicitly chosen based
on the initial positions of the vehicles.

Any trajectory verifying the above conditions (for all
vehicles for which they are applicable) at all time steps
is safe over an infinite time horizon. To ensure trajectories
are dynamically feasible for the vehicles, we also enforce
constraints (4) and (5), as well as bound constraints vki ∈
[0, vi] and uki ∈ [ui, ui] for all vehicles and at all time steps.
As a result, any control verifying all the above conditions is
a member of Uκsafe.

To choose the optimal control (in the sense of SP ∗) in
Uκsafe, we introduce the following objective function:

Oκ =
∑
i∈N

wκi
(
uκi,des − uκi

)2
(9)

where the constant wκi ≥ 0 is a weighting coefficient
for vehicle i at step κ which can be used, for instance,
to distinguish high priority vehicles. From the previous
considerations and noting X = (Xk)k≥κ where Xk is the
tuple of the variables defined above at step k, we deduce
the following theorem about our Infinite Horizon Model
Predictive Control (IH-MPC) formulation:

Theorem 1: Let uκ be a solution of the optimization
problem:

uκ = Πu arg min
X

Oκ(X) (IH-MPC)

subj. to ∀k ≥ κ, (4), (5), (s1)− (s3)

where Πu is a projection operator consisting of only keeping
the components of the solution corresponding to uκ. Then
uκ is a solution to the optimal supervision problem SP ∗ at
step κ for a (semi-)norm of RN .

Proof: We note that any solution to the above problem
ensures safety for all vehicles at all future times; therefore,
the corresponding control uκ is in Uκsafe and is thus a
solution to SP . Moreover, by construction the solution
minimizes Oκ, thus it is a solution to SP ∗ for the semi-
norm associated with the bilinear form ΠuOκ. Note that, if
all wκi = 1, this corresponds to the euclidean norm of RN .

One property of this receding horizon formulation is the
guarantee that all vehicles can eventually exit the supervision

area, and that no deadlock situation can happen, as stated in
the following theorem:

Theorem 2: For all κ, there exists a feasible solution
to IH-MPC in which all vehicles in N exit the supervision
area in finite time.

Proof: The proof builds on previous results from [13],
defining the notion of “priority graph” for a set of vehicles.
For a valuation of the priority variables πij , the correspond-
ing priority graph is built by choosing each vehicle as a
vertex, and adding the (directed) edge i → j if and only if
πij = 1. It is shown in [13] that no deadlock can arise from
an acyclic priority graph; this corresponds to the intuitive
notion that deadlocks only occur in the presence of circular
wait lists.

Assume that some vehicles are in a deadlock situation:
by definition, there exists a time step k ≥ κ when all
deadlocked vehicles are stopped; moreover, the above results
imply that the vehicles have been assigned cyclic priorities.
The problem constraints ensure that, for any pair of vehicles
(i, j) involved in the circular wait list with assigned priority
πij = 1, we necessarily have ski ≤ s⊥i and skj ≤ s⊥j .
Therefore, assigning priority πji = 1 is also feasible, and
thus it is possible to reverse the edge i → j in the priority
graph without violating any constraint.

Results on minimum feedback arc sets [15] show that it is
possible to remove cycles in a directed graph by reversing a
set of its edges, all of these edges participating in at least one
cycle. This property ensures that, if all vehicles involved in
circular wait lists are stopped at step k, there exists a feasible
solution with acyclic priorities which proves the theorem.

IV. AN EQUIVALENT FINITE HORIZON FORMULATION

In the previous section, we introduced an optimal and
least restrictive supervisor based on an infinite horizon
MPC scheme. However, this formulation is not suitable for
practical implementations because of the infinite number of
variables. We now present a finite horizon formulation which
can be implemented in widely available solvers and, given
the proper choice of the time horizon, ensures the safety of
the system over an infinite time horizon.

A. Finite Horizon formulation

We propose an approach based on a restriction of the infi-
nite horizon formulation introduced in the previous section.
At a time step κ, we consider the restriction of IH-MPC
to the first following K steps (corresponding to a horizon
T = K∆t), i.e. Oκ is minimized under constraints (4), (5)
and (s1) to (s3) for all steps k such that κ ≤ k ≤ κ + K,
and the last considered variables are those at step k+K. We
note FH-MPC this finite horizon Model Predictive Control
problem.

B. Equivalence of FH-MPC and IH-MPC

By construction, a solution to FH-MPC is guaranteed to
avoid collisions up to time (κ + K)∆t. However, due to
the dynamic constraints on the vehicles, there is no a priori
guarantee that the resulting trajectory can be extended to a



safe infinite horizon trajectory, i.e. xκ+1 might not be safe. In
what follows, we prove that provided the horizon T = K∆t
is chosen long enough, the solution uκ of FH-MPC ensures
that xκ+1 is safe.

First, note that the constraints in FH-MPC are a restriction
of those of IH-MPC. Therefore, the restriction of any solution
to IH-MPC to the interval [κ∆t, (κ+K)∆t] is a feasible (but
potentially not optimal) solution of FH-MPC, and so:

Proposition 1: If there exists a solution to IH-MPC, then
the restriction of the solution to the first K steps is a feasible
solution to FH-MPC.

We will now prove a reciprocal implication to Proposi-
tion 1, which is stated in Theorem 3. In what follows, we
let vmax > 0, ua > 0 and ub < 0 be respectively a global
upper bound for vi, lower bound for ui and upper bound for
ui such that for all i, vi ≤ vmax, ui ≥ ua and ui ≤ ub.

The key idea of the proof lies in the choice of a planning
horizon long enough to allow any vehicle to fully stop. The
structure of the proof is as follows: Lemma 1 gives a lower
bound on the time horizon to allow a single vehicle to stop
using discrete dynamics, although with a potential risk of
rear-end collisions from following vehicles. In Proposition 2,
we show that this time horizon is sufficient to ensure safety
from lateral (but not necessarily from rear-end) collisions.
Finally, in Proposition 3, we give a slightly higher bound
on the time horizon ensuring that all vehicles in a line can
all safely stop without rear-end collisions, and therefore that
this horizon also ensures absence of rear-end collisions.

Lemma 1: Let ∆t > 0 be a time step duration and
consider a horizon T = K∆t ≥ vmax

|ub| +∆t at time t1 = κ∆t.
Consider a vehicle i for which there exists a discrete control
(uki )κ≤k<κ+K such that, for all κ ≤ k < κ+K, uki ∈ [ui, ui]
corresponding to a dynamically feasible trajectory si(t) over
[κ∆t, (κ+K)∆t].
There exists a discrete control (ũki )κ≤k≤κ+K such that for
all κ ≤ k ≤ κ + K, uki ∈ [ui, ui] and ũκi = uκi , and for
which the corresponding dynamically feasible trajectory t 7→
x̃i(t) = (s̃i(t), ṽi(t)) verifies s̃i(t1 + T + ∆t) ≤ si(t1 + T )
and ṽi = 0 over [t1 + T, t1 + T + ∆t].

Proof: Let (uki ) be the control corresponding to tra-
jectory si, and let us define a control (wki ) as: wκi = uκi ,
wki = min(ub, u

k
i ) for κ < k < κ + K, and wκ+K

i = ub.
We construct (ũki ) iteratively as ũκi = uki and, for k ≥ κ+1,

ũki =

{
wki if ṽki + wki ∆t ≥ 0

− vki
∆t otherwise

, where ṽki is the speed

of vehicle i at time k∆t under control (ũki ).
As ṽκ+1

i = vκ+1
i ≤ vmax ≤ (K − 1)∆t|ub| from the

hypothesis, there exists a minimal value of k0 ≥ κ such that
ṽk0i ≤ |ub|∆t; moreover, the condition on K ensures that
ṽκ+1
i − (K − 2)|ub|∆t ≤ |ub|∆t, and so k0 ≤ (κ + 1) +

(K − 2) = κ+K − 1.
From the definition of (ũki ), we know that for all k0 +1 ≤

k ≤ κ + K, ṽki = 0. Since ũki ≤ uki for κ ≤ k ≤ k0 − 1,
we also know that s̃k0i ≤ s

k0
i and ṽk0i ≤ v

k0
i . Finally, ũk0i is

the minimal admissible control starting from x̃k0i ; therefore,
s̃k0+1
i ≤ sk0+1

i = sκ+K
i which proves the above lemma.

We can now formulate the following proposition, in the
particular case where no pair of vehicles has following
constraints:

Proposition 2: Let ∆t > 0 and T = K∆t ≥ vmax
|ub| + ∆t.

Suppose that there exists a solution of FH-MPC at step κ
leading the system of vehicles in N in a state xκ+1 at step
κ+ 1, and that vehicles have no following constraints.
There exists a solution of FH-MPC at step κ + 1 starting
from state xκ+1 with horizon T .

Proof: We will show that, using control uκ over
[κ∆t, (κ + 1)∆t[, the safe crossing constraints (s1) of FH-
MPC remain feasible at step κ+K+1 without violating the
kinodynamic constraints (4) and (5).

First, if sκ+1
i ≥ s⊥i for all i ∈ N , the crossing constraints

are trivially feasible for κ ≤ k ≤ κ + K + 1. Otherwise,
let i be a vehicle such that sκ+1

i ≤ s⊥i . If sκ+K
i ≤ s⊥i ,

proposition 3 shows that i can fully stop before reaching s⊥i
and so the crossing constraints involving i remain feasible.
If s⊥i ≤ sκ+K

i ≥ s⊥i , condition (s1) ensures that each
vehicle j conflicting with i either verifies sκ+K

j ≤ s⊥j (in
which case j can fully stop), or sκ+K

j ≥ s⊥j (in which
case constraint (s1) is always satisfied). Finally, if sκ+K

i ≥
s⊥i , crossing constraints involving i are inactive and thus
satisfied. In all cases, the safe crossing constraints remain
feasible.

When following constraints are involved, the condition on
the time horizon becomes more restrictive. In the following
proposition and noting d·e the ceiling function, we prove a
bound ensuring that a line of vehicles can safely stop before
the leader reaches its final computed position at the end of
the time horizon, without risk of rear-end collisions:

Proposition 3: Let ∆t > 0 and suppose that p vehicles
(noted 1, . . . , p from rear to front) are following one another
at step κ. We consider a horizon T = K∆t ≥ vmax

|ub| +

(p − 1)
(

1 + dumax|ub| e
)

∆t + ∆t at time t1 = κ∆t, and we
assume that every vehicle i ∈ {1, . . . , p} has a safe discrete
control (uki )κ≤k<κ+K such that, for all κ ≤ k < κ + K,
uki ∈ [ui, ui]. We let t 7→ xi(t) be the safe trajectory over
[t1, t1 + T ] for vehicle i under control (uki ).
For all i ∈ {1, . . . , p}, there exists a safe discrete control
(ûki )κ≤k≤κ+K such that for all κ ≤ k ≤ κ+K, uki ∈ [ui, ui],
ûκi = uκi and for which the corresponding dynamically
feasible and safe trajectory t 7→ x̂i(t) = (ŝi(t), v̂i(t))
verifies ŝi(t1 + T + ∆t) ≤ si(t1 + T ) and v̂i = 0 over
[t1 + T, t1 + T + ∆t].

Proof: We will prove by induction that, for i ∈
{1, . . . , p}, there exists a dynamically feasible control (ûki )
with ûκi = uκi and ûki ≤ uki for k ≥ κ such that the
corresponding vehicle speed (v̂ki ) verifies v̂κ+Ki

i ≤ |ub|∆t
with Ki∆t = d vmax|ub| e+ (i− 1)

(
1 + dumax|ub| e

)
∆t. First, for

the rearmost vehicle i = 1, the proof of lemma 1 provides
the result with ûki = ũki .

We now let i ≥ 2 and assume that every vehicle j ∈
{1, . . . , i − 1} follows its corresponding control (ûkj ). We
note ŝkj and v̂kj the position and speed of vehicle j at step
k under this control. Since ûkj ≤ ukj for these vehicles, we



deduce from the monotony of the system that the original
control solution for vehicle i (uki )κ≤k<κ+K prevents rear-
end collisions if vehicle i − 1 applies (̂uki−1). Therefore,
any dynamically feasible extension of (uki ) is safe over
[κ∆t, (κ+K+ 1)∆t[. As a result, the set Usafei (uκi , [κ, κ+
K]) of all admissible controls (ûki )κ≤k≤κ+K for vehicle i
such that ûκi = uκi and uki ≤ ûki ≤ uki for κ ≤ k < κ + K
is not empty. We note (ûki ) a minimum element of this set
(and so ûki ≤ uki ); we will prove that v̂κ+Ki

i ≤ |ub|∆t.
If for all k ≥ κ, v̂ki ≤ ṽki−1, we conclude that vehicle

i stops before vehicle i − 1 which proves the result from
the induction hypothesis. Otherwise, we let ki0 ≥ κ be
the minimum k such that v̂ki ≥ ṽki−1, and we know that

v̂
ki0
i ≤ v̂

ki0−1
i−1 + umax∆t. For all k ≥ ki0, we know from the

monotony of the system that the control min(ûki−1, u
k
i , ub)

prevents rear-end collisions; we deduce that, for k ≥ ki0,
v̂ki ≤ v̂k−1

i−1 + umax∆t. Therefore, v̂κ+Ki−1+1
i ≤ v̂

Ki−1

i−1 +
umax∆t and we deduce from the induction hypothesis that
v̂
κ+Ki−1+1
i ≤ umax∆t + |ub|∆t. Therefore, we obtain the

recursion relation Ki = Ki−1 +1+dumax|ub| e which yields the
announced result.

Finally, we conclude that vehicle i can fully stop (without
rear-end collisions) at step κ + Ki + 1; therefore the set
of p vehicles can safely stop before the beginning of step
κ+K if K ≥ Kp = vmax

|ub|∆t + (p− 1)dumax|ub| e+ 1. Since the
recursion ensures that for all i and k, ûki ≤ uki , we deduce
that sκ+K

i ≤ ŝκ+K
i which proves the proposition.

Finally, we deduce the following theorem:
Theorem 3: Let ∆t > 0 and suppose that at most p

vehicles are following one another, and consider a horizon
T = K∆t ≥ vmax

|ub| +(p−1)
(

1 + dumax|ub| e
)

∆t+∆t. At every
time step κ, formulation IH-MPC is equivalent to FH-MPC
with horizon T , i.e. the restriction of an optimal solution
from one formulation can be extended to an optimal solution
for the other in the sense of Oκ.

Proof: Consider an optimal solution u∞ to IH-MPC
and an optimal solution uT to FH-MPC. From proposition 1,
we know that the restriction of u∞ is a solution to FH-MPC,
and therefore Oκ(u∞) ≥ Oκ(uT ) since uT is optimal for
FH-MPC. Moreover, from propositions 2 and 3, we know
that uT can be extended into an infinite horizon solution
uT,∞ by recursively solving the problem over successive
time steps. Therefore, Oκ(uT,∞) ≥ Oκ(u∞); since Oκ only
depends on the first time step of the solution, we deduce
Oκ(uT,∞) = Oκ(uT ) and so Oκ(u∞) = Oκ(uT ).

Note that, from the previous equivalence, the liveness
guarantee demonstrated in theorem 2 for the infinite horizon
formulation also applies to the finite horizon one.

V. SIMULATION RESULTS

The use of the FH-MPC formulation to design an optimal
supervisor has been validated by computer simulation on
the example of the intersection of Fig. 1. The simulation is
based on the commercial MIQP solver Gurobi [16] and the
free traffic modeling tool SUMO [17], and uses SUMO’s
path generation algorithm to compute collision segments
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Fig. 2. Curvilinear positions of the supervised vehicles.

and conflicting vehicles. Simulations were performed on a
personal computer running on a 3.60 GHz Intel Core i7-4790
CPU with 16 GB of RAM.

In all simulations, vehicles are modeled as rectangles of
5 m length by 2 m width, with [ui, ui] = [−4,+4] m s−2.
The duration of a time step is chosen as ∆t = 0.25 s, and the
horizon T = 4 s, ensuring that the hypotheses of theorems 2
and 3 are verified. All weighting terms wκi are chosen as
wκi = 1.

A. Microscopic simulation

To illustrate the safety and liveness of the proposed super-
visor, we first provide a simple example of 6 vehicles in the
intersection presented in Fig. 1. For clarity reasons, vehicles
either come from the west or the south. Table I presents the
parameters used for the first simulation (in meters and meters
per second); note that vehicles 1 and 2 traveling from west
to east and vehicles 4 and 5 traveling from south to north do
so on the middle lane of the road, so that they do not conflict
with vehicle 3, which turns right. For i ∈ {1, 2, 4, 5, 6},
s⊥i = 89 m and s⊥i = 111 m.

TABLE I
PARAMETERS FOR THE FIRST SIMULATION

i 1 2 3 4 5 6

Orig West West West South South South
Dest. East East South North North West
s0i (m) 30 50 20 40 0 0
v0i (ms−1) 10 11 9 12 9 10

Vehicles request a control corresponding to tracking their
initial speed, with uκi,des = 1

∆t (v
0
i − vκi ). Fig. 2 shows

the curvilinear positions of the vehicles under the above
supervisor; the gray area corresponds to the [89, 111] m
region. Note that vehicle 3, which does not conflict with any
other vehicle, crosses at its target speed. The accompanying
video submission1 shows this example, as well as a larger
instance of 25 vehicles to illustrate a more complex situation.

B. Computation time

The results from theorem 3 allows to use a relatively small
time horizon in the simulator, which enables a fast iterative
resolution of the FH-MPC formulation, even with a high
number of vehicles. Figure 3 shows the distribution of the

1Also available at https://youtu.be/GF5KKr2V7Sg
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Fig. 3. Distribution of computation times for a given number of vehicles,
for a time step duration of 0.25 s.

computation time needed to solve the FH-MPC formulation
for a given number of vehicles, over 10 different instances,
for a time step duration of 0.25 s. For up to 16 vehicles, this
computation time is lower than the duration of a time step
in 95% of the situations, which could allow near real-time
applications.

VI. CONCLUSION

In this article, we have proposed a novel approach to
design a least restrictive and minimally deviating supervisor
for the safe navigation of semi-autonomous vehicles through
an intersection. The supervisor is tasked with overriding the
desired controls of individual vehicles, only when necessary.
Moreover, the overridden control of all vehicles should be
as close as possible, for a given metric, to the controls
initially requested. We proposed an infinite horizon model
predictive control scheme to solve this optimal supervision
problem. We then derived a finite horizon MPC formulation
and, for a long enough horizon, we theoretically proved that
the finite horizon MPC is ensured to maintain safety and
avoid deadlocks for all future times. Finally, we implemented
the supervisor using the commercial mixed-integer quadratic
programming solver Gurobi jointly with the open-source
traffic simulation tool SUMO to demonstrate these properties
on a small set of 6 vehicles as well as on a larger instance
comprising 25 vehicles.

Contrary to previous work on semi-autonomous supervi-
sion, our approach is based on the simultaneous resolution of
the discrete problem of finding an optimal vehicle ordering,
and the continuous problem of optimizing trajectories within
this ordering. This method, using the concept of pairwise
priorities [13] between vehicles, allows to consider more
complex intersection geometries while taking into account
second-order kinodynamics constraints, with potentially sev-
eral vehicles behind one another or having merging or
diverging paths. Since the supervisor only needs to consider
a relatively short time horizon, it is able to run in real-time
with at least a dozen vehicles.

This new approach to semi-autonomous intersection super-
vision opens up several possibilities for future research. Care-
ful study of the hypotheses of the demonstrated theorems and
the solutions of the optimization problem can help determine

the best instant at which priorities should be assigned to
vehicles. Using additional assumptions on vehicles behavior,
some of the hypotheses can likely be relaxed to further
improve the throughput of the intersection; different objective
functions can be used to find solutions balancing respect
of individual vehicles wishes with traffic efficiency for the
intersection. Moreover, our formulation may be distributed
among vehicles, which could provide a fast and efficient
method for safe and fully autonomous intersection crossing.
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